summaryrefslogtreecommitdiff
path: root/src/mind/topology.test.js
diff options
context:
space:
mode:
authorsanine <sanine.not@pm.me>2023-11-16 14:50:00 -0600
committersanine <sanine.not@pm.me>2023-11-16 14:50:00 -0600
commitf9fc4d26ec5fca9ee175c8a6fbcdd0fa36f10947 (patch)
treef190e6e465bb563c608a916f41fc8bf686ea2897 /src/mind/topology.test.js
parent7825b92ce3be95a0ce1dfea9388adbaadce83b1f (diff)
clear out js files
Diffstat (limited to 'src/mind/topology.test.js')
-rw-r--r--src/mind/topology.test.js235
1 files changed, 0 insertions, 235 deletions
diff --git a/src/mind/topology.test.js b/src/mind/topology.test.js
deleted file mode 100644
index 52c196f..0000000
--- a/src/mind/topology.test.js
+++ /dev/null
@@ -1,235 +0,0 @@
-'use strict';
-
-import { network } from './topology';
-
-
-test('basic network functionality', () => {
- const n = network(0, 5, 0);
- expect(n).toEqual({
- input_count: 0,
- output_count: 0,
- adjacency: [ [], [], [], [], [] ],
- weight: [],
- });
-
- expect(() => n.adjacency = []).toThrow();
- expect(() => n.weight = []).toThrow();
-
- const nn = n.connect(0, 1, -2);
- expect(nn).toEqual({
- input_count: 0,
- output_count: 0,
- adjacency: [
- [ 1 ],
- [ -1 ],
- [ 0 ],
- [ 0 ],
- [ 0 ]
- ],
- weight: [ -2 ],
- });
-
- expect(() => nn.adjacency = []).toThrow();
- expect(() => nn.weight = []).toThrow();
-
- const nnn = nn.connect(2, 4, 3);
- expect(nnn).toEqual({
- input_count: 0,
- output_count: 0,
- adjacency: [
- [ 1, 0 ],
- [ -1, 0 ],
- [ 0, 1 ],
- [ 0, 0 ],
- [ 0, -1 ]
- ],
- weight: [ -2, 3 ],
- });
-
- expect(() => nnn.adjacency = []).toThrow();
- expect(() => nnn.weight = []).toThrow();
-});
-
-
-test(
-'networks are restricted from sinking to inputs or sourcing from outputs',
-() => {
- const n = network(2, 2, 2);
-
- expect(n.connect(1,2,0)).toEqual({
- input_count: 2,
- output_count: 2,
- adjacency: [
- [ 0 ],
- [ 1 ],
- [ -1 ],
- [ 0 ],
- [ 0 ],
- [ 0 ],
- ],
- weight: [ 0 ],
- });
- expect(() => n.connect(2, 1, 0)).toThrow();
-
- expect(n.connect(3, 4, 2)).toEqual({
- input_count: 2,
- output_count: 2,
- adjacency: [
- [ 0 ],
- [ 0 ],
- [ 0 ],
- [ 1 ],
- [ -1 ],
- [ 0 ],
- ],
- weight: [ 2 ],
- });
- expect(() => n.connect(4, 3, 2)).toThrow();
-});
-
-
-test('self-connections work correctly', () => {
- const n = network(0, 1, 0).connect(0, 0, 2.0);
- expect(n).toEqual({
- input_count: 0,
- output_count: 0,
- adjacency: [
- [ 2 ],
- ],
- weight: [ 2 ],
- });
-});
-
-
-test('network computations', () => {
- const n = network(1, 0, 1).connect(0, 1, 2.0);
- const input = [ -0.5 ];
- const state = [];
- const result = n.compute(input, state);
- expect(result).toEqual([
- [ Math.tanh(-0.5 * 2.0) ],
- [],
- ]);
-
- expect(input).toEqual([ -0.5 ]);
- expect(state).toEqual([]);
-
- expect(() => result[0] = 'hi').toThrow();
- expect(() => result[0].push('hi')).toThrow();
- expect(() => result[1] = 'hi').toThrow();
- expect(() => result[1].push('hi')).toThrow();
-});
-
-
-test('multiple input network', () => {
- const n = network(4, 0, 1)
- .connect(0, 4, -1.0)
- .connect(1, 4, -2.0)
- .connect(2, 4, 1.0)
- .connect(3, 4, 2.0)
-
- expect(n.compute([1, 2, 3, 5], [])).toEqual([
- [ Math.tanh(
- (-1.0 * 1) +
- (-2.0 * 2) +
- (1.0 * 3) +
- (2.0 * 5))],
- [],
- ]);
-});
-
-
-test('multiple outputs', () => {
- const n = network(4, 0, 2)
- .connect(0, 4, -1)
- .connect(1, 4, 1)
- .connect(2, 5, -1)
- .connect(3, 5, 1);
-
- expect(n.compute([1,2,3,5], [])).toEqual([
- [ Math.tanh(2-1), Math.tanh(5-3) ],
- [],
- ]);
-});
-
-
-test('hidden neurons', () => {
- const n = network(4, 2, 1)
- .connect(0, 4, -1)
- .connect(1, 4, 1)
- .connect(2, 5, -1)
- .connect(3, 5, 1)
- .connect(4, 6, -1)
- .connect(5, 6, 1);
-
- expect(n.compute([1,2,3,5], [ 0, 0 ])).toEqual([
- [ Math.tanh( Math.tanh(5-3) - Math.tanh(2-1) ) ],
- [ Math.tanh(2-1), Math.tanh(5-3) ],
- ]);
-});
-
-
-test('arbitrary hidden neurons', () => {
- const n = network(1, 2, 1)
- .connect(0, 1, 1)
- .connect(1, 2, -1)
- .connect(2, 3, 2)
-
- const [output, state] = n.compute([1], [0, 0]);
-
- expect(output).toEqual([
- Math.tanh(
- 2*Math.tanh(
- -1*Math.tanh(1)
- )
- )
- ]);
-
- expect(state).toEqual([
- Math.tanh(1),
- Math.tanh( -Math.tanh(1) ),
- ]);
-});
-
-
-test('memory', () => {
- const n = network(0, 1, 1).connect(0, 0, -0.5).connect(0, 1, 2);
-
- expect(n.compute([], [1])).toEqual([
- [ Math.tanh( 2 * Math.tanh( -0.5 * 1 ) ) ],
- [ Math.tanh( -0.5 * 1) ],
- ]);
-});
-
-
-test('memory and input', () => {
- const n = network(1, 1, 1)
- .connect(0, 1, 1)
- .connect(1, 1, 1)
- .connect(1, 2, 1);
-
- expect(n.compute([2], [-1])).toEqual([
- [ Math.tanh( Math.tanh( 2-1 ) ) ],
- [ Math.tanh( 2-1 ) ],
- ]);
-});
-
-
-test('input and state must be the correct size', () => {
- const n = network(2, 1, 1)
- .connect(0, 2, 1)
- .connect(1, 2, 1)
- .connect(2, 3, 1);
-
- // wrong input size
- expect(() => n.compute([], [4])).toThrow();
- expect(() => n.compute([1], [4])).toThrow();
- expect(() => n.compute([1, 1, 1], [4])).toThrow();
-
- // wrong state size
- expect(() => n.compute([1, 1], [])).toThrow();
- expect(() => n.compute([1, 1], [4, 4])).toThrow();
-
- // prove correct sizes work
- n.compute([1, 1], [4]);
-});