diff options
author | sanine <sanine.not@pm.me> | 2022-10-01 20:59:36 -0500 |
---|---|---|
committer | sanine <sanine.not@pm.me> | 2022-10-01 20:59:36 -0500 |
commit | c5fc66ee58f2c60f2d226868bb1cf5b91badaf53 (patch) | |
tree | 277dd280daf10bf77013236b8edfa5f88708c7e0 /libs/ode-0.16.1/include/ode/odemath.h | |
parent | 1cf9cc3408af7008451f9133fb95af66a9697d15 (diff) |
add ode
Diffstat (limited to 'libs/ode-0.16.1/include/ode/odemath.h')
-rw-r--r-- | libs/ode-0.16.1/include/ode/odemath.h | 545 |
1 files changed, 545 insertions, 0 deletions
diff --git a/libs/ode-0.16.1/include/ode/odemath.h b/libs/ode-0.16.1/include/ode/odemath.h new file mode 100644 index 0000000..d4461b3 --- /dev/null +++ b/libs/ode-0.16.1/include/ode/odemath.h @@ -0,0 +1,545 @@ +/************************************************************************* + * * + * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. * + * All rights reserved. Email: russ@q12.org Web: www.q12.org * + * * + * This library is free software; you can redistribute it and/or * + * modify it under the terms of EITHER: * + * (1) The GNU Lesser General Public License as published by the Free * + * Software Foundation; either version 2.1 of the License, or (at * + * your option) any later version. The text of the GNU Lesser * + * General Public License is included with this library in the * + * file LICENSE.TXT. * + * (2) The BSD-style license that is included with this library in * + * the file LICENSE-BSD.TXT. * + * * + * This library is distributed in the hope that it will be useful, * + * but WITHOUT ANY WARRANTY; without even the implied warranty of * + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files * + * LICENSE.TXT and LICENSE-BSD.TXT for more details. * + * * + *************************************************************************/ + +#ifndef _ODE_ODEMATH_H_ +#define _ODE_ODEMATH_H_ + +#include <ode/common.h> + +/* + * macro to access elements i,j in an NxM matrix A, independent of the + * matrix storage convention. + */ +#define dACCESS33(A,i,j) ((A)[(i)*4+(j)]) + +/* + * Macro to test for valid floating point values + */ +#define dVALIDVEC3(v) (!(dIsNan(v[0]) || dIsNan(v[1]) || dIsNan(v[2]))) +#define dVALIDVEC4(v) (!(dIsNan(v[0]) || dIsNan(v[1]) || dIsNan(v[2]) || dIsNan(v[3]))) +#define dVALIDMAT3(m) (!(dIsNan(m[0]) || dIsNan(m[1]) || dIsNan(m[2]) || dIsNan(m[3]) || dIsNan(m[4]) || dIsNan(m[5]) || dIsNan(m[6]) || dIsNan(m[7]) || dIsNan(m[8]) || dIsNan(m[9]) || dIsNan(m[10]) || dIsNan(m[11]))) +#define dVALIDMAT4(m) (!(dIsNan(m[0]) || dIsNan(m[1]) || dIsNan(m[2]) || dIsNan(m[3]) || dIsNan(m[4]) || dIsNan(m[5]) || dIsNan(m[6]) || dIsNan(m[7]) || dIsNan(m[8]) || dIsNan(m[9]) || dIsNan(m[10]) || dIsNan(m[11]) || dIsNan(m[12]) || dIsNan(m[13]) || dIsNan(m[14]) || dIsNan(m[15]) )) + + +ODE_PURE_INLINE void dZeroVector3(dVector3 res) +{ + res[dV3E_X] = REAL(0.0); + res[dV3E_Y] = REAL(0.0); + res[dV3E_Z] = REAL(0.0); +} + +ODE_PURE_INLINE void dAssignVector3(dVector3 res, dReal x, dReal y, dReal z) +{ + res[dV3E_X] = x; + res[dV3E_Y] = y; + res[dV3E_Z] = z; +} + +ODE_PURE_INLINE void dZeroMatrix3(dMatrix3 res) +{ + res[dM3E_XX] = REAL(0.0); res[dM3E_XY] = REAL(0.0); res[dM3E_XZ] = REAL(0.0); + res[dM3E_YX] = REAL(0.0); res[dM3E_YY] = REAL(0.0); res[dM3E_YZ] = REAL(0.0); + res[dM3E_ZX] = REAL(0.0); res[dM3E_ZY] = REAL(0.0); res[dM3E_ZZ] = REAL(0.0); +} + +ODE_PURE_INLINE void dZeroMatrix4(dMatrix4 res) +{ + res[dM4E_XX] = REAL(0.0); res[dM4E_XY] = REAL(0.0); res[dM4E_XZ] = REAL(0.0); res[dM4E_XO] = REAL(0.0); + res[dM4E_YX] = REAL(0.0); res[dM4E_YY] = REAL(0.0); res[dM4E_YZ] = REAL(0.0); res[dM4E_YO] = REAL(0.0); + res[dM4E_ZX] = REAL(0.0); res[dM4E_ZY] = REAL(0.0); res[dM4E_ZZ] = REAL(0.0); res[dM4E_ZO] = REAL(0.0); + res[dM4E_OX] = REAL(0.0); res[dM4E_OY] = REAL(0.0); res[dM4E_OZ] = REAL(0.0); res[dM4E_OO] = REAL(0.0); +} + +/* Some vector math */ +ODE_PURE_INLINE void dAddVectors3(dReal *res, const dReal *a, const dReal *b) +{ + const dReal res_0 = a[0] + b[0]; + const dReal res_1 = a[1] + b[1]; + const dReal res_2 = a[2] + b[2]; + /* Only assign after all the calculations are over to avoid incurring memory aliasing*/ + res[0] = res_0; res[1] = res_1; res[2] = res_2; +} + +ODE_PURE_INLINE void dSubtractVectors3(dReal *res, const dReal *a, const dReal *b) +{ + const dReal res_0 = a[0] - b[0]; + const dReal res_1 = a[1] - b[1]; + const dReal res_2 = a[2] - b[2]; + /* Only assign after all the calculations are over to avoid incurring memory aliasing*/ + res[0] = res_0; res[1] = res_1; res[2] = res_2; +} + +ODE_PURE_INLINE void dAddVectorScaledVector3(dReal *res, const dReal *a, const dReal *b, dReal b_scale) +{ + const dReal res_0 = a[0] + b_scale * b[0]; + const dReal res_1 = a[1] + b_scale * b[1]; + const dReal res_2 = a[2] + b_scale * b[2]; + /* Only assign after all the calculations are over to avoid incurring memory aliasing*/ + res[0] = res_0; res[1] = res_1; res[2] = res_2; +} + +ODE_PURE_INLINE void dAddScaledVectors3(dReal *res, const dReal *a, const dReal *b, dReal a_scale, dReal b_scale) +{ + const dReal res_0 = a_scale * a[0] + b_scale * b[0]; + const dReal res_1 = a_scale * a[1] + b_scale * b[1]; + const dReal res_2 = a_scale * a[2] + b_scale * b[2]; + /* Only assign after all the calculations are over to avoid incurring memory aliasing*/ + res[0] = res_0; res[1] = res_1; res[2] = res_2; +} + +ODE_PURE_INLINE void dAddThreeScaledVectors3(dReal *res, const dReal *a, const dReal *b, const dReal *c, dReal a_scale, dReal b_scale, dReal c_scale) +{ + const dReal res_0 = a_scale * a[0] + b_scale * b[0] + c_scale * c[0]; + const dReal res_1 = a_scale * a[1] + b_scale * b[1] + c_scale * c[1]; + const dReal res_2 = a_scale * a[2] + b_scale * b[2] + c_scale * c[2]; + /* Only assign after all the calculations are over to avoid incurring memory aliasing*/ + res[0] = res_0; res[1] = res_1; res[2] = res_2; +} + +ODE_PURE_INLINE void dScaleVector3(dReal *res, dReal nScale) +{ + res[0] *= nScale ; + res[1] *= nScale ; + res[2] *= nScale ; +} + +ODE_PURE_INLINE void dNegateVector3(dReal *res) +{ + res[0] = -res[0]; + res[1] = -res[1]; + res[2] = -res[2]; +} + +ODE_PURE_INLINE void dCopyVector3(dReal *res, const dReal *a) +{ + const dReal res_0 = a[0]; + const dReal res_1 = a[1]; + const dReal res_2 = a[2]; + /* Only assign after all the calculations are over to avoid incurring memory aliasing*/ + res[0] = res_0; res[1] = res_1; res[2] = res_2; +} + +ODE_PURE_INLINE void dCopyScaledVector3(dReal *res, const dReal *a, dReal nScale) +{ + const dReal res_0 = a[0] * nScale; + const dReal res_1 = a[1] * nScale; + const dReal res_2 = a[2] * nScale; + /* Only assign after all the calculations are over to avoid incurring memory aliasing*/ + res[0] = res_0; res[1] = res_1; res[2] = res_2; +} + +ODE_PURE_INLINE void dCopyNegatedVector3(dReal *res, const dReal *a) +{ + const dReal res_0 = -a[0]; + const dReal res_1 = -a[1]; + const dReal res_2 = -a[2]; + /* Only assign after all the calculations are over to avoid incurring memory aliasing*/ + res[0] = res_0; res[1] = res_1; res[2] = res_2; +} + +ODE_PURE_INLINE void dCopyVector4(dReal *res, const dReal *a) +{ + const dReal res_0 = a[0]; + const dReal res_1 = a[1]; + const dReal res_2 = a[2]; + const dReal res_3 = a[3]; + /* Only assign after all the calculations are over to avoid incurring memory aliasing*/ + res[0] = res_0; res[1] = res_1; res[2] = res_2; res[3] = res_3; +} + +ODE_PURE_INLINE void dCopyMatrix4x4(dReal *res, const dReal *a) +{ + dCopyVector4(res + 0, a + 0); + dCopyVector4(res + 4, a + 4); + dCopyVector4(res + 8, a + 8); +} + +ODE_PURE_INLINE void dCopyMatrix4x3(dReal *res, const dReal *a) +{ + dCopyVector3(res + 0, a + 0); + dCopyVector3(res + 4, a + 4); + dCopyVector3(res + 8, a + 8); +} + +ODE_PURE_INLINE void dGetMatrixColumn3(dReal *res, const dReal *a, unsigned n) +{ + const dReal res_0 = a[n + 0]; + const dReal res_1 = a[n + 4]; + const dReal res_2 = a[n + 8]; + /* Only assign after all the calculations are over to avoid incurring memory aliasing*/ + res[0] = res_0; res[1] = res_1; res[2] = res_2; +} + +ODE_PURE_INLINE dReal dCalcVectorLength3(const dReal *a) +{ + return dSqrt(a[0] * a[0] + a[1] * a[1] + a[2] * a[2]); +} + +ODE_PURE_INLINE dReal dCalcVectorLengthSquare3(const dReal *a) +{ + return (a[0] * a[0] + a[1] * a[1] + a[2] * a[2]); +} + +ODE_PURE_INLINE dReal dCalcPointDepth3(const dReal *test_p, const dReal *plane_p, const dReal *plane_n) +{ + return (plane_p[0] - test_p[0]) * plane_n[0] + (plane_p[1] - test_p[1]) * plane_n[1] + (plane_p[2] - test_p[2]) * plane_n[2]; +} + + +/* +* 3-way dot product. _dCalcVectorDot3 means that elements of `a' and `b' are spaced +* step_a and step_b indexes apart respectively. dCalcVectorDot3() means dDot311. +*/ + +ODE_PURE_INLINE dReal _dCalcVectorDot3(const dReal *a, const dReal *b, unsigned step_a, unsigned step_b) +{ + return a[0] * b[0] + a[step_a] * b[step_b] + a[2 * step_a] * b[2 * step_b]; +} + + +ODE_PURE_INLINE dReal dCalcVectorDot3 (const dReal *a, const dReal *b) { return _dCalcVectorDot3(a,b,1,1); } +ODE_PURE_INLINE dReal dCalcVectorDot3_13 (const dReal *a, const dReal *b) { return _dCalcVectorDot3(a,b,1,3); } +ODE_PURE_INLINE dReal dCalcVectorDot3_31 (const dReal *a, const dReal *b) { return _dCalcVectorDot3(a,b,3,1); } +ODE_PURE_INLINE dReal dCalcVectorDot3_33 (const dReal *a, const dReal *b) { return _dCalcVectorDot3(a,b,3,3); } +ODE_PURE_INLINE dReal dCalcVectorDot3_14 (const dReal *a, const dReal *b) { return _dCalcVectorDot3(a,b,1,4); } +ODE_PURE_INLINE dReal dCalcVectorDot3_41 (const dReal *a, const dReal *b) { return _dCalcVectorDot3(a,b,4,1); } +ODE_PURE_INLINE dReal dCalcVectorDot3_44 (const dReal *a, const dReal *b) { return _dCalcVectorDot3(a,b,4,4); } + + +/* + * cross product, set res = a x b. _dCalcVectorCross3 means that elements of `res', `a' + * and `b' are spaced step_res, step_a and step_b indexes apart respectively. + * dCalcVectorCross3() means dCross3111. + */ + +ODE_PURE_INLINE void _dCalcVectorCross3(dReal *res, const dReal *a, const dReal *b, unsigned step_res, unsigned step_a, unsigned step_b) +{ + const dReal res_0 = a[ step_a]*b[2*step_b] - a[2*step_a]*b[ step_b]; + const dReal res_1 = a[2*step_a]*b[ 0] - a[ 0]*b[2*step_b]; + const dReal res_2 = a[ 0]*b[ step_b] - a[ step_a]*b[ 0]; + /* Only assign after all the calculations are over to avoid incurring memory aliasing*/ + res[ 0] = res_0; + res[ step_res] = res_1; + res[2*step_res] = res_2; +} + +ODE_PURE_INLINE void dCalcVectorCross3 (dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 1, 1, 1); } +ODE_PURE_INLINE void dCalcVectorCross3_114(dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 1, 1, 4); } +ODE_PURE_INLINE void dCalcVectorCross3_141(dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 1, 4, 1); } +ODE_PURE_INLINE void dCalcVectorCross3_144(dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 1, 4, 4); } +ODE_PURE_INLINE void dCalcVectorCross3_411(dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 4, 1, 1); } +ODE_PURE_INLINE void dCalcVectorCross3_414(dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 4, 1, 4); } +ODE_PURE_INLINE void dCalcVectorCross3_441(dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 4, 4, 1); } +ODE_PURE_INLINE void dCalcVectorCross3_444(dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 4, 4, 4); } + +ODE_PURE_INLINE void dAddVectorCross3(dReal *res, const dReal *a, const dReal *b) +{ + dReal tmp[3]; + dCalcVectorCross3(tmp, a, b); + dAddVectors3(res, res, tmp); +} + +ODE_PURE_INLINE void dSubtractVectorCross3(dReal *res, const dReal *a, const dReal *b) +{ + dReal tmp[3]; + dCalcVectorCross3(tmp, a, b); + dSubtractVectors3(res, res, tmp); +} + + +/* + * set a 3x3 submatrix of A to a matrix such that submatrix(A)*b = a x b. + * A is stored by rows, and has `skip' elements per row. the matrix is + * assumed to be already zero, so this does not write zero elements! + * if (plus,minus) is (+,-) then a positive version will be written. + * if (plus,minus) is (-,+) then a negative version will be written. + */ + +ODE_PURE_INLINE void dSetCrossMatrixPlus(dReal *res, const dReal *a, unsigned skip) +{ + const dReal a_0 = a[0], a_1 = a[1], a_2 = a[2]; + res[1] = -a_2; + res[2] = +a_1; + res[skip+0] = +a_2; + res[skip+2] = -a_0; + res[2*skip+0] = -a_1; + res[2*skip+1] = +a_0; +} + +ODE_PURE_INLINE void dSetCrossMatrixMinus(dReal *res, const dReal *a, unsigned skip) +{ + const dReal a_0 = a[0], a_1 = a[1], a_2 = a[2]; + res[1] = +a_2; + res[2] = -a_1; + res[skip+0] = -a_2; + res[skip+2] = +a_0; + res[2*skip+0] = +a_1; + res[2*skip+1] = -a_0; +} + + +/* + * compute the distance between two 3D-vectors + */ + +ODE_PURE_INLINE dReal dCalcPointsDistance3(const dReal *a, const dReal *b) +{ + dReal res; + dReal tmp[3]; + dSubtractVectors3(tmp, a, b); + res = dCalcVectorLength3(tmp); + return res; +} + +/* + * special case matrix multiplication, with operator selection + */ + +ODE_PURE_INLINE void dMultiplyHelper0_331(dReal *res, const dReal *a, const dReal *b) +{ + const dReal res_0 = dCalcVectorDot3(a, b); + const dReal res_1 = dCalcVectorDot3(a + 4, b); + const dReal res_2 = dCalcVectorDot3(a + 8, b); + /* Only assign after all the calculations are over to avoid incurring memory aliasing*/ + res[0] = res_0; res[1] = res_1; res[2] = res_2; +} + +ODE_PURE_INLINE void dMultiplyHelper1_331(dReal *res, const dReal *a, const dReal *b) +{ + const dReal res_0 = dCalcVectorDot3_41(a, b); + const dReal res_1 = dCalcVectorDot3_41(a + 1, b); + const dReal res_2 = dCalcVectorDot3_41(a + 2, b); + /* Only assign after all the calculations are over to avoid incurring memory aliasing*/ + res[0] = res_0; res[1] = res_1; res[2] = res_2; +} + +ODE_PURE_INLINE void dMultiplyHelper0_133(dReal *res, const dReal *a, const dReal *b) +{ + dMultiplyHelper1_331(res, b, a); +} + +ODE_PURE_INLINE void dMultiplyHelper1_133(dReal *res, const dReal *a, const dReal *b) +{ + const dReal res_0 = dCalcVectorDot3_44(a, b); + const dReal res_1 = dCalcVectorDot3_44(a + 1, b); + const dReal res_2 = dCalcVectorDot3_44(a + 2, b); + /* Only assign after all the calculations are over to avoid incurring memory aliasing*/ + res[0] = res_0; res[1] = res_1; res[2] = res_2; +} + +/* +Note: NEVER call any of these functions/macros with the same variable for A and C, +it is not equivalent to A*=B. +*/ + +ODE_PURE_INLINE void dMultiply0_331(dReal *res, const dReal *a, const dReal *b) +{ + dMultiplyHelper0_331(res, a, b); +} + +ODE_PURE_INLINE void dMultiply1_331(dReal *res, const dReal *a, const dReal *b) +{ + dMultiplyHelper1_331(res, a, b); +} + +ODE_PURE_INLINE void dMultiply0_133(dReal *res, const dReal *a, const dReal *b) +{ + dMultiplyHelper0_133(res, a, b); +} + +ODE_PURE_INLINE void dMultiply0_333(dReal *res, const dReal *a, const dReal *b) +{ + dMultiplyHelper0_133(res + 0, a + 0, b); + dMultiplyHelper0_133(res + 4, a + 4, b); + dMultiplyHelper0_133(res + 8, a + 8, b); +} + +ODE_PURE_INLINE void dMultiply1_333(dReal *res, const dReal *a, const dReal *b) +{ + dMultiplyHelper1_133(res + 0, b, a + 0); + dMultiplyHelper1_133(res + 4, b, a + 1); + dMultiplyHelper1_133(res + 8, b, a + 2); +} + +ODE_PURE_INLINE void dMultiply2_333(dReal *res, const dReal *a, const dReal *b) +{ + dMultiplyHelper0_331(res + 0, b, a + 0); + dMultiplyHelper0_331(res + 4, b, a + 4); + dMultiplyHelper0_331(res + 8, b, a + 8); +} + +ODE_PURE_INLINE void dMultiplyAdd0_331(dReal *res, const dReal *a, const dReal *b) +{ + dReal tmp[3]; + dMultiplyHelper0_331(tmp, a, b); + dAddVectors3(res, res, tmp); +} + +ODE_PURE_INLINE void dMultiplyAdd1_331(dReal *res, const dReal *a, const dReal *b) +{ + dReal tmp[3]; + dMultiplyHelper1_331(tmp, a, b); + dAddVectors3(res, res, tmp); +} + +ODE_PURE_INLINE void dMultiplyAdd0_133(dReal *res, const dReal *a, const dReal *b) +{ + dReal tmp[3]; + dMultiplyHelper0_133(tmp, a, b); + dAddVectors3(res, res, tmp); +} + +ODE_PURE_INLINE void dMultiplyAdd0_333(dReal *res, const dReal *a, const dReal *b) +{ + dReal tmp[3]; + dMultiplyHelper0_133(tmp, a + 0, b); + dAddVectors3(res+ 0, res + 0, tmp); + dMultiplyHelper0_133(tmp, a + 4, b); + dAddVectors3(res + 4, res + 4, tmp); + dMultiplyHelper0_133(tmp, a + 8, b); + dAddVectors3(res + 8, res + 8, tmp); +} + +ODE_PURE_INLINE void dMultiplyAdd1_333(dReal *res, const dReal *a, const dReal *b) +{ + dReal tmp[3]; + dMultiplyHelper1_133(tmp, b, a + 0); + dAddVectors3(res + 0, res + 0, tmp); + dMultiplyHelper1_133(tmp, b, a + 1); + dAddVectors3(res + 4, res + 4, tmp); + dMultiplyHelper1_133(tmp, b, a + 2); + dAddVectors3(res + 8, res + 8, tmp); +} + +ODE_PURE_INLINE void dMultiplyAdd2_333(dReal *res, const dReal *a, const dReal *b) +{ + dReal tmp[3]; + dMultiplyHelper0_331(tmp, b, a + 0); + dAddVectors3(res + 0, res + 0, tmp); + dMultiplyHelper0_331(tmp, b, a + 4); + dAddVectors3(res + 4, res + 4, tmp); + dMultiplyHelper0_331(tmp, b, a + 8); + dAddVectors3(res + 8, res + 8, tmp); +} + +ODE_PURE_INLINE dReal dCalcMatrix3Det( const dReal* mat ) +{ + dReal det; + + det = mat[0] * ( mat[5]*mat[10] - mat[9]*mat[6] ) + - mat[1] * ( mat[4]*mat[10] - mat[8]*mat[6] ) + + mat[2] * ( mat[4]*mat[9] - mat[8]*mat[5] ); + + return( det ); +} + +/** + Closed form matrix inversion, copied from + collision_util.h for use in the stepper. + + Returns the determinant. + returns 0 and does nothing + if the matrix is singular. +*/ +ODE_PURE_INLINE dReal dInvertMatrix3(dReal *dst, const dReal *ma) +{ + dReal det; + dReal detRecip; + + det = dCalcMatrix3Det( ma ); + + + /* Setting an arbitrary non-zero threshold + for the determinant doesn't do anyone + any favors. The condition number is the + important thing. If all the eigen-values + of the matrix are small, so is the + determinant, but it can still be well + conditioned. + A single extremely large eigen-value could + push the determinant over threshold, but + produce a very unstable result if the other + eigen-values are small. So we just say that + the determinant must be non-zero and trust the + caller to provide well-conditioned matrices. + */ + if ( det == 0 ) + { + return 0; + } + + detRecip = dRecip(det); + + dst[0] = ( ma[5]*ma[10] - ma[6]*ma[9] ) * detRecip; + dst[1] = ( ma[9]*ma[2] - ma[1]*ma[10] ) * detRecip; + dst[2] = ( ma[1]*ma[6] - ma[5]*ma[2] ) * detRecip; + + dst[4] = ( ma[6]*ma[8] - ma[4]*ma[10] ) * detRecip; + dst[5] = ( ma[0]*ma[10] - ma[8]*ma[2] ) * detRecip; + dst[6] = ( ma[4]*ma[2] - ma[0]*ma[6] ) * detRecip; + + dst[8] = ( ma[4]*ma[9] - ma[8]*ma[5] ) * detRecip; + dst[9] = ( ma[8]*ma[1] - ma[0]*ma[9] ) * detRecip; + dst[10] = ( ma[0]*ma[5] - ma[1]*ma[4] ) * detRecip; + + return det; +} + + +/* Include legacy macros here */ +#include <ode/odemath_legacy.h> + + +#ifdef __cplusplus +extern "C" { +#endif + +/* + * normalize 3x1 and 4x1 vectors (i.e. scale them to unit length) + */ + +/* For DLL export*/ +ODE_API int dSafeNormalize3 (dVector3 a); +ODE_API int dSafeNormalize4 (dVector4 a); +ODE_API void dNormalize3 (dVector3 a); /* Potentially asserts on zero vec*/ +ODE_API void dNormalize4 (dVector4 a); /* Potentially asserts on zero vec*/ + +/* + * given a unit length "normal" vector n, generate vectors p and q vectors + * that are an orthonormal basis for the plane space perpendicular to n. + * i.e. this makes p,q such that n,p,q are all perpendicular to each other. + * q will equal n x p. if n is not unit length then p will be unit length but + * q wont be. + */ + +ODE_API void dPlaneSpace (const dVector3 n, dVector3 p, dVector3 q); +/* Makes sure the matrix is a proper rotation, returns a boolean status */ +ODE_API int dOrthogonalizeR(dMatrix3 m); + + + +#ifdef __cplusplus +} +#endif + + +#endif |