summaryrefslogtreecommitdiff
path: root/libs/assimp/code/AssetLib/IFC/IFCGeometry.cpp
diff options
context:
space:
mode:
authorsanine <sanine.not@pm.me>2023-02-12 23:53:22 -0600
committersanine <sanine.not@pm.me>2023-02-12 23:53:22 -0600
commitf1fe73d1909a2448a004a88362a1a532d0d4f7c3 (patch)
treeab37ae3837e2f858de2932bcee9f26e69fab3db1 /libs/assimp/code/AssetLib/IFC/IFCGeometry.cpp
parentf567ea1e2798fd3156a416e61f083ea3e6b95719 (diff)
switch to tinyobj and nanovg from assimp and cairo
Diffstat (limited to 'libs/assimp/code/AssetLib/IFC/IFCGeometry.cpp')
-rw-r--r--libs/assimp/code/AssetLib/IFC/IFCGeometry.cpp932
1 files changed, 0 insertions, 932 deletions
diff --git a/libs/assimp/code/AssetLib/IFC/IFCGeometry.cpp b/libs/assimp/code/AssetLib/IFC/IFCGeometry.cpp
deleted file mode 100644
index ef59542..0000000
--- a/libs/assimp/code/AssetLib/IFC/IFCGeometry.cpp
+++ /dev/null
@@ -1,932 +0,0 @@
-/*
-Open Asset Import Library (assimp)
-----------------------------------------------------------------------
-
-Copyright (c) 2006-2022, assimp team
-All rights reserved.
-
-Redistribution and use of this software in source and binary forms,
-with or without modification, are permitted provided that the
-following conditions are met:
-
-* Redistributions of source code must retain the above
- copyright notice, this list of conditions and the
- following disclaimer.
-
-* Redistributions in binary form must reproduce the above
- copyright notice, this list of conditions and the
- following disclaimer in the documentation and/or other
- materials provided with the distribution.
-
-* Neither the name of the assimp team, nor the names of its
- contributors may be used to endorse or promote products
- derived from this software without specific prior
- written permission of the assimp team.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
-OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
-LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
-DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
-THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-----------------------------------------------------------------------
-*/
-
-/** @file IFCGeometry.cpp
- * @brief Geometry conversion and synthesis for IFC
- */
-
-
-
-#ifndef ASSIMP_BUILD_NO_IFC_IMPORTER
-#include "IFCUtil.h"
-#include "Common/PolyTools.h"
-#include "PostProcessing/ProcessHelper.h"
-
-#ifdef ASSIMP_USE_HUNTER
-# include <poly2tri/poly2tri.h>
-# include <polyclipping/clipper.hpp>
-#else
-# include "../contrib/poly2tri/poly2tri/poly2tri.h"
-# include "../contrib/clipper/clipper.hpp"
-#endif
-
-#include <memory>
-#include <iterator>
-
-namespace Assimp {
-namespace IFC {
-
-// ------------------------------------------------------------------------------------------------
-bool ProcessPolyloop(const Schema_2x3::IfcPolyLoop& loop, TempMesh& meshout, ConversionData& /*conv*/)
-{
- size_t cnt = 0;
- for(const Schema_2x3::IfcCartesianPoint& c : loop.Polygon) {
- IfcVector3 tmp;
- ConvertCartesianPoint(tmp,c);
-
- meshout.mVerts.push_back(tmp);
- ++cnt;
- }
-
- meshout.mVertcnt.push_back(static_cast<unsigned int>(cnt));
-
- // zero- or one- vertex polyloops simply ignored
- if (meshout.mVertcnt.back() > 1) {
- return true;
- }
-
- if (meshout.mVertcnt.back()==1) {
- meshout.mVertcnt.pop_back();
- meshout.mVerts.pop_back();
- }
- return false;
-}
-
-// ------------------------------------------------------------------------------------------------
-void ProcessPolygonBoundaries(TempMesh& result, const TempMesh& inmesh, size_t master_bounds = (size_t)-1)
-{
- // handle all trivial cases
- if(inmesh.mVertcnt.empty()) {
- return;
- }
- if(inmesh.mVertcnt.size() == 1) {
- result.Append(inmesh);
- return;
- }
-
- ai_assert(std::count(inmesh.mVertcnt.begin(), inmesh.mVertcnt.end(), 0u) == 0);
-
- typedef std::vector<unsigned int>::const_iterator face_iter;
-
- face_iter begin = inmesh.mVertcnt.begin(), end = inmesh.mVertcnt.end(), iit;
- std::vector<unsigned int>::const_iterator outer_polygon_it = end;
-
- // major task here: given a list of nested polygon boundaries (one of which
- // is the outer contour), reduce the triangulation task arising here to
- // one that can be solved using the "quadrulation" algorithm which we use
- // for pouring windows out of walls. The algorithm does not handle all
- // cases but at least it is numerically stable and gives "nice" triangles.
-
- // first compute normals for all polygons using Newell's algorithm
- // do not normalize 'normals', we need the original length for computing the polygon area
- std::vector<IfcVector3> normals;
- inmesh.ComputePolygonNormals(normals,false);
-
- // One of the polygons might be a IfcFaceOuterBound (in which case `master_bounds`
- // is its index). Sadly we can't rely on it, the docs say 'At most one of the bounds
- // shall be of the type IfcFaceOuterBound'
- IfcFloat area_outer_polygon = 1e-10f;
- if (master_bounds != (size_t)-1) {
- ai_assert(master_bounds < inmesh.mVertcnt.size());
- outer_polygon_it = begin + master_bounds;
- }
- else {
- for(iit = begin; iit != end; ++iit) {
- // find the polygon with the largest area and take it as the outer bound.
- IfcVector3& n = normals[std::distance(begin,iit)];
- const IfcFloat area = n.SquareLength();
- if (area > area_outer_polygon) {
- area_outer_polygon = area;
- outer_polygon_it = iit;
- }
- }
- }
- if (outer_polygon_it == end) {
- return;
- }
-
- const size_t outer_polygon_size = *outer_polygon_it;
- const IfcVector3& master_normal = normals[std::distance(begin, outer_polygon_it)];
-
- // Generate fake openings to meet the interface for the quadrulate
- // algorithm. It boils down to generating small boxes given the
- // inner polygon and the surface normal of the outer contour.
- // It is important that we use the outer contour's normal because
- // this is the plane onto which the quadrulate algorithm will
- // project the entire mesh.
- std::vector<TempOpening> fake_openings;
- fake_openings.reserve(inmesh.mVertcnt.size()-1);
-
- std::vector<IfcVector3>::const_iterator vit = inmesh.mVerts.begin(), outer_vit;
-
- for(iit = begin; iit != end; vit += *iit++) {
- if (iit == outer_polygon_it) {
- outer_vit = vit;
- continue;
- }
-
- // Filter degenerate polygons to keep them from causing trouble later on
- IfcVector3& n = normals[std::distance(begin,iit)];
- const IfcFloat area = n.SquareLength();
- if (area < 1e-5f) {
- IFCImporter::LogWarn("skipping degenerate polygon (ProcessPolygonBoundaries)");
- continue;
- }
-
- fake_openings.push_back(TempOpening());
- TempOpening& opening = fake_openings.back();
-
- opening.extrusionDir = master_normal;
- opening.solid = nullptr;
-
- opening.profileMesh = std::make_shared<TempMesh>();
- opening.profileMesh->mVerts.reserve(*iit);
- opening.profileMesh->mVertcnt.push_back(*iit);
-
- std::copy(vit, vit + *iit, std::back_inserter(opening.profileMesh->mVerts));
- }
-
- // fill a mesh with ONLY the main polygon
- TempMesh temp;
- temp.mVerts.reserve(outer_polygon_size);
- temp.mVertcnt.push_back(static_cast<unsigned int>(outer_polygon_size));
- std::copy(outer_vit, outer_vit+outer_polygon_size,
- std::back_inserter(temp.mVerts));
-
- GenerateOpenings(fake_openings, temp, false, false);
- result.Append(temp);
-}
-
-// ------------------------------------------------------------------------------------------------
-void ProcessConnectedFaceSet(const Schema_2x3::IfcConnectedFaceSet& fset, TempMesh& result, ConversionData& conv)
-{
- for(const Schema_2x3::IfcFace& face : fset.CfsFaces) {
- // size_t ob = -1, cnt = 0;
- TempMesh meshout;
- for(const Schema_2x3::IfcFaceBound& bound : face.Bounds) {
-
- if(const Schema_2x3::IfcPolyLoop* const polyloop = bound.Bound->ToPtr<Schema_2x3::IfcPolyLoop>()) {
- if(ProcessPolyloop(*polyloop, meshout,conv)) {
-
- // The outer boundary is better determined by checking which
- // polygon covers the largest area.
-
- //if(bound.ToPtr<IfcFaceOuterBound>()) {
- // ob = cnt;
- //}
- //++cnt;
-
- }
- }
- else {
- IFCImporter::LogWarn("skipping unknown IfcFaceBound entity, type is ", bound.Bound->GetClassName());
- continue;
- }
-
- // And this, even though it is sometimes TRUE and sometimes FALSE,
- // does not really improve results.
-
- /*if(!IsTrue(bound.Orientation)) {
- size_t c = 0;
- for(unsigned int& c : meshout.vertcnt) {
- std::reverse(result.verts.begin() + cnt,result.verts.begin() + cnt + c);
- cnt += c;
- }
- }*/
- }
- ProcessPolygonBoundaries(result, meshout);
- }
-}
-
-// ------------------------------------------------------------------------------------------------
-void ProcessRevolvedAreaSolid(const Schema_2x3::IfcRevolvedAreaSolid& solid, TempMesh& result, ConversionData& conv)
-{
- TempMesh meshout;
-
- // first read the profile description
- if(!ProcessProfile(*solid.SweptArea,meshout,conv) || meshout.mVerts.size()<=1) {
- return;
- }
-
- IfcVector3 axis, pos;
- ConvertAxisPlacement(axis,pos,solid.Axis);
-
- IfcMatrix4 tb0,tb1;
- IfcMatrix4::Translation(pos,tb0);
- IfcMatrix4::Translation(-pos,tb1);
-
- const std::vector<IfcVector3>& in = meshout.mVerts;
- const size_t size=in.size();
-
- bool has_area = solid.SweptArea->ProfileType == "AREA" && size>2;
- const IfcFloat max_angle = solid.Angle*conv.angle_scale;
- if(std::fabs(max_angle) < 1e-3) {
- if(has_area) {
- result = meshout;
- }
- return;
- }
-
- const unsigned int cnt_segments = std::max(2u,static_cast<unsigned int>(conv.settings.cylindricalTessellation * std::fabs(max_angle)/AI_MATH_HALF_PI_F));
- const IfcFloat delta = max_angle/cnt_segments;
-
- has_area = has_area && std::fabs(max_angle) < AI_MATH_TWO_PI_F*0.99;
-
- result.mVerts.reserve(size*((cnt_segments+1)*4+(has_area?2:0)));
- result.mVertcnt.reserve(size*cnt_segments+2);
-
- IfcMatrix4 rot;
- rot = tb0 * IfcMatrix4::Rotation(delta,axis,rot) * tb1;
-
- size_t base = 0;
- std::vector<IfcVector3>& out = result.mVerts;
-
- // dummy data to simplify later processing
- for(size_t i = 0; i < size; ++i) {
- out.insert(out.end(),4,in[i]);
- }
-
- for(unsigned int seg = 0; seg < cnt_segments; ++seg) {
- for(size_t i = 0; i < size; ++i) {
- const size_t next = (i+1)%size;
-
- result.mVertcnt.push_back(4);
- const IfcVector3 base_0 = out[base+i*4+3],base_1 = out[base+next*4+3];
-
- out.push_back(base_0);
- out.push_back(base_1);
- out.push_back(rot*base_1);
- out.push_back(rot*base_0);
- }
- base += size*4;
- }
-
- out.erase(out.begin(),out.begin()+size*4);
-
- if(has_area) {
- // leave the triangulation of the profile area to the ear cutting
- // implementation in aiProcess_Triangulate - for now we just
- // feed in two huge polygons.
- base -= size*8;
- for(size_t i = size; i--; ) {
- out.push_back(out[base+i*4+3]);
- }
- for(size_t i = 0; i < size; ++i ) {
- out.push_back(out[i*4]);
- }
- result.mVertcnt.push_back(static_cast<unsigned int>(size));
- result.mVertcnt.push_back(static_cast<unsigned int>(size));
- }
-
- IfcMatrix4 trafo;
- ConvertAxisPlacement(trafo, solid.Position);
-
- result.Transform(trafo);
- IFCImporter::LogVerboseDebug("generate mesh procedurally by radial extrusion (IfcRevolvedAreaSolid)");
-}
-
-// ------------------------------------------------------------------------------------------------
-void ProcessSweptDiskSolid(const Schema_2x3::IfcSweptDiskSolid &solid, TempMesh& result, ConversionData& conv)
-{
- const Curve* const curve = Curve::Convert(*solid.Directrix, conv);
- if(!curve) {
- IFCImporter::LogError("failed to convert Directrix curve (IfcSweptDiskSolid)");
- return;
- }
-
- const unsigned int cnt_segments = conv.settings.cylindricalTessellation;
- const IfcFloat deltaAngle = AI_MATH_TWO_PI/cnt_segments;
-
- TempMesh temp;
- curve->SampleDiscrete(temp, solid.StartParam, solid.EndParam);
- const std::vector<IfcVector3>& curve_points = temp.mVerts;
-
- const size_t samples = curve_points.size();
-
- result.mVerts.reserve(cnt_segments * samples * 4);
- result.mVertcnt.reserve((cnt_segments - 1) * samples);
-
- std::vector<IfcVector3> points;
- points.reserve(cnt_segments * samples);
-
- if(curve_points.empty()) {
- IFCImporter::LogWarn("curve evaluation yielded no points (IfcSweptDiskSolid)");
- return;
- }
-
- IfcVector3 current = curve_points[0];
- IfcVector3 previous = current;
- IfcVector3 next;
-
- IfcVector3 startvec;
- startvec.x = 1.0f;
- startvec.y = 1.0f;
- startvec.z = 1.0f;
-
- unsigned int last_dir = 0;
-
- // generate circles at the sweep positions
- for(size_t i = 0; i < samples; ++i) {
-
- if(i != samples - 1) {
- next = curve_points[i + 1];
- }
-
- // get a direction vector reflecting the approximate curvature (i.e. tangent)
- IfcVector3 d = (current-previous) + (next-previous);
-
- d.Normalize();
-
- // figure out an arbitrary point q so that (p-q) * d = 0,
- // try to maximize ||(p-q)|| * ||(p_last-q_last)||
- IfcVector3 q;
- bool take_any = false;
-
- for (unsigned int j = 0; j < 2; ++j, take_any = true) {
- if ((last_dir == 0 || take_any) && std::abs(d.x) > ai_epsilon) {
- q.y = startvec.y;
- q.z = startvec.z;
- q.x = -(d.y * q.y + d.z * q.z) / d.x;
- last_dir = 0;
- break;
- } else if ((last_dir == 1 || take_any) && std::abs(d.y) > ai_epsilon) {
- q.x = startvec.x;
- q.z = startvec.z;
- q.y = -(d.x * q.x + d.z * q.z) / d.y;
- last_dir = 1;
- break;
- } else if ((last_dir == 2 && std::abs(d.z) > ai_epsilon) || take_any) {
- q.y = startvec.y;
- q.x = startvec.x;
- q.z = -(d.y * q.y + d.x * q.x) / d.z;
- last_dir = 2;
- break;
- }
- }
-
- q *= solid.Radius / q.Length();
- startvec = q;
-
- // generate a rotation matrix to rotate q around d
- IfcMatrix4 rot;
- IfcMatrix4::Rotation(deltaAngle,d,rot);
-
- for (unsigned int seg = 0; seg < cnt_segments; ++seg, q *= rot ) {
- points.push_back(q + current);
- }
-
- previous = current;
- current = next;
- }
-
- // make quads
- for(size_t i = 0; i < samples - 1; ++i) {
-
- const aiVector3D& this_start = points[ i * cnt_segments ];
-
- // locate corresponding point on next sample ring
- unsigned int best_pair_offset = 0;
- float best_distance_squared = 1e10f;
- for (unsigned int seg = 0; seg < cnt_segments; ++seg) {
- const aiVector3D& p = points[ (i+1) * cnt_segments + seg];
- const float l = (p-this_start).SquareLength();
-
- if(l < best_distance_squared) {
- best_pair_offset = seg;
- best_distance_squared = l;
- }
- }
-
- for (unsigned int seg = 0; seg < cnt_segments; ++seg) {
-
- result.mVerts.push_back(points[ i * cnt_segments + (seg % cnt_segments)]);
- result.mVerts.push_back(points[ i * cnt_segments + (seg + 1) % cnt_segments]);
- result.mVerts.push_back(points[ (i+1) * cnt_segments + ((seg + 1 + best_pair_offset) % cnt_segments)]);
- result.mVerts.push_back(points[ (i+1) * cnt_segments + ((seg + best_pair_offset) % cnt_segments)]);
-
- IfcVector3& v1 = *(result.mVerts.end()-1);
- IfcVector3& v2 = *(result.mVerts.end()-2);
- IfcVector3& v3 = *(result.mVerts.end()-3);
- IfcVector3& v4 = *(result.mVerts.end()-4);
-
- if (((v4-v3) ^ (v4-v1)) * (v4 - curve_points[i]) < 0.0f) {
- std::swap(v4, v1);
- std::swap(v3, v2);
- }
-
- result.mVertcnt.push_back(4);
- }
- }
-
- IFCImporter::LogVerboseDebug("generate mesh procedurally by sweeping a disk along a curve (IfcSweptDiskSolid)");
-}
-
-// ------------------------------------------------------------------------------------------------
-IfcMatrix3 DerivePlaneCoordinateSpace(const TempMesh& curmesh, bool& ok, IfcVector3& norOut)
-{
- const std::vector<IfcVector3>& out = curmesh.mVerts;
- IfcMatrix3 m;
-
- ok = true;
-
- // The input "mesh" must be a single polygon
- const size_t s = out.size();
- ai_assert( curmesh.mVertcnt.size() == 1 );
- ai_assert( curmesh.mVertcnt.back() == s);
-
- const IfcVector3 any_point = out[s-1];
- IfcVector3 nor;
-
- // The input polygon is arbitrarily shaped, therefore we might need some tries
- // until we find a suitable normal. Note that Newell's algorithm would give
- // a more robust result, but this variant also gives us a suitable first
- // axis for the 2D coordinate space on the polygon plane, exploiting the
- // fact that the input polygon is nearly always a quad.
- bool done = false;
- size_t idx( 0 );
- for (size_t i = 0; !done && i < s-2; done || ++i) {
- idx = i;
- for (size_t j = i+1; j < s-1; ++j) {
- nor = -((out[i]-any_point)^(out[j]-any_point));
- if(std::fabs(nor.Length()) > 1e-8f) {
- done = true;
- break;
- }
- }
- }
-
- if(!done) {
- ok = false;
- return m;
- }
-
- nor.Normalize();
- norOut = nor;
-
- IfcVector3 r = (out[idx]-any_point);
- r.Normalize();
-
- //if(d) {
- // *d = -any_point * nor;
- //}
-
- // Reconstruct orthonormal basis
- // XXX use Gram Schmidt for increased robustness
- IfcVector3 u = r ^ nor;
- u.Normalize();
-
- m.a1 = r.x;
- m.a2 = r.y;
- m.a3 = r.z;
-
- m.b1 = u.x;
- m.b2 = u.y;
- m.b3 = u.z;
-
- m.c1 = -nor.x;
- m.c2 = -nor.y;
- m.c3 = -nor.z;
-
- return m;
-}
-
-const auto closeDistance = ai_epsilon;
-
-bool areClose(Schema_2x3::IfcCartesianPoint pt1,Schema_2x3::IfcCartesianPoint pt2) {
- if(pt1.Coordinates.size() != pt2.Coordinates.size())
- {
- IFCImporter::LogWarn("unable to compare differently-dimensioned points");
- return false;
- }
- auto coord1 = pt1.Coordinates.begin();
- auto coord2 = pt2.Coordinates.begin();
- // we're just testing each dimension separately rather than doing euclidean distance, as we're
- // looking for very close coordinates
- for(; coord1 != pt1.Coordinates.end(); coord1++,coord2++)
- {
- if(std::fabs(*coord1 - *coord2) > closeDistance)
- return false;
- }
- return true;
-}
-
-bool areClose(IfcVector3 pt1,IfcVector3 pt2) {
- return (std::fabs(pt1.x - pt2.x) < closeDistance &&
- std::fabs(pt1.y - pt2.y) < closeDistance &&
- std::fabs(pt1.z - pt2.z) < closeDistance);
-}
-// Extrudes the given polygon along the direction, converts it into an opening or applies all openings as necessary.
-void ProcessExtrudedArea(const Schema_2x3::IfcExtrudedAreaSolid& solid, const TempMesh& curve,
- const IfcVector3& extrusionDir, TempMesh& result, ConversionData &conv, bool collect_openings)
-{
- // Outline: 'curve' is now a list of vertex points forming the underlying profile, extrude along the given axis,
- // forming new triangles.
- const bool has_area = solid.SweptArea->ProfileType == "AREA" && curve.mVerts.size() > 2;
- if (solid.Depth < ai_epsilon) {
- if( has_area ) {
- result.Append(curve);
- }
- return;
- }
-
- result.mVerts.reserve(curve.mVerts.size()*(has_area ? 4 : 2));
- result.mVertcnt.reserve(curve.mVerts.size() + 2);
- std::vector<IfcVector3> in = curve.mVerts;
-
- // First step: transform all vertices into the target coordinate space
- IfcMatrix4 trafo;
- ConvertAxisPlacement(trafo, solid.Position);
-
- IfcVector3 vmin, vmax;
- MinMaxChooser<IfcVector3>()(vmin, vmax);
- for(IfcVector3& v : in) {
- v *= trafo;
-
- vmin = std::min(vmin, v);
- vmax = std::max(vmax, v);
- }
-
- vmax -= vmin;
- const IfcFloat diag = vmax.Length();
- IfcVector3 dir = IfcMatrix3(trafo) * extrusionDir;
-
- // reverse profile polygon if it's winded in the wrong direction in relation to the extrusion direction
- IfcVector3 profileNormal = TempMesh::ComputePolygonNormal(in.data(), in.size());
- if( profileNormal * dir < 0.0 )
- std::reverse(in.begin(), in.end());
-
- std::vector<IfcVector3> nors;
- const bool openings = !!conv.apply_openings && conv.apply_openings->size();
-
- // Compute the normal vectors for all opening polygons as a prerequisite
- // to TryAddOpenings_Poly2Tri()
- // XXX this belongs into the aforementioned function
- if( openings ) {
-
- if( !conv.settings.useCustomTriangulation ) {
- // it is essential to apply the openings in the correct spatial order. The direction
- // doesn't matter, but we would screw up if we started with e.g. a door in between
- // two windows.
- std::sort(conv.apply_openings->begin(), conv.apply_openings->end(), TempOpening::DistanceSorter(in[0]));
- }
-
- nors.reserve(conv.apply_openings->size());
- for(TempOpening& t : *conv.apply_openings) {
- TempMesh& bounds = *t.profileMesh.get();
-
- if( bounds.mVerts.size() <= 2 ) {
- nors.push_back(IfcVector3());
- continue;
- }
- auto nor = ((bounds.mVerts[2] - bounds.mVerts[0]) ^ (bounds.mVerts[1] - bounds.mVerts[0])).Normalize();
- auto vI0 = bounds.mVertcnt[0];
- for(size_t faceI = 0; faceI < bounds.mVertcnt.size(); faceI++)
- {
- if(bounds.mVertcnt[faceI] >= 3) {
- // do a check that this is at least parallel to the base plane
- auto nor2 = ((bounds.mVerts[vI0 + 2] - bounds.mVerts[vI0]) ^ (bounds.mVerts[vI0 + 1] - bounds.mVerts[vI0])).Normalize();
- if(!areClose(nor,nor2)) {
- std::stringstream msg;
- msg << "Face " << faceI << " is not parallel with face 0 - opening on entity " << solid.GetID();
- IFCImporter::LogWarn(msg.str().c_str());
- }
- }
- }
- nors.push_back(nor);
- }
- }
-
-
- TempMesh temp;
- TempMesh& curmesh = openings ? temp : result;
- std::vector<IfcVector3>& out = curmesh.mVerts;
-
- size_t sides_with_openings = 0;
- for( size_t i = 0; i < in.size(); ++i ) {
- const size_t next = (i + 1) % in.size();
-
- curmesh.mVertcnt.push_back(4);
-
- out.push_back(in[i]);
- out.push_back(in[next]);
- out.push_back(in[next] + dir);
- out.push_back(in[i] + dir);
-
- if( openings ) {
- if( (in[i] - in[next]).Length() > diag * 0.1 && GenerateOpenings(*conv.apply_openings, temp, true, true, dir) ) {
- ++sides_with_openings;
- }
-
- result.Append(temp);
- temp.Clear();
- }
- }
-
- if(openings) {
- for(TempOpening& opening : *conv.apply_openings) {
- if(!opening.wallPoints.empty()) {
- std::stringstream msg;
- msg << "failed to generate all window caps on ID " << (int)solid.GetID();
- IFCImporter::LogError(msg.str().c_str());
- }
- opening.wallPoints.clear();
- }
- }
-
- size_t sides_with_v_openings = 0;
- if(has_area) {
-
- for(size_t n = 0; n < 2; ++n) {
- if(n > 0) {
- for(size_t i = 0; i < in.size(); ++i)
- out.push_back(in[i] + dir);
- }
- else {
- for(size_t i = in.size(); i--; )
- out.push_back(in[i]);
- }
-
- curmesh.mVertcnt.push_back(static_cast<unsigned int>(in.size()));
- if(openings && in.size() > 2) {
- if(GenerateOpenings(*conv.apply_openings,temp,true,true,dir)) {
- ++sides_with_v_openings;
- }
-
- result.Append(temp);
- temp.Clear();
- }
- }
- }
-
- if (openings && (sides_with_openings == 1 || sides_with_v_openings == 2)) {
- std::stringstream msg;
- msg << "failed to resolve all openings, presumably their topology is not supported by Assimp - ID " << solid.GetID() << " sides_with_openings " << sides_with_openings << " sides_with_v_openings " << sides_with_v_openings;
- IFCImporter::LogWarn(msg.str().c_str());
- }
-
- IFCImporter::LogVerboseDebug("generate mesh procedurally by extrusion (IfcExtrudedAreaSolid)");
-
- // If this is an opening element, store both the extruded mesh and the 2D profile mesh
- // it was created from. Return an empty mesh to the caller.
- if( collect_openings && !result.IsEmpty() ) {
- ai_assert(conv.collect_openings);
- std::shared_ptr<TempMesh> profile = std::shared_ptr<TempMesh>(new TempMesh());
- profile->Swap(result);
-
- std::shared_ptr<TempMesh> profile2D = std::shared_ptr<TempMesh>(new TempMesh());
- profile2D->mVerts.insert(profile2D->mVerts.end(), in.begin(), in.end());
- profile2D->mVertcnt.push_back(static_cast<unsigned int>(in.size()));
- conv.collect_openings->push_back(TempOpening(&solid, dir, profile, profile2D));
-
- ai_assert(result.IsEmpty());
- }
-}
-
-// ------------------------------------------------------------------------------------------------
-void ProcessExtrudedAreaSolid(const Schema_2x3::IfcExtrudedAreaSolid& solid, TempMesh& result,
- ConversionData& conv, bool collect_openings)
-{
- TempMesh meshout;
-
- // First read the profile description.
- if(!ProcessProfile(*solid.SweptArea,meshout,conv) || meshout.mVerts.size()<=1) {
- return;
- }
-
- IfcVector3 dir;
- ConvertDirection(dir,solid.ExtrudedDirection);
- dir *= solid.Depth;
-
- // Some profiles bring their own holes, for which we need to provide a container. This all is somewhat backwards,
- // and there's still so many corner cases uncovered - we really need a generic solution to all of this hole carving.
- std::vector<TempOpening> fisherPriceMyFirstOpenings;
- std::vector<TempOpening>* oldApplyOpenings = conv.apply_openings;
- if( const Schema_2x3::IfcArbitraryProfileDefWithVoids* const cprofile = solid.SweptArea->ToPtr<Schema_2x3::IfcArbitraryProfileDefWithVoids>() ) {
- if( !cprofile->InnerCurves.empty() ) {
- // read all inner curves and extrude them to form proper openings.
- std::vector<TempOpening>* oldCollectOpenings = conv.collect_openings;
- conv.collect_openings = &fisherPriceMyFirstOpenings;
-
- for (const Schema_2x3::IfcCurve* curve : cprofile->InnerCurves) {
- TempMesh curveMesh, tempMesh;
- ProcessCurve(*curve, curveMesh, conv);
- ProcessExtrudedArea(solid, curveMesh, dir, tempMesh, conv, true);
- }
- // and then apply those to the geometry we're about to generate
- conv.apply_openings = conv.collect_openings;
- conv.collect_openings = oldCollectOpenings;
- }
- }
-
- ProcessExtrudedArea(solid, meshout, dir, result, conv, collect_openings);
- conv.apply_openings = oldApplyOpenings;
-}
-
-// ------------------------------------------------------------------------------------------------
-void ProcessSweptAreaSolid(const Schema_2x3::IfcSweptAreaSolid& swept, TempMesh& meshout,
- ConversionData& conv)
-{
- if(const Schema_2x3::IfcExtrudedAreaSolid* const solid = swept.ToPtr<Schema_2x3::IfcExtrudedAreaSolid>()) {
- ProcessExtrudedAreaSolid(*solid,meshout,conv, !!conv.collect_openings);
- }
- else if(const Schema_2x3::IfcRevolvedAreaSolid* const rev = swept.ToPtr<Schema_2x3::IfcRevolvedAreaSolid>()) {
- ProcessRevolvedAreaSolid(*rev,meshout,conv);
- }
- else {
- IFCImporter::LogWarn("skipping unknown IfcSweptAreaSolid entity, type is ", swept.GetClassName());
- }
-}
-
-// ------------------------------------------------------------------------------------------------
-bool ProcessGeometricItem(const Schema_2x3::IfcRepresentationItem& geo, unsigned int matid, std::set<unsigned int>& mesh_indices,
- ConversionData& conv)
-{
- bool fix_orientation = false;
- std::shared_ptr< TempMesh > meshtmp = std::make_shared<TempMesh>();
- if(const Schema_2x3::IfcShellBasedSurfaceModel* shellmod = geo.ToPtr<Schema_2x3::IfcShellBasedSurfaceModel>()) {
- for (const std::shared_ptr<const Schema_2x3::IfcShell> &shell : shellmod->SbsmBoundary) {
- try {
- const ::Assimp::STEP::EXPRESS::ENTITY& e = shell->To<::Assimp::STEP::EXPRESS::ENTITY>();
- const Schema_2x3::IfcConnectedFaceSet& fs = conv.db.MustGetObject(e).To<Schema_2x3::IfcConnectedFaceSet>();
-
- ProcessConnectedFaceSet(fs,*meshtmp.get(),conv);
- }
- catch(std::bad_cast&) {
- IFCImporter::LogWarn("unexpected type error, IfcShell ought to inherit from IfcConnectedFaceSet");
- }
- }
- fix_orientation = true;
- }
- else if(const Schema_2x3::IfcConnectedFaceSet* fset = geo.ToPtr<Schema_2x3::IfcConnectedFaceSet>()) {
- ProcessConnectedFaceSet(*fset,*meshtmp.get(),conv);
- fix_orientation = true;
- }
- else if(const Schema_2x3::IfcSweptAreaSolid* swept = geo.ToPtr<Schema_2x3::IfcSweptAreaSolid>()) {
- ProcessSweptAreaSolid(*swept,*meshtmp.get(),conv);
- }
- else if(const Schema_2x3::IfcSweptDiskSolid* disk = geo.ToPtr<Schema_2x3::IfcSweptDiskSolid>()) {
- ProcessSweptDiskSolid(*disk,*meshtmp.get(),conv);
- }
- else if(const Schema_2x3::IfcManifoldSolidBrep* brep = geo.ToPtr<Schema_2x3::IfcManifoldSolidBrep>()) {
- ProcessConnectedFaceSet(brep->Outer,*meshtmp.get(),conv);
- fix_orientation = true;
- }
- else if(const Schema_2x3::IfcFaceBasedSurfaceModel* surf = geo.ToPtr<Schema_2x3::IfcFaceBasedSurfaceModel>()) {
- for(const Schema_2x3::IfcConnectedFaceSet& fc : surf->FbsmFaces) {
- ProcessConnectedFaceSet(fc,*meshtmp.get(),conv);
- }
- fix_orientation = true;
- }
- else if(const Schema_2x3::IfcBooleanResult* boolean = geo.ToPtr<Schema_2x3::IfcBooleanResult>()) {
- ProcessBoolean(*boolean,*meshtmp.get(),conv);
- }
- else if(geo.ToPtr<Schema_2x3::IfcBoundingBox>()) {
- // silently skip over bounding boxes
- return false;
- }
- else {
- std::stringstream toLog;
- toLog << "skipping unknown IfcGeometricRepresentationItem entity, type is " << geo.GetClassName() << " id is " << geo.GetID();
- IFCImporter::LogWarn(toLog.str().c_str());
- return false;
- }
-
- // Do we just collect openings for a parent element (i.e. a wall)?
- // In such a case, we generate the polygonal mesh as usual,
- // but attach it to a TempOpening instance which will later be applied
- // to the wall it pertains to.
-
- // Note: swep area solids are added in ProcessExtrudedAreaSolid(),
- // which returns an empty mesh.
- if(conv.collect_openings) {
- if (!meshtmp->IsEmpty()) {
- conv.collect_openings->push_back(TempOpening(geo.ToPtr<Schema_2x3::IfcSolidModel>(),
- IfcVector3(0,0,0),
- meshtmp,
- std::shared_ptr<TempMesh>()));
- }
- return true;
- }
-
- if (meshtmp->IsEmpty()) {
- return false;
- }
-
- meshtmp->RemoveAdjacentDuplicates();
- meshtmp->RemoveDegenerates();
-
- if(fix_orientation) {
-// meshtmp->FixupFaceOrientation();
- }
-
- aiMesh* const mesh = meshtmp->ToMesh();
- if(mesh) {
- mesh->mMaterialIndex = matid;
- mesh_indices.insert(static_cast<unsigned int>(conv.meshes.size()));
- conv.meshes.push_back(mesh);
- return true;
- }
- return false;
-}
-
-// ------------------------------------------------------------------------------------------------
-void AssignAddedMeshes(std::set<unsigned int>& mesh_indices,aiNode* nd,
- ConversionData& /*conv*/)
-{
- if (!mesh_indices.empty()) {
- std::set<unsigned int>::const_iterator it = mesh_indices.cbegin();
- std::set<unsigned int>::const_iterator end = mesh_indices.cend();
-
- nd->mNumMeshes = static_cast<unsigned int>(mesh_indices.size());
-
- nd->mMeshes = new unsigned int[nd->mNumMeshes];
- for(unsigned int i = 0; it != end && i < nd->mNumMeshes; ++i, ++it) {
- nd->mMeshes[i] = *it;
- }
- }
-}
-
-// ------------------------------------------------------------------------------------------------
-bool TryQueryMeshCache(const Schema_2x3::IfcRepresentationItem& item,
- std::set<unsigned int>& mesh_indices, unsigned int mat_index,
- ConversionData& conv)
-{
- ConversionData::MeshCacheIndex idx(&item, mat_index);
- ConversionData::MeshCache::const_iterator it = conv.cached_meshes.find(idx);
- if (it != conv.cached_meshes.end()) {
- std::copy((*it).second.begin(),(*it).second.end(),std::inserter(mesh_indices, mesh_indices.end()));
- return true;
- }
- return false;
-}
-
-// ------------------------------------------------------------------------------------------------
-void PopulateMeshCache(const Schema_2x3::IfcRepresentationItem& item,
- const std::set<unsigned int>& mesh_indices, unsigned int mat_index,
- ConversionData& conv)
-{
- ConversionData::MeshCacheIndex idx(&item, mat_index);
- conv.cached_meshes[idx] = mesh_indices;
-}
-
-// ------------------------------------------------------------------------------------------------
-bool ProcessRepresentationItem(const Schema_2x3::IfcRepresentationItem& item, unsigned int matid,
- std::set<unsigned int>& mesh_indices,
- ConversionData& conv)
-{
- // determine material
- unsigned int localmatid = ProcessMaterials(item.GetID(), matid, conv, true);
-
- if (!TryQueryMeshCache(item,mesh_indices,localmatid,conv)) {
- if(ProcessGeometricItem(item,localmatid,mesh_indices,conv)) {
- if(mesh_indices.size()) {
- PopulateMeshCache(item,mesh_indices,localmatid,conv);
- }
- }
- else return false;
- }
- return true;
-}
-
-
-} // ! IFC
-} // ! Assimp
-
-#endif