1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
|
module Mind
( NeuronIndex (..)
, getNeuronIndex
, Edge (..)
, Network (..)
, createEmptyNetwork
, connectNeurons
, compute
) where
import Data.Ix
import Data.Maybe
-- index different neuron types
data NeuronIndex = Input Int | Internal Int | Output Int deriving (Show, Eq, Ord)
getNeuronIndex :: NeuronIndex -> Int
getNeuronIndex (Input i) = i
getNeuronIndex (Internal i) = i
getNeuronIndex (Output i) = i
-- define incident edges
newtype Edge = Edge (NeuronIndex, Float) deriving (Show, Eq)
-- define networks
data Network = Network
{ numInput :: Int
, internalNeurons :: [[Edge]]
, outputNeurons :: [[Edge]]
} deriving (Show, Eq)
-- create a completely empty network
createEmptyNetwork :: Int -> Int -> Int -> Network
createEmptyNetwork i h o = Network i (replicate h []) (replicate o [])
-- connect two neurons together with a new edge
connectNeurons :: Network -> NeuronIndex -> NeuronIndex -> Float -> Maybe Network
-- internal sink
connectNeurons (Network i h o) source (Internal sink) weight =
if (validSource (Network i h o) source) then do
newH <- insertEdge h sink $ Edge (source, weight)
return $ Network i newH o
else Nothing
-- output sink
connectNeurons (Network i h o) source (Output sink) weight =
if (validSource (Network i h o) source) then do
newO <- insertEdge o sink $ Edge (source, weight)
return $ Network i h newO
else Nothing
--
connectNeurons _ _ (Input _) _ = Nothing
-- helpers for connectNeurons
-- check if a given NeuronIndex can be used as a valid source
validSource :: Network -> NeuronIndex -> Bool
validSource _ (Output _) = False
validSource (Network i _ _) (Input x) =
if (inRange (0, i) x)
then True else False
validSource (Network _ h _) (Internal x) =
if (inRange (0, length h) x)
then True else False
-- insert a new edge into a neuron list, possibly failing
insertEdge :: [[Edge]] -> Int -> Edge -> Maybe [[Edge]]
insertEdge ns i e
| (inRange (0, (length ns)-1) i) = let (front, es:back) = splitAt i ns
in Just $ front ++ [e:es] ++ back
| otherwise = Nothing
-- network computation
compute :: Network -> [Float] -> [Float] -> Either String ([Float], [Float])
compute net input state
| (length input) /= (numInput net) = Left $ "Bad input length: " ++ (show $ length input)
| (length state) /= (length $ internalNeurons net) = Left $ "Bad state length: " ++ (show $ length state)
| otherwise =
let
s = newState net input state
state' = map (Just) s
in Right $ (output net input state state', s)
type InputState = ([Float], [Float])
type NewState = [Maybe Float]
output :: Network -> [Float] -> [Float] -> NewState -> [Float]
output net input state state' =
let
numOutput = length $ outputNeurons net
in
map ((fst . getValue net (input, state) state') . Output) [0..numOutput-1]
newState :: Network -> [Float] -> [Float] -> [Float]
newState net input state =
let numInternal = length $ internalNeurons net
in fst $
foldr
(\x (r, ns) ->
let (value, ns') = getValue net (input, state) ns (Internal x)
in (value:r, ns')
)
([], replicate numInternal Nothing)
[0..numInternal-1]
updateValue :: NewState -> Int -> Float -> NewState
updateValue state' i value =
let (front, _:back) = splitAt i state'
in front ++ (Just value):back
getValue :: Network -> InputState -> NewState -> NeuronIndex -> (Float, NewState)
getValue _ (input, _) state' (Input x) = (input !! x, state')
getValue net inputState state' (Internal x) =
let cached = state' !! x
in
if isJust cached then (fromJust cached, state')
else let
(value, ns) = foldEdges net inputState state' (Internal x) (internalNeurons net !! x)
nss = updateValue ns x value
in (value, nss)
getValue net inputState state' (Output x) =
foldEdges net inputState state' (Output x) (outputNeurons net !! x)
foldEdges:: Network -> InputState -> NewState -> NeuronIndex -> [Edge] -> (Float, NewState)
foldEdges net (input, state) state' sink edges =
let
(t, ns) = foldl
(\(total, nss) (Edge (source, w)) ->
let
(value, nss') = if (sink == source)
then (state !! (getNeuronIndex source), ns)
else getValue net (input, state) nss source
total' = (w * value) + total
in (total', nss')
)
(0, state')
edges
in (tanh t, ns)
|