1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
|
module Genome
( Gene (..)
, Genome (..)
, mutateGeneSource
, mutateGeneSink
, mutateGeneWeight
, mutateGene
, mutateGenomeAddInternal
, mutateGenomeRemoveInternal
, mutateGenomeAddGene
, mutateGenomeRemoveGene
, mutateGenome
) where
import Mind (NeuronIndex (..))
import System.Random
import Data.Ix
data Gene = Gene { source :: NeuronIndex, sink :: NeuronIndex, weight :: Float } deriving (Eq, Show)
data Genome = Genome { numInput :: Int, numInternal :: Int, numOutput :: Int, genes :: [Gene] } deriving (Eq, Show)
-- choose a random list element
randomChoice :: RandomGen a => [b] -> a -> (b, a)
randomChoice xs r =
let (idx, r') = randomR (0, length xs - 1) r
in (xs !! idx, r')
-- pick a new random source for the gene
mutateGeneSource :: RandomGen a => Genome -> Gene -> a -> (Gene, a)
mutateGeneSource genome g r =
let
nInput = numInput genome
nInternal = numInternal genome
idx :: Int
(idx, r') = randomR (0, nInput+nInternal-1) r
source' =
if idx < nInput
then Input idx
else Internal $ idx - nInput
in ( g { source = source' }, r')
-- pick a new random sink for the gene
mutateGeneSink :: RandomGen a => Genome -> Gene -> a -> (Gene, a)
mutateGeneSink genome g r =
let
nInternal = numInternal genome
nOutput = numOutput genome
idx :: Int
(idx, r') = randomR (0, nInternal+nOutput-1) r
sink' = if idx < nInternal
then Internal idx
else Output $ idx - nInternal
in ( g { sink = sink' }, r' )
-- pick a new random weight, in the range (-w, w)
-- where w is twice the absolute value of the current weight
mutateGeneWeight :: RandomGen a => Genome -> Gene -> a -> (Gene, a)
mutateGeneWeight _ g r =
let
w = 2 * (abs $ weight g)
(weight', r') = randomR (negate w, w) r
in ( g { weight = weight' }, r' )
-- randomly mutate gene (modify source, sink, or weight
mutateGene :: RandomGen a => Genome -> Gene -> a -> (Gene, a)
mutateGene genome g r =
let (f, r') = randomChoice [mutateGeneSource, mutateGeneSink, mutateGeneWeight] r
in f genome g r'
-- add new internal neuron
mutateGenomeAddInternal :: RandomGen a => Genome -> a -> (Genome, a)
mutateGenomeAddInternal genome r = (genome { numInternal = 1 + numInternal genome }, r)
-- remove an internal neuron, decrementing sources and incrementing sinks
mutateGenomeRemoveInternal :: RandomGen a => Genome -> a -> (Genome, a)
mutateGenomeRemoveInternal g r =
let
(idx, r') = randomR (0, numInternal g - 1) r
remove = Internal idx
genes' = map
(\(Gene so si w) ->
let
so' = if (isInternal so) && (so >= remove)
then decrementNeuron g so else so
si' = if (si < remove) || (not $ isInternal si) then si
else if si == remove
then
let si'' = incrementNeuron g si
in if isInternal si'' then si else si''
else decrementNeuron g si
in Gene {source=so', sink=si', weight=w}
)
(genes g)
in
(g { numInternal = (numInternal g - 1), genes = genes' }, r')
validn :: Genome -> NeuronIndex -> NeuronIndex
validn g (Input x)
| (inRange (0, numInput g - 1) x) = Input x
| otherwise = error "out of range Input!"
validn g (Internal x)
| (inRange (0, numInternal g - 1) x) = Internal x
| otherwise = error "out of range Internal!"
validn g (Output x)
| (inRange (0, numOutput g - 1) x) = Output x
| otherwise = error "out of range Output!"
incrementNeuron :: Genome -> NeuronIndex -> NeuronIndex
incrementNeuron g (Input x)
| (x >= numInput g - 1) = validn g (Internal 0)
| otherwise = validn g (Input $ x+1)
incrementNeuron g (Internal x)
| (x >= numInternal g - 1) = validn g (Output 0)
| otherwise = validn g (Internal $ x+1)
incrementNeuron g (Output x)
| (x >= numOutput g - 1) = error "cannot increment past the end of outputs!"
| otherwise = validn g (Output $ x+1)
decrementNeuron :: Genome -> NeuronIndex -> NeuronIndex
decrementNeuron g (Input x)
| (x <= 0) = error "cannot decrement past the first Input!"
| otherwise = validn g (Input $ x-1)
decrementNeuron g (Internal x)
| (x <= 0) = validn g (Input $ numInput g - 1)
| otherwise = validn g (Internal $ x-1)
decrementNeuron g (Output x)
| (x <= 0) = validn g (Internal $ numInternal g - 1)
| otherwise = validn g (Output $ x-1)
isInternal :: NeuronIndex -> Bool
isInternal (Internal _) = True
isInternal _ = False
-- add a new, random gene
mutateGenomeAddGene :: RandomGen a => Genome -> a -> (Genome, a)
mutateGenomeAddGene g r =
let
(so, r') = randomSource g r
(si, r'') = randomSink g r'
(w, r''') = randomR (-4, 4) r''
gene = Gene so si w
in (g {genes = gene:(genes g)}, r''')
randomSource :: RandomGen a => Genome -> a -> (NeuronIndex, a)
randomSource g r =
let
(idx, r') = randomR (0, numInput g + numInternal g - 1) r
result = if idx < numInput g then Input idx else Internal $ idx - numInput g
in (result, r')
randomSink :: RandomGen a => Genome -> a -> (NeuronIndex, a)
randomSink g r =
let
(idx, r') = randomR (0, numInternal g + numOutput g - 1) r
result = if idx < numInternal g then Internal idx else Output $ idx - numInput g
in (result, r')
-- remove a random gene
mutateGenomeRemoveGene :: RandomGen a => Genome -> a -> (Genome, a)
mutateGenomeRemoveGene g r =
let
(idx, r') = randomR (0, (length $ genes g) - 1) r
(front, _:back) = splitAt idx (genes g)
in (g {genes = front ++ back}, r')
-- mutate a random gene
mutateGenomeMutateGene :: RandomGen a => Genome -> a -> (Genome, a)
mutateGenomeMutateGene g r =
let
(idx, r') = randomR (0, length (genes g) - 1) r
gene = (genes g) !! idx
(gene', r'') = mutateGene g gene r'
(front, _:back) = splitAt idx (genes g)
in (g {genes = front ++ (gene':back)}, r'')
-- mutate a genome
mutateGenome :: RandomGen a => Genome -> a -> (Genome, a)
mutateGenome g r =
let
(f, r') = randomChoice (concat
[ replicate 9 mutateGenomeMutateGene
, replicate 2 mutateGenomeAddGene
, replicate 2 mutateGenomeRemoveGene
, [mutateGenomeAddInternal, mutateGenomeRemoveInternal]
]
) r
in f g r'
|