diff options
author | sanine <sanine.not@pm.me> | 2023-02-12 23:53:22 -0600 |
---|---|---|
committer | sanine <sanine.not@pm.me> | 2023-02-12 23:53:22 -0600 |
commit | f1fe73d1909a2448a004a88362a1a532d0d4f7c3 (patch) | |
tree | ab37ae3837e2f858de2932bcee9f26e69fab3db1 /libs/assimp/code/AssetLib/IFC/IFCCurve.cpp | |
parent | f567ea1e2798fd3156a416e61f083ea3e6b95719 (diff) |
switch to tinyobj and nanovg from assimp and cairo
Diffstat (limited to 'libs/assimp/code/AssetLib/IFC/IFCCurve.cpp')
-rw-r--r-- | libs/assimp/code/AssetLib/IFC/IFCCurve.cpp | 618 |
1 files changed, 0 insertions, 618 deletions
diff --git a/libs/assimp/code/AssetLib/IFC/IFCCurve.cpp b/libs/assimp/code/AssetLib/IFC/IFCCurve.cpp deleted file mode 100644 index 19732ef..0000000 --- a/libs/assimp/code/AssetLib/IFC/IFCCurve.cpp +++ /dev/null @@ -1,618 +0,0 @@ -/* -Open Asset Import Library (assimp) ----------------------------------------------------------------------- - -Copyright (c) 2006-2022, assimp team - - -All rights reserved. - -Redistribution and use of this software in source and binary forms, -with or without modification, are permitted provided that the -following conditions are met: - -* Redistributions of source code must retain the above - copyright notice, this list of conditions and the - following disclaimer. - -* Redistributions in binary form must reproduce the above - copyright notice, this list of conditions and the - following disclaimer in the documentation and/or other - materials provided with the distribution. - -* Neither the name of the assimp team, nor the names of its - contributors may be used to endorse or promote products - derived from this software without specific prior - written permission of the assimp team. - -THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS -"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT -LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR -A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT -OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, -SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT -LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, -DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY -THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT -(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE -OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - ----------------------------------------------------------------------- -*/ - -/** @file IFCProfile.cpp - * @brief Read profile and curves entities from IFC files - */ - -#ifndef ASSIMP_BUILD_NO_IFC_IMPORTER -#include "IFCUtil.h" - -namespace Assimp { -namespace IFC { -namespace { - - -// -------------------------------------------------------------------------------- -// Conic is the base class for Circle and Ellipse -// -------------------------------------------------------------------------------- -class Conic : public Curve { -public: - // -------------------------------------------------- - Conic(const Schema_2x3::IfcConic& entity, ConversionData& conv) - : Curve(entity,conv) { - IfcMatrix4 trafo; - ConvertAxisPlacement(trafo,*entity.Position,conv); - - // for convenience, extract the matrix rows - location = IfcVector3(trafo.a4,trafo.b4,trafo.c4); - p[0] = IfcVector3(trafo.a1,trafo.b1,trafo.c1); - p[1] = IfcVector3(trafo.a2,trafo.b2,trafo.c2); - p[2] = IfcVector3(trafo.a3,trafo.b3,trafo.c3); - } - - // -------------------------------------------------- - bool IsClosed() const { - return true; - } - - // -------------------------------------------------- - size_t EstimateSampleCount(IfcFloat a, IfcFloat b) const { - ai_assert( InRange( a ) ); - ai_assert( InRange( b ) ); - - a *= conv.angle_scale; - b *= conv.angle_scale; - - a = std::fmod(a,static_cast<IfcFloat>( AI_MATH_TWO_PI )); - b = std::fmod(b,static_cast<IfcFloat>( AI_MATH_TWO_PI )); - const IfcFloat setting = static_cast<IfcFloat>( AI_MATH_PI * conv.settings.conicSamplingAngle / 180.0 ); - return static_cast<size_t>( std::ceil(std::abs( b-a)) / setting); - } - - // -------------------------------------------------- - ParamRange GetParametricRange() const { - return std::make_pair(static_cast<IfcFloat>( 0. ), static_cast<IfcFloat>( AI_MATH_TWO_PI / conv.angle_scale )); - } - -protected: - IfcVector3 location, p[3]; -}; - -// -------------------------------------------------------------------------------- -// Circle -// -------------------------------------------------------------------------------- -class Circle : public Conic { -public: - // -------------------------------------------------- - Circle(const Schema_2x3::IfcCircle& entity, ConversionData& conv) - : Conic(entity,conv) - , entity(entity) - { - } - - // -------------------------------------------------- - IfcVector3 Eval(IfcFloat u) const { - u = -conv.angle_scale * u; - return location + static_cast<IfcFloat>(entity.Radius)*(static_cast<IfcFloat>(std::cos(u))*p[0] + - static_cast<IfcFloat>(std::sin(u))*p[1]); - } - -private: - const Schema_2x3::IfcCircle& entity; -}; - -// -------------------------------------------------------------------------------- -// Ellipse -// -------------------------------------------------------------------------------- -class Ellipse : public Conic { -public: - // -------------------------------------------------- - Ellipse(const Schema_2x3::IfcEllipse& entity, ConversionData& conv) - : Conic(entity,conv) - , entity(entity) { - // empty - } - - // -------------------------------------------------- - IfcVector3 Eval(IfcFloat u) const { - u = -conv.angle_scale * u; - return location + static_cast<IfcFloat>(entity.SemiAxis1)*static_cast<IfcFloat>(std::cos(u))*p[0] + - static_cast<IfcFloat>(entity.SemiAxis2)*static_cast<IfcFloat>(std::sin(u))*p[1]; - } - -private: - const Schema_2x3::IfcEllipse& entity; -}; - -// -------------------------------------------------------------------------------- -// Line -// -------------------------------------------------------------------------------- -class Line : public Curve { -public: - // -------------------------------------------------- - Line(const Schema_2x3::IfcLine& entity, ConversionData& conv) - : Curve(entity,conv) { - ConvertCartesianPoint(p,entity.Pnt); - ConvertVector(v,entity.Dir); - } - - // -------------------------------------------------- - bool IsClosed() const { - return false; - } - - // -------------------------------------------------- - IfcVector3 Eval(IfcFloat u) const { - return p + u*v; - } - - // -------------------------------------------------- - size_t EstimateSampleCount(IfcFloat a, IfcFloat b) const { - ai_assert( InRange( a ) ); - ai_assert( InRange( b ) ); - // two points are always sufficient for a line segment - return a==b ? 1 : 2; - } - - - // -------------------------------------------------- - void SampleDiscrete(TempMesh& out,IfcFloat a, IfcFloat b) const { - ai_assert( InRange( a ) ); - ai_assert( InRange( b ) ); - - if (a == b) { - out.mVerts.push_back(Eval(a)); - return; - } - out.mVerts.reserve(out.mVerts.size()+2); - out.mVerts.push_back(Eval(a)); - out.mVerts.push_back(Eval(b)); - } - - // -------------------------------------------------- - ParamRange GetParametricRange() const { - const IfcFloat inf = std::numeric_limits<IfcFloat>::infinity(); - - return std::make_pair(-inf,+inf); - } - -private: - IfcVector3 p,v; -}; - -// -------------------------------------------------------------------------------- -// CompositeCurve joins multiple smaller, bounded curves -// -------------------------------------------------------------------------------- -class CompositeCurve : public BoundedCurve { - typedef std::pair< std::shared_ptr< BoundedCurve >, bool > CurveEntry; - -public: - // -------------------------------------------------- - CompositeCurve(const Schema_2x3::IfcCompositeCurve& entity, ConversionData& conv) - : BoundedCurve(entity,conv) - , total() { - curves.reserve(entity.Segments.size()); - for(const Schema_2x3::IfcCompositeCurveSegment& curveSegment :entity.Segments) { - // according to the specification, this must be a bounded curve - std::shared_ptr< Curve > cv(Curve::Convert(curveSegment.ParentCurve,conv)); - std::shared_ptr< BoundedCurve > bc = std::dynamic_pointer_cast<BoundedCurve>(cv); - - if (!bc) { - IFCImporter::LogError("expected segment of composite curve to be a bounded curve"); - continue; - } - - if ( (std::string)curveSegment.Transition != "CONTINUOUS" ) { - IFCImporter::LogVerboseDebug("ignoring transition code on composite curve segment, only continuous transitions are supported"); - } - - curves.push_back( CurveEntry(bc,IsTrue(curveSegment.SameSense)) ); - total += bc->GetParametricRangeDelta(); - } - - if (curves.empty()) { - throw CurveError("empty composite curve"); - } - } - - // -------------------------------------------------- - IfcVector3 Eval(IfcFloat u) const { - if (curves.empty()) { - return IfcVector3(); - } - - IfcFloat acc = 0; - for(const CurveEntry& entry : curves) { - const ParamRange& range = entry.first->GetParametricRange(); - const IfcFloat delta = std::abs(range.second-range.first); - if (u < acc+delta) { - return entry.first->Eval( entry.second ? (u-acc) + range.first : range.second-(u-acc)); - } - - acc += delta; - } - // clamp to end - return curves.back().first->Eval(curves.back().first->GetParametricRange().second); - } - - // -------------------------------------------------- - size_t EstimateSampleCount(IfcFloat a, IfcFloat b) const { - ai_assert( InRange( a ) ); - ai_assert( InRange( b ) ); - size_t cnt = 0; - - IfcFloat acc = 0; - for(const CurveEntry& entry : curves) { - const ParamRange& range = entry.first->GetParametricRange(); - const IfcFloat delta = std::abs(range.second-range.first); - if (a <= acc+delta && b >= acc) { - const IfcFloat at = std::max(static_cast<IfcFloat>( 0. ),a-acc), bt = std::min(delta,b-acc); - cnt += entry.first->EstimateSampleCount( entry.second ? at + range.first : range.second - bt, entry.second ? bt + range.first : range.second - at ); - } - - acc += delta; - } - - return cnt; - } - - // -------------------------------------------------- - void SampleDiscrete(TempMesh& out,IfcFloat a, IfcFloat b) const { - ai_assert( InRange( a ) ); - ai_assert( InRange( b ) ); - - const size_t cnt = EstimateSampleCount(a,b); - out.mVerts.reserve(out.mVerts.size() + cnt); - - for(const CurveEntry& entry : curves) { - const size_t curCnt = out.mVerts.size(); - entry.first->SampleDiscrete(out); - - if (!entry.second && curCnt != out.mVerts.size()) { - std::reverse(out.mVerts.begin() + curCnt, out.mVerts.end()); - } - } - } - - // -------------------------------------------------- - ParamRange GetParametricRange() const { - return std::make_pair(static_cast<IfcFloat>( 0. ),total); - } - -private: - std::vector< CurveEntry > curves; - IfcFloat total; -}; - -// -------------------------------------------------------------------------------- -// TrimmedCurve can be used to trim an unbounded curve to a bounded range -// -------------------------------------------------------------------------------- -class TrimmedCurve : public BoundedCurve { -public: - // -------------------------------------------------- - TrimmedCurve(const Schema_2x3::IfcTrimmedCurve& entity, ConversionData& conv) - : BoundedCurve(entity,conv), - base(std::shared_ptr<const Curve>(Curve::Convert(entity.BasisCurve,conv))) - { - typedef std::shared_ptr<const STEP::EXPRESS::DataType> Entry; - - // for some reason, trimmed curves can either specify a parametric value - // or a point on the curve, or both. And they can even specify which of the - // two representations they prefer, even though an information invariant - // claims that they must be identical if both are present. - // oh well. - bool have_param = false, have_point = false; - IfcVector3 point; - for(const Entry& sel :entity.Trim1) { - if (const ::Assimp::STEP::EXPRESS::REAL* const r = sel->ToPtr<::Assimp::STEP::EXPRESS::REAL>()) { - range.first = *r; - have_param = true; - break; - } - else if (const Schema_2x3::IfcCartesianPoint* const curR = sel->ResolveSelectPtr<Schema_2x3::IfcCartesianPoint>(conv.db)) { - ConvertCartesianPoint(point, *curR); - have_point = true; - } - } - if (!have_param) { - if (!have_point || !base->ReverseEval(point,range.first)) { - throw CurveError("IfcTrimmedCurve: failed to read first trim parameter, ignoring curve"); - } - } - have_param = false, have_point = false; - for(const Entry& sel :entity.Trim2) { - if (const ::Assimp::STEP::EXPRESS::REAL* const r = sel->ToPtr<::Assimp::STEP::EXPRESS::REAL>()) { - range.second = *r; - have_param = true; - break; - } - else if (const Schema_2x3::IfcCartesianPoint* const curR = sel->ResolveSelectPtr<Schema_2x3::IfcCartesianPoint>(conv.db)) { - ConvertCartesianPoint(point, *curR); - have_point = true; - } - } - if (!have_param) { - if (!have_point || !base->ReverseEval(point,range.second)) { - throw CurveError("IfcTrimmedCurve: failed to read second trim parameter, ignoring curve"); - } - } - - agree_sense = IsTrue(entity.SenseAgreement); - if( !agree_sense ) { - std::swap(range.first,range.second); - } - - // "NOTE In case of a closed curve, it may be necessary to increment t1 or t2 - // by the parametric length for consistency with the sense flag." - if (base->IsClosed()) { - if( range.first > range.second ) { - range.second += base->GetParametricRangeDelta(); - } - } - - maxval = range.second-range.first; - ai_assert(maxval >= 0); - } - - // -------------------------------------------------- - IfcVector3 Eval(IfcFloat p) const { - ai_assert(InRange(p)); - return base->Eval( TrimParam(p) ); - } - - // -------------------------------------------------- - size_t EstimateSampleCount(IfcFloat a, IfcFloat b) const { - ai_assert( InRange( a ) ); - ai_assert( InRange( b ) ); - return base->EstimateSampleCount(TrimParam(a),TrimParam(b)); - } - - // -------------------------------------------------- - void SampleDiscrete(TempMesh& out,IfcFloat a,IfcFloat b) const { - ai_assert(InRange(a)); - ai_assert(InRange(b)); - return base->SampleDiscrete(out,TrimParam(a),TrimParam(b)); - } - - // -------------------------------------------------- - ParamRange GetParametricRange() const { - return std::make_pair(static_cast<IfcFloat>( 0. ),maxval); - } - -private: - // -------------------------------------------------- - IfcFloat TrimParam(IfcFloat f) const { - return agree_sense ? f + range.first : range.second - f; - } - -private: - ParamRange range; - IfcFloat maxval; - bool agree_sense; - - std::shared_ptr<const Curve> base; -}; - - -// -------------------------------------------------------------------------------- -// PolyLine is a 'curve' defined by linear interpolation over a set of discrete points -// -------------------------------------------------------------------------------- -class PolyLine : public BoundedCurve { -public: - // -------------------------------------------------- - PolyLine(const Schema_2x3::IfcPolyline& entity, ConversionData& conv) - : BoundedCurve(entity,conv) - { - points.reserve(entity.Points.size()); - - IfcVector3 t; - for(const Schema_2x3::IfcCartesianPoint& cp : entity.Points) { - ConvertCartesianPoint(t,cp); - points.push_back(t); - } - } - - // -------------------------------------------------- - IfcVector3 Eval(IfcFloat p) const { - ai_assert(InRange(p)); - - const size_t b = static_cast<size_t>(std::floor(p)); - if (b == points.size()-1) { - return points.back(); - } - - const IfcFloat d = p-static_cast<IfcFloat>(b); - return points[b+1] * d + points[b] * (static_cast<IfcFloat>( 1. )-d); - } - - // -------------------------------------------------- - size_t EstimateSampleCount(IfcFloat a, IfcFloat b) const { - ai_assert(InRange(a)); - ai_assert(InRange(b)); - return static_cast<size_t>( std::ceil(b) - std::floor(a) ); - } - - // -------------------------------------------------- - ParamRange GetParametricRange() const { - return std::make_pair(static_cast<IfcFloat>( 0. ),static_cast<IfcFloat>(points.size()-1)); - } - -private: - std::vector<IfcVector3> points; -}; - -} // anon - -// ------------------------------------------------------------------------------------------------ -Curve* Curve::Convert(const IFC::Schema_2x3::IfcCurve& curve,ConversionData& conv) { - if(curve.ToPtr<Schema_2x3::IfcBoundedCurve>()) { - if(const Schema_2x3::IfcPolyline* c = curve.ToPtr<Schema_2x3::IfcPolyline>()) { - return new PolyLine(*c,conv); - } - if(const Schema_2x3::IfcTrimmedCurve* c = curve.ToPtr<Schema_2x3::IfcTrimmedCurve>()) { - return new TrimmedCurve(*c,conv); - } - if(const Schema_2x3::IfcCompositeCurve* c = curve.ToPtr<Schema_2x3::IfcCompositeCurve>()) { - return new CompositeCurve(*c,conv); - } - } - - if(curve.ToPtr<Schema_2x3::IfcConic>()) { - if(const Schema_2x3::IfcCircle* c = curve.ToPtr<Schema_2x3::IfcCircle>()) { - return new Circle(*c,conv); - } - if(const Schema_2x3::IfcEllipse* c = curve.ToPtr<Schema_2x3::IfcEllipse>()) { - return new Ellipse(*c,conv); - } - } - - if(const Schema_2x3::IfcLine* c = curve.ToPtr<Schema_2x3::IfcLine>()) { - return new Line(*c,conv); - } - - // XXX OffsetCurve2D, OffsetCurve3D not currently supported - return nullptr; -} - -#ifdef ASSIMP_BUILD_DEBUG -// ------------------------------------------------------------------------------------------------ -bool Curve::InRange(IfcFloat u) const { - const ParamRange range = GetParametricRange(); - if (IsClosed()) { - return true; - } - const IfcFloat epsilon = Math::getEpsilon<float>(); - return u - range.first > -epsilon && range.second - u > -epsilon; -} -#endif - -// ------------------------------------------------------------------------------------------------ -IfcFloat Curve::GetParametricRangeDelta() const { - const ParamRange& range = GetParametricRange(); - return std::abs(range.second - range.first); -} - -// ------------------------------------------------------------------------------------------------ -size_t Curve::EstimateSampleCount(IfcFloat a, IfcFloat b) const { - (void)(a); (void)(b); - ai_assert( InRange( a ) ); - ai_assert( InRange( b ) ); - - // arbitrary default value, deriving classes should supply better suited values - return 16; -} - -// ------------------------------------------------------------------------------------------------ -IfcFloat RecursiveSearch(const Curve* cv, const IfcVector3& val, IfcFloat a, IfcFloat b, - unsigned int samples, IfcFloat threshold, unsigned int recurse = 0, unsigned int max_recurse = 15) { - ai_assert(samples>1); - - const IfcFloat delta = (b-a)/samples, inf = std::numeric_limits<IfcFloat>::infinity(); - IfcFloat min_point[2] = {a,b}, min_diff[2] = {inf,inf}; - IfcFloat runner = a; - - for (unsigned int i = 0; i < samples; ++i, runner += delta) { - const IfcFloat diff = (cv->Eval(runner)-val).SquareLength(); - if (diff < min_diff[0]) { - min_diff[1] = min_diff[0]; - min_point[1] = min_point[0]; - - min_diff[0] = diff; - min_point[0] = runner; - } - else if (diff < min_diff[1]) { - min_diff[1] = diff; - min_point[1] = runner; - } - } - - ai_assert( min_diff[ 0 ] != inf ); - ai_assert( min_diff[ 1 ] != inf ); - if ( std::fabs(a-min_point[0]) < threshold || recurse >= max_recurse) { - return min_point[0]; - } - - // fix for closed curves to take their wrap-over into account - if (cv->IsClosed() && std::fabs(min_point[0]-min_point[1]) > cv->GetParametricRangeDelta()*0.5 ) { - const Curve::ParamRange& range = cv->GetParametricRange(); - const IfcFloat wrapdiff = (cv->Eval(range.first)-val).SquareLength(); - - if (wrapdiff < min_diff[0]) { - const IfcFloat t = min_point[0]; - min_point[0] = min_point[1] > min_point[0] ? range.first : range.second; - min_point[1] = t; - } - } - - return RecursiveSearch(cv,val,min_point[0],min_point[1],samples,threshold,recurse+1,max_recurse); -} - -// ------------------------------------------------------------------------------------------------ -bool Curve::ReverseEval(const IfcVector3& val, IfcFloat& paramOut) const -{ - // note: the following algorithm is not guaranteed to find the 'right' parameter value - // in all possible cases, but it will always return at least some value so this function - // will never fail in the default implementation. - - // XXX derive threshold from curve topology - static const IfcFloat threshold = 1e-4f; - static const unsigned int samples = 16; - - const ParamRange& range = GetParametricRange(); - paramOut = RecursiveSearch(this,val,range.first,range.second,samples,threshold); - - return true; -} - -// ------------------------------------------------------------------------------------------------ -void Curve::SampleDiscrete(TempMesh& out,IfcFloat a, IfcFloat b) const { - ai_assert( InRange( a ) ); - ai_assert( InRange( b ) ); - - const size_t cnt = std::max(static_cast<size_t>(0),EstimateSampleCount(a,b)); - out.mVerts.reserve( out.mVerts.size() + cnt + 1); - - IfcFloat p = a, delta = (b-a)/cnt; - for(size_t i = 0; i <= cnt; ++i, p += delta) { - out.mVerts.push_back(Eval(p)); - } -} - -// ------------------------------------------------------------------------------------------------ -bool BoundedCurve::IsClosed() const { - return false; -} - -// ------------------------------------------------------------------------------------------------ -void BoundedCurve::SampleDiscrete(TempMesh& out) const { - const ParamRange& range = GetParametricRange(); - ai_assert( range.first != std::numeric_limits<IfcFloat>::infinity() ); - ai_assert( range.second != std::numeric_limits<IfcFloat>::infinity() ); - - return SampleDiscrete(out,range.first,range.second); -} - -} // IFC -} // Assimp - -#endif // ASSIMP_BUILD_NO_IFC_IMPORTER |