summaryrefslogtreecommitdiff
path: root/libs/assimp/code/AssetLib/IFC/IFCCurve.cpp
diff options
context:
space:
mode:
authorsanine <sanine.not@pm.me>2022-04-16 11:55:09 -0500
committersanine <sanine.not@pm.me>2022-04-16 11:55:09 -0500
commitdb81b925d776103326128bf629cbdda576a223e7 (patch)
tree58bea8155c686733310009f6bed7363f91fbeb9d /libs/assimp/code/AssetLib/IFC/IFCCurve.cpp
parent55860037b14fb3893ba21cf2654c83d349cc1082 (diff)
move 3rd-party librarys into libs/ and add built-in honeysuckle
Diffstat (limited to 'libs/assimp/code/AssetLib/IFC/IFCCurve.cpp')
-rw-r--r--libs/assimp/code/AssetLib/IFC/IFCCurve.cpp618
1 files changed, 618 insertions, 0 deletions
diff --git a/libs/assimp/code/AssetLib/IFC/IFCCurve.cpp b/libs/assimp/code/AssetLib/IFC/IFCCurve.cpp
new file mode 100644
index 0000000..19732ef
--- /dev/null
+++ b/libs/assimp/code/AssetLib/IFC/IFCCurve.cpp
@@ -0,0 +1,618 @@
+/*
+Open Asset Import Library (assimp)
+----------------------------------------------------------------------
+
+Copyright (c) 2006-2022, assimp team
+
+
+All rights reserved.
+
+Redistribution and use of this software in source and binary forms,
+with or without modification, are permitted provided that the
+following conditions are met:
+
+* Redistributions of source code must retain the above
+ copyright notice, this list of conditions and the
+ following disclaimer.
+
+* Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the
+ following disclaimer in the documentation and/or other
+ materials provided with the distribution.
+
+* Neither the name of the assimp team, nor the names of its
+ contributors may be used to endorse or promote products
+ derived from this software without specific prior
+ written permission of the assimp team.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+----------------------------------------------------------------------
+*/
+
+/** @file IFCProfile.cpp
+ * @brief Read profile and curves entities from IFC files
+ */
+
+#ifndef ASSIMP_BUILD_NO_IFC_IMPORTER
+#include "IFCUtil.h"
+
+namespace Assimp {
+namespace IFC {
+namespace {
+
+
+// --------------------------------------------------------------------------------
+// Conic is the base class for Circle and Ellipse
+// --------------------------------------------------------------------------------
+class Conic : public Curve {
+public:
+ // --------------------------------------------------
+ Conic(const Schema_2x3::IfcConic& entity, ConversionData& conv)
+ : Curve(entity,conv) {
+ IfcMatrix4 trafo;
+ ConvertAxisPlacement(trafo,*entity.Position,conv);
+
+ // for convenience, extract the matrix rows
+ location = IfcVector3(trafo.a4,trafo.b4,trafo.c4);
+ p[0] = IfcVector3(trafo.a1,trafo.b1,trafo.c1);
+ p[1] = IfcVector3(trafo.a2,trafo.b2,trafo.c2);
+ p[2] = IfcVector3(trafo.a3,trafo.b3,trafo.c3);
+ }
+
+ // --------------------------------------------------
+ bool IsClosed() const {
+ return true;
+ }
+
+ // --------------------------------------------------
+ size_t EstimateSampleCount(IfcFloat a, IfcFloat b) const {
+ ai_assert( InRange( a ) );
+ ai_assert( InRange( b ) );
+
+ a *= conv.angle_scale;
+ b *= conv.angle_scale;
+
+ a = std::fmod(a,static_cast<IfcFloat>( AI_MATH_TWO_PI ));
+ b = std::fmod(b,static_cast<IfcFloat>( AI_MATH_TWO_PI ));
+ const IfcFloat setting = static_cast<IfcFloat>( AI_MATH_PI * conv.settings.conicSamplingAngle / 180.0 );
+ return static_cast<size_t>( std::ceil(std::abs( b-a)) / setting);
+ }
+
+ // --------------------------------------------------
+ ParamRange GetParametricRange() const {
+ return std::make_pair(static_cast<IfcFloat>( 0. ), static_cast<IfcFloat>( AI_MATH_TWO_PI / conv.angle_scale ));
+ }
+
+protected:
+ IfcVector3 location, p[3];
+};
+
+// --------------------------------------------------------------------------------
+// Circle
+// --------------------------------------------------------------------------------
+class Circle : public Conic {
+public:
+ // --------------------------------------------------
+ Circle(const Schema_2x3::IfcCircle& entity, ConversionData& conv)
+ : Conic(entity,conv)
+ , entity(entity)
+ {
+ }
+
+ // --------------------------------------------------
+ IfcVector3 Eval(IfcFloat u) const {
+ u = -conv.angle_scale * u;
+ return location + static_cast<IfcFloat>(entity.Radius)*(static_cast<IfcFloat>(std::cos(u))*p[0] +
+ static_cast<IfcFloat>(std::sin(u))*p[1]);
+ }
+
+private:
+ const Schema_2x3::IfcCircle& entity;
+};
+
+// --------------------------------------------------------------------------------
+// Ellipse
+// --------------------------------------------------------------------------------
+class Ellipse : public Conic {
+public:
+ // --------------------------------------------------
+ Ellipse(const Schema_2x3::IfcEllipse& entity, ConversionData& conv)
+ : Conic(entity,conv)
+ , entity(entity) {
+ // empty
+ }
+
+ // --------------------------------------------------
+ IfcVector3 Eval(IfcFloat u) const {
+ u = -conv.angle_scale * u;
+ return location + static_cast<IfcFloat>(entity.SemiAxis1)*static_cast<IfcFloat>(std::cos(u))*p[0] +
+ static_cast<IfcFloat>(entity.SemiAxis2)*static_cast<IfcFloat>(std::sin(u))*p[1];
+ }
+
+private:
+ const Schema_2x3::IfcEllipse& entity;
+};
+
+// --------------------------------------------------------------------------------
+// Line
+// --------------------------------------------------------------------------------
+class Line : public Curve {
+public:
+ // --------------------------------------------------
+ Line(const Schema_2x3::IfcLine& entity, ConversionData& conv)
+ : Curve(entity,conv) {
+ ConvertCartesianPoint(p,entity.Pnt);
+ ConvertVector(v,entity.Dir);
+ }
+
+ // --------------------------------------------------
+ bool IsClosed() const {
+ return false;
+ }
+
+ // --------------------------------------------------
+ IfcVector3 Eval(IfcFloat u) const {
+ return p + u*v;
+ }
+
+ // --------------------------------------------------
+ size_t EstimateSampleCount(IfcFloat a, IfcFloat b) const {
+ ai_assert( InRange( a ) );
+ ai_assert( InRange( b ) );
+ // two points are always sufficient for a line segment
+ return a==b ? 1 : 2;
+ }
+
+
+ // --------------------------------------------------
+ void SampleDiscrete(TempMesh& out,IfcFloat a, IfcFloat b) const {
+ ai_assert( InRange( a ) );
+ ai_assert( InRange( b ) );
+
+ if (a == b) {
+ out.mVerts.push_back(Eval(a));
+ return;
+ }
+ out.mVerts.reserve(out.mVerts.size()+2);
+ out.mVerts.push_back(Eval(a));
+ out.mVerts.push_back(Eval(b));
+ }
+
+ // --------------------------------------------------
+ ParamRange GetParametricRange() const {
+ const IfcFloat inf = std::numeric_limits<IfcFloat>::infinity();
+
+ return std::make_pair(-inf,+inf);
+ }
+
+private:
+ IfcVector3 p,v;
+};
+
+// --------------------------------------------------------------------------------
+// CompositeCurve joins multiple smaller, bounded curves
+// --------------------------------------------------------------------------------
+class CompositeCurve : public BoundedCurve {
+ typedef std::pair< std::shared_ptr< BoundedCurve >, bool > CurveEntry;
+
+public:
+ // --------------------------------------------------
+ CompositeCurve(const Schema_2x3::IfcCompositeCurve& entity, ConversionData& conv)
+ : BoundedCurve(entity,conv)
+ , total() {
+ curves.reserve(entity.Segments.size());
+ for(const Schema_2x3::IfcCompositeCurveSegment& curveSegment :entity.Segments) {
+ // according to the specification, this must be a bounded curve
+ std::shared_ptr< Curve > cv(Curve::Convert(curveSegment.ParentCurve,conv));
+ std::shared_ptr< BoundedCurve > bc = std::dynamic_pointer_cast<BoundedCurve>(cv);
+
+ if (!bc) {
+ IFCImporter::LogError("expected segment of composite curve to be a bounded curve");
+ continue;
+ }
+
+ if ( (std::string)curveSegment.Transition != "CONTINUOUS" ) {
+ IFCImporter::LogVerboseDebug("ignoring transition code on composite curve segment, only continuous transitions are supported");
+ }
+
+ curves.push_back( CurveEntry(bc,IsTrue(curveSegment.SameSense)) );
+ total += bc->GetParametricRangeDelta();
+ }
+
+ if (curves.empty()) {
+ throw CurveError("empty composite curve");
+ }
+ }
+
+ // --------------------------------------------------
+ IfcVector3 Eval(IfcFloat u) const {
+ if (curves.empty()) {
+ return IfcVector3();
+ }
+
+ IfcFloat acc = 0;
+ for(const CurveEntry& entry : curves) {
+ const ParamRange& range = entry.first->GetParametricRange();
+ const IfcFloat delta = std::abs(range.second-range.first);
+ if (u < acc+delta) {
+ return entry.first->Eval( entry.second ? (u-acc) + range.first : range.second-(u-acc));
+ }
+
+ acc += delta;
+ }
+ // clamp to end
+ return curves.back().first->Eval(curves.back().first->GetParametricRange().second);
+ }
+
+ // --------------------------------------------------
+ size_t EstimateSampleCount(IfcFloat a, IfcFloat b) const {
+ ai_assert( InRange( a ) );
+ ai_assert( InRange( b ) );
+ size_t cnt = 0;
+
+ IfcFloat acc = 0;
+ for(const CurveEntry& entry : curves) {
+ const ParamRange& range = entry.first->GetParametricRange();
+ const IfcFloat delta = std::abs(range.second-range.first);
+ if (a <= acc+delta && b >= acc) {
+ const IfcFloat at = std::max(static_cast<IfcFloat>( 0. ),a-acc), bt = std::min(delta,b-acc);
+ cnt += entry.first->EstimateSampleCount( entry.second ? at + range.first : range.second - bt, entry.second ? bt + range.first : range.second - at );
+ }
+
+ acc += delta;
+ }
+
+ return cnt;
+ }
+
+ // --------------------------------------------------
+ void SampleDiscrete(TempMesh& out,IfcFloat a, IfcFloat b) const {
+ ai_assert( InRange( a ) );
+ ai_assert( InRange( b ) );
+
+ const size_t cnt = EstimateSampleCount(a,b);
+ out.mVerts.reserve(out.mVerts.size() + cnt);
+
+ for(const CurveEntry& entry : curves) {
+ const size_t curCnt = out.mVerts.size();
+ entry.first->SampleDiscrete(out);
+
+ if (!entry.second && curCnt != out.mVerts.size()) {
+ std::reverse(out.mVerts.begin() + curCnt, out.mVerts.end());
+ }
+ }
+ }
+
+ // --------------------------------------------------
+ ParamRange GetParametricRange() const {
+ return std::make_pair(static_cast<IfcFloat>( 0. ),total);
+ }
+
+private:
+ std::vector< CurveEntry > curves;
+ IfcFloat total;
+};
+
+// --------------------------------------------------------------------------------
+// TrimmedCurve can be used to trim an unbounded curve to a bounded range
+// --------------------------------------------------------------------------------
+class TrimmedCurve : public BoundedCurve {
+public:
+ // --------------------------------------------------
+ TrimmedCurve(const Schema_2x3::IfcTrimmedCurve& entity, ConversionData& conv)
+ : BoundedCurve(entity,conv),
+ base(std::shared_ptr<const Curve>(Curve::Convert(entity.BasisCurve,conv)))
+ {
+ typedef std::shared_ptr<const STEP::EXPRESS::DataType> Entry;
+
+ // for some reason, trimmed curves can either specify a parametric value
+ // or a point on the curve, or both. And they can even specify which of the
+ // two representations they prefer, even though an information invariant
+ // claims that they must be identical if both are present.
+ // oh well.
+ bool have_param = false, have_point = false;
+ IfcVector3 point;
+ for(const Entry& sel :entity.Trim1) {
+ if (const ::Assimp::STEP::EXPRESS::REAL* const r = sel->ToPtr<::Assimp::STEP::EXPRESS::REAL>()) {
+ range.first = *r;
+ have_param = true;
+ break;
+ }
+ else if (const Schema_2x3::IfcCartesianPoint* const curR = sel->ResolveSelectPtr<Schema_2x3::IfcCartesianPoint>(conv.db)) {
+ ConvertCartesianPoint(point, *curR);
+ have_point = true;
+ }
+ }
+ if (!have_param) {
+ if (!have_point || !base->ReverseEval(point,range.first)) {
+ throw CurveError("IfcTrimmedCurve: failed to read first trim parameter, ignoring curve");
+ }
+ }
+ have_param = false, have_point = false;
+ for(const Entry& sel :entity.Trim2) {
+ if (const ::Assimp::STEP::EXPRESS::REAL* const r = sel->ToPtr<::Assimp::STEP::EXPRESS::REAL>()) {
+ range.second = *r;
+ have_param = true;
+ break;
+ }
+ else if (const Schema_2x3::IfcCartesianPoint* const curR = sel->ResolveSelectPtr<Schema_2x3::IfcCartesianPoint>(conv.db)) {
+ ConvertCartesianPoint(point, *curR);
+ have_point = true;
+ }
+ }
+ if (!have_param) {
+ if (!have_point || !base->ReverseEval(point,range.second)) {
+ throw CurveError("IfcTrimmedCurve: failed to read second trim parameter, ignoring curve");
+ }
+ }
+
+ agree_sense = IsTrue(entity.SenseAgreement);
+ if( !agree_sense ) {
+ std::swap(range.first,range.second);
+ }
+
+ // "NOTE In case of a closed curve, it may be necessary to increment t1 or t2
+ // by the parametric length for consistency with the sense flag."
+ if (base->IsClosed()) {
+ if( range.first > range.second ) {
+ range.second += base->GetParametricRangeDelta();
+ }
+ }
+
+ maxval = range.second-range.first;
+ ai_assert(maxval >= 0);
+ }
+
+ // --------------------------------------------------
+ IfcVector3 Eval(IfcFloat p) const {
+ ai_assert(InRange(p));
+ return base->Eval( TrimParam(p) );
+ }
+
+ // --------------------------------------------------
+ size_t EstimateSampleCount(IfcFloat a, IfcFloat b) const {
+ ai_assert( InRange( a ) );
+ ai_assert( InRange( b ) );
+ return base->EstimateSampleCount(TrimParam(a),TrimParam(b));
+ }
+
+ // --------------------------------------------------
+ void SampleDiscrete(TempMesh& out,IfcFloat a,IfcFloat b) const {
+ ai_assert(InRange(a));
+ ai_assert(InRange(b));
+ return base->SampleDiscrete(out,TrimParam(a),TrimParam(b));
+ }
+
+ // --------------------------------------------------
+ ParamRange GetParametricRange() const {
+ return std::make_pair(static_cast<IfcFloat>( 0. ),maxval);
+ }
+
+private:
+ // --------------------------------------------------
+ IfcFloat TrimParam(IfcFloat f) const {
+ return agree_sense ? f + range.first : range.second - f;
+ }
+
+private:
+ ParamRange range;
+ IfcFloat maxval;
+ bool agree_sense;
+
+ std::shared_ptr<const Curve> base;
+};
+
+
+// --------------------------------------------------------------------------------
+// PolyLine is a 'curve' defined by linear interpolation over a set of discrete points
+// --------------------------------------------------------------------------------
+class PolyLine : public BoundedCurve {
+public:
+ // --------------------------------------------------
+ PolyLine(const Schema_2x3::IfcPolyline& entity, ConversionData& conv)
+ : BoundedCurve(entity,conv)
+ {
+ points.reserve(entity.Points.size());
+
+ IfcVector3 t;
+ for(const Schema_2x3::IfcCartesianPoint& cp : entity.Points) {
+ ConvertCartesianPoint(t,cp);
+ points.push_back(t);
+ }
+ }
+
+ // --------------------------------------------------
+ IfcVector3 Eval(IfcFloat p) const {
+ ai_assert(InRange(p));
+
+ const size_t b = static_cast<size_t>(std::floor(p));
+ if (b == points.size()-1) {
+ return points.back();
+ }
+
+ const IfcFloat d = p-static_cast<IfcFloat>(b);
+ return points[b+1] * d + points[b] * (static_cast<IfcFloat>( 1. )-d);
+ }
+
+ // --------------------------------------------------
+ size_t EstimateSampleCount(IfcFloat a, IfcFloat b) const {
+ ai_assert(InRange(a));
+ ai_assert(InRange(b));
+ return static_cast<size_t>( std::ceil(b) - std::floor(a) );
+ }
+
+ // --------------------------------------------------
+ ParamRange GetParametricRange() const {
+ return std::make_pair(static_cast<IfcFloat>( 0. ),static_cast<IfcFloat>(points.size()-1));
+ }
+
+private:
+ std::vector<IfcVector3> points;
+};
+
+} // anon
+
+// ------------------------------------------------------------------------------------------------
+Curve* Curve::Convert(const IFC::Schema_2x3::IfcCurve& curve,ConversionData& conv) {
+ if(curve.ToPtr<Schema_2x3::IfcBoundedCurve>()) {
+ if(const Schema_2x3::IfcPolyline* c = curve.ToPtr<Schema_2x3::IfcPolyline>()) {
+ return new PolyLine(*c,conv);
+ }
+ if(const Schema_2x3::IfcTrimmedCurve* c = curve.ToPtr<Schema_2x3::IfcTrimmedCurve>()) {
+ return new TrimmedCurve(*c,conv);
+ }
+ if(const Schema_2x3::IfcCompositeCurve* c = curve.ToPtr<Schema_2x3::IfcCompositeCurve>()) {
+ return new CompositeCurve(*c,conv);
+ }
+ }
+
+ if(curve.ToPtr<Schema_2x3::IfcConic>()) {
+ if(const Schema_2x3::IfcCircle* c = curve.ToPtr<Schema_2x3::IfcCircle>()) {
+ return new Circle(*c,conv);
+ }
+ if(const Schema_2x3::IfcEllipse* c = curve.ToPtr<Schema_2x3::IfcEllipse>()) {
+ return new Ellipse(*c,conv);
+ }
+ }
+
+ if(const Schema_2x3::IfcLine* c = curve.ToPtr<Schema_2x3::IfcLine>()) {
+ return new Line(*c,conv);
+ }
+
+ // XXX OffsetCurve2D, OffsetCurve3D not currently supported
+ return nullptr;
+}
+
+#ifdef ASSIMP_BUILD_DEBUG
+// ------------------------------------------------------------------------------------------------
+bool Curve::InRange(IfcFloat u) const {
+ const ParamRange range = GetParametricRange();
+ if (IsClosed()) {
+ return true;
+ }
+ const IfcFloat epsilon = Math::getEpsilon<float>();
+ return u - range.first > -epsilon && range.second - u > -epsilon;
+}
+#endif
+
+// ------------------------------------------------------------------------------------------------
+IfcFloat Curve::GetParametricRangeDelta() const {
+ const ParamRange& range = GetParametricRange();
+ return std::abs(range.second - range.first);
+}
+
+// ------------------------------------------------------------------------------------------------
+size_t Curve::EstimateSampleCount(IfcFloat a, IfcFloat b) const {
+ (void)(a); (void)(b);
+ ai_assert( InRange( a ) );
+ ai_assert( InRange( b ) );
+
+ // arbitrary default value, deriving classes should supply better suited values
+ return 16;
+}
+
+// ------------------------------------------------------------------------------------------------
+IfcFloat RecursiveSearch(const Curve* cv, const IfcVector3& val, IfcFloat a, IfcFloat b,
+ unsigned int samples, IfcFloat threshold, unsigned int recurse = 0, unsigned int max_recurse = 15) {
+ ai_assert(samples>1);
+
+ const IfcFloat delta = (b-a)/samples, inf = std::numeric_limits<IfcFloat>::infinity();
+ IfcFloat min_point[2] = {a,b}, min_diff[2] = {inf,inf};
+ IfcFloat runner = a;
+
+ for (unsigned int i = 0; i < samples; ++i, runner += delta) {
+ const IfcFloat diff = (cv->Eval(runner)-val).SquareLength();
+ if (diff < min_diff[0]) {
+ min_diff[1] = min_diff[0];
+ min_point[1] = min_point[0];
+
+ min_diff[0] = diff;
+ min_point[0] = runner;
+ }
+ else if (diff < min_diff[1]) {
+ min_diff[1] = diff;
+ min_point[1] = runner;
+ }
+ }
+
+ ai_assert( min_diff[ 0 ] != inf );
+ ai_assert( min_diff[ 1 ] != inf );
+ if ( std::fabs(a-min_point[0]) < threshold || recurse >= max_recurse) {
+ return min_point[0];
+ }
+
+ // fix for closed curves to take their wrap-over into account
+ if (cv->IsClosed() && std::fabs(min_point[0]-min_point[1]) > cv->GetParametricRangeDelta()*0.5 ) {
+ const Curve::ParamRange& range = cv->GetParametricRange();
+ const IfcFloat wrapdiff = (cv->Eval(range.first)-val).SquareLength();
+
+ if (wrapdiff < min_diff[0]) {
+ const IfcFloat t = min_point[0];
+ min_point[0] = min_point[1] > min_point[0] ? range.first : range.second;
+ min_point[1] = t;
+ }
+ }
+
+ return RecursiveSearch(cv,val,min_point[0],min_point[1],samples,threshold,recurse+1,max_recurse);
+}
+
+// ------------------------------------------------------------------------------------------------
+bool Curve::ReverseEval(const IfcVector3& val, IfcFloat& paramOut) const
+{
+ // note: the following algorithm is not guaranteed to find the 'right' parameter value
+ // in all possible cases, but it will always return at least some value so this function
+ // will never fail in the default implementation.
+
+ // XXX derive threshold from curve topology
+ static const IfcFloat threshold = 1e-4f;
+ static const unsigned int samples = 16;
+
+ const ParamRange& range = GetParametricRange();
+ paramOut = RecursiveSearch(this,val,range.first,range.second,samples,threshold);
+
+ return true;
+}
+
+// ------------------------------------------------------------------------------------------------
+void Curve::SampleDiscrete(TempMesh& out,IfcFloat a, IfcFloat b) const {
+ ai_assert( InRange( a ) );
+ ai_assert( InRange( b ) );
+
+ const size_t cnt = std::max(static_cast<size_t>(0),EstimateSampleCount(a,b));
+ out.mVerts.reserve( out.mVerts.size() + cnt + 1);
+
+ IfcFloat p = a, delta = (b-a)/cnt;
+ for(size_t i = 0; i <= cnt; ++i, p += delta) {
+ out.mVerts.push_back(Eval(p));
+ }
+}
+
+// ------------------------------------------------------------------------------------------------
+bool BoundedCurve::IsClosed() const {
+ return false;
+}
+
+// ------------------------------------------------------------------------------------------------
+void BoundedCurve::SampleDiscrete(TempMesh& out) const {
+ const ParamRange& range = GetParametricRange();
+ ai_assert( range.first != std::numeric_limits<IfcFloat>::infinity() );
+ ai_assert( range.second != std::numeric_limits<IfcFloat>::infinity() );
+
+ return SampleDiscrete(out,range.first,range.second);
+}
+
+} // IFC
+} // Assimp
+
+#endif // ASSIMP_BUILD_NO_IFC_IMPORTER