diff options
author | sanine <sanine.not@pm.me> | 2023-11-16 14:50:00 -0600 |
---|---|---|
committer | sanine <sanine.not@pm.me> | 2023-11-16 14:50:00 -0600 |
commit | f9fc4d26ec5fca9ee175c8a6fbcdd0fa36f10947 (patch) | |
tree | f190e6e465bb563c608a916f41fc8bf686ea2897 /src/mind/topology.test.js | |
parent | 7825b92ce3be95a0ce1dfea9388adbaadce83b1f (diff) |
clear out js files
Diffstat (limited to 'src/mind/topology.test.js')
-rw-r--r-- | src/mind/topology.test.js | 235 |
1 files changed, 0 insertions, 235 deletions
diff --git a/src/mind/topology.test.js b/src/mind/topology.test.js deleted file mode 100644 index 52c196f..0000000 --- a/src/mind/topology.test.js +++ /dev/null @@ -1,235 +0,0 @@ -'use strict'; - -import { network } from './topology'; - - -test('basic network functionality', () => { - const n = network(0, 5, 0); - expect(n).toEqual({ - input_count: 0, - output_count: 0, - adjacency: [ [], [], [], [], [] ], - weight: [], - }); - - expect(() => n.adjacency = []).toThrow(); - expect(() => n.weight = []).toThrow(); - - const nn = n.connect(0, 1, -2); - expect(nn).toEqual({ - input_count: 0, - output_count: 0, - adjacency: [ - [ 1 ], - [ -1 ], - [ 0 ], - [ 0 ], - [ 0 ] - ], - weight: [ -2 ], - }); - - expect(() => nn.adjacency = []).toThrow(); - expect(() => nn.weight = []).toThrow(); - - const nnn = nn.connect(2, 4, 3); - expect(nnn).toEqual({ - input_count: 0, - output_count: 0, - adjacency: [ - [ 1, 0 ], - [ -1, 0 ], - [ 0, 1 ], - [ 0, 0 ], - [ 0, -1 ] - ], - weight: [ -2, 3 ], - }); - - expect(() => nnn.adjacency = []).toThrow(); - expect(() => nnn.weight = []).toThrow(); -}); - - -test( -'networks are restricted from sinking to inputs or sourcing from outputs', -() => { - const n = network(2, 2, 2); - - expect(n.connect(1,2,0)).toEqual({ - input_count: 2, - output_count: 2, - adjacency: [ - [ 0 ], - [ 1 ], - [ -1 ], - [ 0 ], - [ 0 ], - [ 0 ], - ], - weight: [ 0 ], - }); - expect(() => n.connect(2, 1, 0)).toThrow(); - - expect(n.connect(3, 4, 2)).toEqual({ - input_count: 2, - output_count: 2, - adjacency: [ - [ 0 ], - [ 0 ], - [ 0 ], - [ 1 ], - [ -1 ], - [ 0 ], - ], - weight: [ 2 ], - }); - expect(() => n.connect(4, 3, 2)).toThrow(); -}); - - -test('self-connections work correctly', () => { - const n = network(0, 1, 0).connect(0, 0, 2.0); - expect(n).toEqual({ - input_count: 0, - output_count: 0, - adjacency: [ - [ 2 ], - ], - weight: [ 2 ], - }); -}); - - -test('network computations', () => { - const n = network(1, 0, 1).connect(0, 1, 2.0); - const input = [ -0.5 ]; - const state = []; - const result = n.compute(input, state); - expect(result).toEqual([ - [ Math.tanh(-0.5 * 2.0) ], - [], - ]); - - expect(input).toEqual([ -0.5 ]); - expect(state).toEqual([]); - - expect(() => result[0] = 'hi').toThrow(); - expect(() => result[0].push('hi')).toThrow(); - expect(() => result[1] = 'hi').toThrow(); - expect(() => result[1].push('hi')).toThrow(); -}); - - -test('multiple input network', () => { - const n = network(4, 0, 1) - .connect(0, 4, -1.0) - .connect(1, 4, -2.0) - .connect(2, 4, 1.0) - .connect(3, 4, 2.0) - - expect(n.compute([1, 2, 3, 5], [])).toEqual([ - [ Math.tanh( - (-1.0 * 1) + - (-2.0 * 2) + - (1.0 * 3) + - (2.0 * 5))], - [], - ]); -}); - - -test('multiple outputs', () => { - const n = network(4, 0, 2) - .connect(0, 4, -1) - .connect(1, 4, 1) - .connect(2, 5, -1) - .connect(3, 5, 1); - - expect(n.compute([1,2,3,5], [])).toEqual([ - [ Math.tanh(2-1), Math.tanh(5-3) ], - [], - ]); -}); - - -test('hidden neurons', () => { - const n = network(4, 2, 1) - .connect(0, 4, -1) - .connect(1, 4, 1) - .connect(2, 5, -1) - .connect(3, 5, 1) - .connect(4, 6, -1) - .connect(5, 6, 1); - - expect(n.compute([1,2,3,5], [ 0, 0 ])).toEqual([ - [ Math.tanh( Math.tanh(5-3) - Math.tanh(2-1) ) ], - [ Math.tanh(2-1), Math.tanh(5-3) ], - ]); -}); - - -test('arbitrary hidden neurons', () => { - const n = network(1, 2, 1) - .connect(0, 1, 1) - .connect(1, 2, -1) - .connect(2, 3, 2) - - const [output, state] = n.compute([1], [0, 0]); - - expect(output).toEqual([ - Math.tanh( - 2*Math.tanh( - -1*Math.tanh(1) - ) - ) - ]); - - expect(state).toEqual([ - Math.tanh(1), - Math.tanh( -Math.tanh(1) ), - ]); -}); - - -test('memory', () => { - const n = network(0, 1, 1).connect(0, 0, -0.5).connect(0, 1, 2); - - expect(n.compute([], [1])).toEqual([ - [ Math.tanh( 2 * Math.tanh( -0.5 * 1 ) ) ], - [ Math.tanh( -0.5 * 1) ], - ]); -}); - - -test('memory and input', () => { - const n = network(1, 1, 1) - .connect(0, 1, 1) - .connect(1, 1, 1) - .connect(1, 2, 1); - - expect(n.compute([2], [-1])).toEqual([ - [ Math.tanh( Math.tanh( 2-1 ) ) ], - [ Math.tanh( 2-1 ) ], - ]); -}); - - -test('input and state must be the correct size', () => { - const n = network(2, 1, 1) - .connect(0, 2, 1) - .connect(1, 2, 1) - .connect(2, 3, 1); - - // wrong input size - expect(() => n.compute([], [4])).toThrow(); - expect(() => n.compute([1], [4])).toThrow(); - expect(() => n.compute([1, 1, 1], [4])).toThrow(); - - // wrong state size - expect(() => n.compute([1, 1], [])).toThrow(); - expect(() => n.compute([1, 1], [4, 4])).toThrow(); - - // prove correct sizes work - n.compute([1, 1], [4]); -}); |