summaryrefslogtreecommitdiff
path: root/src/mesh/assimp-master/code/AssetLib/ASE/ASELoader.cpp
diff options
context:
space:
mode:
authorsanine <sanine.not@pm.me>2022-03-04 10:47:15 -0600
committersanine <sanine.not@pm.me>2022-03-04 10:47:15 -0600
commit058f98a63658dc1a2579826ba167fd61bed1e21f (patch)
treebcba07a1615a14d943f3af3f815a42f3be86b2f3 /src/mesh/assimp-master/code/AssetLib/ASE/ASELoader.cpp
parent2f8028ac9e0812cb6f3cbb08f0f419e4e717bd22 (diff)
add assimp submodule
Diffstat (limited to 'src/mesh/assimp-master/code/AssetLib/ASE/ASELoader.cpp')
-rw-r--r--src/mesh/assimp-master/code/AssetLib/ASE/ASELoader.cpp1288
1 files changed, 1288 insertions, 0 deletions
diff --git a/src/mesh/assimp-master/code/AssetLib/ASE/ASELoader.cpp b/src/mesh/assimp-master/code/AssetLib/ASE/ASELoader.cpp
new file mode 100644
index 0000000..caa7089
--- /dev/null
+++ b/src/mesh/assimp-master/code/AssetLib/ASE/ASELoader.cpp
@@ -0,0 +1,1288 @@
+/*
+---------------------------------------------------------------------------
+Open Asset Import Library (assimp)
+---------------------------------------------------------------------------
+
+Copyright (c) 2006-2022, assimp team
+
+All rights reserved.
+
+Redistribution and use of this software in source and binary forms,
+with or without modification, are permitted provided that the following
+conditions are met:
+
+* Redistributions of source code must retain the above
+ copyright notice, this list of conditions and the
+ following disclaimer.
+
+* Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the
+ following disclaimer in the documentation and/or other
+ materials provided with the distribution.
+
+* Neither the name of the assimp team, nor the names of its
+ contributors may be used to endorse or promote products
+ derived from this software without specific prior
+ written permission of the assimp team.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+---------------------------------------------------------------------------
+*/
+
+/** @file ASELoader.cpp
+ * @brief Implementation of the ASE importer class
+ */
+
+#ifndef ASSIMP_BUILD_NO_ASE_IMPORTER
+
+#ifndef ASSIMP_BUILD_NO_3DS_IMPORTER
+
+// internal headers
+#include "ASELoader.h"
+#include "Common/TargetAnimation.h"
+#include <assimp/SkeletonMeshBuilder.h>
+#include <assimp/StringComparison.h>
+
+#include <assimp/importerdesc.h>
+#include <assimp/scene.h>
+#include <assimp/DefaultLogger.hpp>
+#include <assimp/IOSystem.hpp>
+#include <assimp/Importer.hpp>
+
+#include <memory>
+
+// utilities
+#include <assimp/fast_atof.h>
+
+using namespace Assimp;
+using namespace Assimp::ASE;
+
+static const aiImporterDesc desc = {
+ "ASE Importer",
+ "",
+ "",
+ "Similar to 3DS but text-encoded",
+ aiImporterFlags_SupportTextFlavour,
+ 0,
+ 0,
+ 0,
+ 0,
+ "ase ask"
+};
+
+// ------------------------------------------------------------------------------------------------
+// Constructor to be privately used by Importer
+ASEImporter::ASEImporter() :
+ mParser(), mBuffer(), pcScene(), configRecomputeNormals(), noSkeletonMesh() {
+ // empty
+}
+
+// ------------------------------------------------------------------------------------------------
+// Destructor, private as well
+ASEImporter::~ASEImporter() {
+ // empty
+}
+
+// ------------------------------------------------------------------------------------------------
+// Returns whether the class can handle the format of the given file.
+bool ASEImporter::CanRead(const std::string &pFile, IOSystem *pIOHandler, bool /*checkSig*/) const {
+ static const char *tokens[] = { "*3dsmax_asciiexport" };
+ return SearchFileHeaderForToken(pIOHandler, pFile, tokens, AI_COUNT_OF(tokens));
+}
+
+// ------------------------------------------------------------------------------------------------
+// Loader meta information
+const aiImporterDesc *ASEImporter::GetInfo() const {
+ return &desc;
+}
+
+// ------------------------------------------------------------------------------------------------
+// Setup configuration options
+void ASEImporter::SetupProperties(const Importer *pImp) {
+ configRecomputeNormals = (pImp->GetPropertyInteger(
+ AI_CONFIG_IMPORT_ASE_RECONSTRUCT_NORMALS, 1) ?
+ true :
+ false);
+
+ noSkeletonMesh = pImp->GetPropertyInteger(AI_CONFIG_IMPORT_NO_SKELETON_MESHES, 0) != 0;
+}
+
+// ------------------------------------------------------------------------------------------------
+// Imports the given file into the given scene structure.
+void ASEImporter::InternReadFile(const std::string &pFile,
+ aiScene *pScene, IOSystem *pIOHandler) {
+ std::unique_ptr<IOStream> file(pIOHandler->Open(pFile, "rb"));
+
+ // Check whether we can read from the file
+ if (file.get() == nullptr) {
+ throw DeadlyImportError("Failed to open ASE file ", pFile, ".");
+ }
+
+ // Allocate storage and copy the contents of the file to a memory buffer
+ std::vector<char> mBuffer2;
+ TextFileToBuffer(file.get(), mBuffer2);
+
+ this->mBuffer = &mBuffer2[0];
+ this->pcScene = pScene;
+
+ // ------------------------------------------------------------------
+ // Guess the file format by looking at the extension
+ // ASC is considered to be the older format 110,
+ // ASE is the actual version 200 (that is currently written by max)
+ // ------------------------------------------------------------------
+ unsigned int defaultFormat;
+ std::string::size_type s = pFile.length() - 1;
+ switch (pFile.c_str()[s]) {
+
+ case 'C':
+ case 'c':
+ defaultFormat = AI_ASE_OLD_FILE_FORMAT;
+ break;
+ default:
+ defaultFormat = AI_ASE_NEW_FILE_FORMAT;
+ };
+
+ // Construct an ASE parser and parse the file
+ ASE::Parser parser(mBuffer, defaultFormat);
+ mParser = &parser;
+ mParser->Parse();
+
+ //------------------------------------------------------------------
+ // Check whether we god at least one mesh. If we did - generate
+ // materials and copy meshes.
+ // ------------------------------------------------------------------
+ if (!mParser->m_vMeshes.empty()) {
+
+ // If absolutely no material has been loaded from the file
+ // we need to generate a default material
+ GenerateDefaultMaterial();
+
+ // process all meshes
+ bool tookNormals = false;
+ std::vector<aiMesh *> avOutMeshes;
+ avOutMeshes.reserve(mParser->m_vMeshes.size() * 2);
+ for (std::vector<ASE::Mesh>::iterator i = mParser->m_vMeshes.begin(); i != mParser->m_vMeshes.end(); ++i) {
+ if ((*i).bSkip) {
+ continue;
+ }
+ BuildUniqueRepresentation(*i);
+
+ // Need to generate proper vertex normals if necessary
+ if (GenerateNormals(*i)) {
+ tookNormals = true;
+ }
+
+ // Convert all meshes to aiMesh objects
+ ConvertMeshes(*i, avOutMeshes);
+ }
+ if (tookNormals) {
+ ASSIMP_LOG_DEBUG("ASE: Taking normals from the file. Use "
+ "the AI_CONFIG_IMPORT_ASE_RECONSTRUCT_NORMALS setting if you "
+ "experience problems");
+ }
+
+ // Now build the output mesh list. Remove dummies
+ pScene->mNumMeshes = (unsigned int)avOutMeshes.size();
+ aiMesh **pp = pScene->mMeshes = new aiMesh *[pScene->mNumMeshes];
+ for (std::vector<aiMesh *>::const_iterator i = avOutMeshes.begin(); i != avOutMeshes.end(); ++i) {
+ if (!(*i)->mNumFaces) {
+ continue;
+ }
+ *pp++ = *i;
+ }
+ pScene->mNumMeshes = (unsigned int)(pp - pScene->mMeshes);
+
+ // Build final material indices (remove submaterials and setup
+ // the final list)
+ BuildMaterialIndices();
+ }
+
+ // ------------------------------------------------------------------
+ // Copy all scene graph nodes - lights, cameras, dummies and meshes
+ // into one huge list.
+ //------------------------------------------------------------------
+ std::vector<BaseNode *> nodes;
+ nodes.reserve(mParser->m_vMeshes.size() + mParser->m_vLights.size() + mParser->m_vCameras.size() + mParser->m_vDummies.size());
+
+ // Lights
+ for (auto &light : mParser->m_vLights)
+ nodes.push_back(&light);
+ // Cameras
+ for (auto &camera : mParser->m_vCameras)
+ nodes.push_back(&camera);
+ // Meshes
+ for (auto &mesh : mParser->m_vMeshes)
+ nodes.push_back(&mesh);
+ // Dummies
+ for (auto &dummy : mParser->m_vDummies)
+ nodes.push_back(&dummy);
+
+ // build the final node graph
+ BuildNodes(nodes);
+
+ // build output animations
+ BuildAnimations(nodes);
+
+ // build output cameras
+ BuildCameras();
+
+ // build output lights
+ BuildLights();
+
+ // ------------------------------------------------------------------
+ // If we have no meshes use the SkeletonMeshBuilder helper class
+ // to build a mesh for the animation skeleton
+ // FIXME: very strange results
+ // ------------------------------------------------------------------
+ if (!pScene->mNumMeshes) {
+ pScene->mFlags |= AI_SCENE_FLAGS_INCOMPLETE;
+ if (!noSkeletonMesh) {
+ SkeletonMeshBuilder skeleton(pScene);
+ }
+ }
+}
+// ------------------------------------------------------------------------------------------------
+void ASEImporter::GenerateDefaultMaterial() {
+ ai_assert(nullptr != mParser);
+
+ bool bHas = false;
+ for (std::vector<ASE::Mesh>::iterator i = mParser->m_vMeshes.begin(); i != mParser->m_vMeshes.end(); ++i) {
+ if ((*i).bSkip) continue;
+ if (ASE::Face::DEFAULT_MATINDEX == (*i).iMaterialIndex) {
+ (*i).iMaterialIndex = (unsigned int)mParser->m_vMaterials.size();
+ bHas = true;
+ }
+ }
+ if (bHas || mParser->m_vMaterials.empty()) {
+ // add a simple material without submaterials to the parser's list
+ mParser->m_vMaterials.push_back(ASE::Material(AI_DEFAULT_MATERIAL_NAME));
+ ASE::Material &mat = mParser->m_vMaterials.back();
+
+ mat.mDiffuse = aiColor3D(0.6f, 0.6f, 0.6f);
+ mat.mSpecular = aiColor3D(1.0f, 1.0f, 1.0f);
+ mat.mAmbient = aiColor3D(0.05f, 0.05f, 0.05f);
+ mat.mShading = Discreet3DS::Gouraud;
+ }
+}
+
+// ------------------------------------------------------------------------------------------------
+void ASEImporter::BuildAnimations(const std::vector<BaseNode *> &nodes) {
+ // check whether we have at least one mesh which has animations
+ std::vector<ASE::BaseNode *>::const_iterator i = nodes.begin();
+ unsigned int iNum = 0;
+ for (; i != nodes.end(); ++i) {
+
+ // TODO: Implement Bezier & TCB support
+ if ((*i)->mAnim.mPositionType != ASE::Animation::TRACK) {
+ ASSIMP_LOG_WARN("ASE: Position controller uses Bezier/TCB keys. "
+ "This is not supported.");
+ }
+ if ((*i)->mAnim.mRotationType != ASE::Animation::TRACK) {
+ ASSIMP_LOG_WARN("ASE: Rotation controller uses Bezier/TCB keys. "
+ "This is not supported.");
+ }
+ if ((*i)->mAnim.mScalingType != ASE::Animation::TRACK) {
+ ASSIMP_LOG_WARN("ASE: Position controller uses Bezier/TCB keys. "
+ "This is not supported.");
+ }
+
+ // We compare against 1 here - firstly one key is not
+ // really an animation and secondly MAX writes dummies
+ // that represent the node transformation.
+ if ((*i)->mAnim.akeyPositions.size() > 1 || (*i)->mAnim.akeyRotations.size() > 1 || (*i)->mAnim.akeyScaling.size() > 1) {
+ ++iNum;
+ }
+ if ((*i)->mTargetAnim.akeyPositions.size() > 1 && is_not_qnan((*i)->mTargetPosition.x)) {
+ ++iNum;
+ }
+ }
+ if (iNum) {
+ // Generate a new animation channel and setup everything for it
+ pcScene->mNumAnimations = 1;
+ pcScene->mAnimations = new aiAnimation *[1];
+ aiAnimation *pcAnim = pcScene->mAnimations[0] = new aiAnimation();
+ pcAnim->mNumChannels = iNum;
+ pcAnim->mChannels = new aiNodeAnim *[iNum];
+ pcAnim->mTicksPerSecond = mParser->iFrameSpeed * mParser->iTicksPerFrame;
+
+ iNum = 0;
+
+ // Now iterate through all meshes and collect all data we can find
+ for (i = nodes.begin(); i != nodes.end(); ++i) {
+
+ ASE::BaseNode *me = *i;
+ if (me->mTargetAnim.akeyPositions.size() > 1 && is_not_qnan(me->mTargetPosition.x)) {
+ // Generate an extra channel for the camera/light target.
+ // BuildNodes() does also generate an extra node, named
+ // <baseName>.Target.
+ aiNodeAnim *nd = pcAnim->mChannels[iNum++] = new aiNodeAnim();
+ nd->mNodeName.Set(me->mName + ".Target");
+
+ // If there is no input position channel we will need
+ // to supply the default position from the node's
+ // local transformation matrix.
+ /*TargetAnimationHelper helper;
+ if (me->mAnim.akeyPositions.empty())
+ {
+ aiMatrix4x4& mat = (*i)->mTransform;
+ helper.SetFixedMainAnimationChannel(aiVector3D(
+ mat.a4, mat.b4, mat.c4));
+ }
+ else helper.SetMainAnimationChannel (&me->mAnim.akeyPositions);
+ helper.SetTargetAnimationChannel (&me->mTargetAnim.akeyPositions);
+
+ helper.Process(&me->mTargetAnim.akeyPositions);*/
+
+ // Allocate the key array and fill it
+ nd->mNumPositionKeys = (unsigned int)me->mTargetAnim.akeyPositions.size();
+ nd->mPositionKeys = new aiVectorKey[nd->mNumPositionKeys];
+
+ ::memcpy(nd->mPositionKeys, &me->mTargetAnim.akeyPositions[0],
+ nd->mNumPositionKeys * sizeof(aiVectorKey));
+ }
+
+ if (me->mAnim.akeyPositions.size() > 1 || me->mAnim.akeyRotations.size() > 1 || me->mAnim.akeyScaling.size() > 1) {
+ // Begin a new node animation channel for this node
+ aiNodeAnim *nd = pcAnim->mChannels[iNum++] = new aiNodeAnim();
+ nd->mNodeName.Set(me->mName);
+
+ // copy position keys
+ if (me->mAnim.akeyPositions.size() > 1) {
+ // Allocate the key array and fill it
+ nd->mNumPositionKeys = (unsigned int)me->mAnim.akeyPositions.size();
+ nd->mPositionKeys = new aiVectorKey[nd->mNumPositionKeys];
+
+ ::memcpy(nd->mPositionKeys, &me->mAnim.akeyPositions[0],
+ nd->mNumPositionKeys * sizeof(aiVectorKey));
+ }
+ // copy rotation keys
+ if (me->mAnim.akeyRotations.size() > 1) {
+ // Allocate the key array and fill it
+ nd->mNumRotationKeys = (unsigned int)me->mAnim.akeyRotations.size();
+ nd->mRotationKeys = new aiQuatKey[nd->mNumRotationKeys];
+
+ // --------------------------------------------------------------------
+ // Rotation keys are offsets to the previous keys.
+ // We have the quaternion representations of all
+ // of them, so we just need to concatenate all
+ // (unit-length) quaternions to get the absolute
+ // rotations.
+ // Rotation keys are ABSOLUTE for older files
+ // --------------------------------------------------------------------
+
+ aiQuaternion cur;
+ for (unsigned int a = 0; a < nd->mNumRotationKeys; ++a) {
+ aiQuatKey q = me->mAnim.akeyRotations[a];
+
+ if (mParser->iFileFormat > 110) {
+ cur = (a ? cur * q.mValue : q.mValue);
+ q.mValue = cur.Normalize();
+ }
+ nd->mRotationKeys[a] = q;
+
+ // need this to get to Assimp quaternion conventions
+ nd->mRotationKeys[a].mValue.w *= -1.f;
+ }
+ }
+ // copy scaling keys
+ if (me->mAnim.akeyScaling.size() > 1) {
+ // Allocate the key array and fill it
+ nd->mNumScalingKeys = (unsigned int)me->mAnim.akeyScaling.size();
+ nd->mScalingKeys = new aiVectorKey[nd->mNumScalingKeys];
+
+ ::memcpy(nd->mScalingKeys, &me->mAnim.akeyScaling[0],
+ nd->mNumScalingKeys * sizeof(aiVectorKey));
+ }
+ }
+ }
+ }
+}
+
+// ------------------------------------------------------------------------------------------------
+// Build output cameras
+void ASEImporter::BuildCameras() {
+ if (!mParser->m_vCameras.empty()) {
+ pcScene->mNumCameras = (unsigned int)mParser->m_vCameras.size();
+ pcScene->mCameras = new aiCamera *[pcScene->mNumCameras];
+
+ for (unsigned int i = 0; i < pcScene->mNumCameras; ++i) {
+ aiCamera *out = pcScene->mCameras[i] = new aiCamera();
+ ASE::Camera &in = mParser->m_vCameras[i];
+
+ // copy members
+ out->mClipPlaneFar = in.mFar;
+ out->mClipPlaneNear = (in.mNear ? in.mNear : 0.1f);
+ out->mHorizontalFOV = in.mFOV;
+
+ out->mName.Set(in.mName);
+ }
+ }
+}
+
+// ------------------------------------------------------------------------------------------------
+// Build output lights
+void ASEImporter::BuildLights() {
+ if (!mParser->m_vLights.empty()) {
+ pcScene->mNumLights = (unsigned int)mParser->m_vLights.size();
+ pcScene->mLights = new aiLight *[pcScene->mNumLights];
+
+ for (unsigned int i = 0; i < pcScene->mNumLights; ++i) {
+ aiLight *out = pcScene->mLights[i] = new aiLight();
+ ASE::Light &in = mParser->m_vLights[i];
+
+ // The direction is encoded in the transformation matrix of the node.
+ // In 3DS MAX the light source points into negative Z direction if
+ // the node transformation is the identity.
+ out->mDirection = aiVector3D(0.f, 0.f, -1.f);
+
+ out->mName.Set(in.mName);
+ switch (in.mLightType) {
+ case ASE::Light::TARGET:
+ out->mType = aiLightSource_SPOT;
+ out->mAngleInnerCone = AI_DEG_TO_RAD(in.mAngle);
+ out->mAngleOuterCone = (in.mFalloff ? AI_DEG_TO_RAD(in.mFalloff) : out->mAngleInnerCone);
+ break;
+
+ case ASE::Light::DIRECTIONAL:
+ out->mType = aiLightSource_DIRECTIONAL;
+ break;
+
+ default:
+ //case ASE::Light::OMNI:
+ out->mType = aiLightSource_POINT;
+ break;
+ };
+ out->mColorDiffuse = out->mColorSpecular = in.mColor * in.mIntensity;
+ }
+ }
+}
+
+// ------------------------------------------------------------------------------------------------
+void ASEImporter::AddNodes(const std::vector<BaseNode *> &nodes,
+ aiNode *pcParent, const char *szName) {
+ aiMatrix4x4 m;
+ AddNodes(nodes, pcParent, szName, m);
+}
+
+// ------------------------------------------------------------------------------------------------
+// Add meshes to a given node
+void ASEImporter::AddMeshes(const ASE::BaseNode *snode, aiNode *node) {
+ for (unsigned int i = 0; i < pcScene->mNumMeshes; ++i) {
+ // Get the name of the mesh (the mesh instance has been temporarily stored in the third vertex color)
+ const aiMesh *pcMesh = pcScene->mMeshes[i];
+ const ASE::Mesh *mesh = (const ASE::Mesh *)pcMesh->mColors[2];
+
+ if (mesh == snode) {
+ ++node->mNumMeshes;
+ }
+ }
+
+ if (node->mNumMeshes) {
+ node->mMeshes = new unsigned int[node->mNumMeshes];
+ for (unsigned int i = 0, p = 0; i < pcScene->mNumMeshes; ++i) {
+
+ const aiMesh *pcMesh = pcScene->mMeshes[i];
+ const ASE::Mesh *mesh = (const ASE::Mesh *)pcMesh->mColors[2];
+ if (mesh == snode) {
+ node->mMeshes[p++] = i;
+
+ // Transform all vertices of the mesh back into their local space ->
+ // at the moment they are pretransformed
+ aiMatrix4x4 m = mesh->mTransform;
+ m.Inverse();
+
+ aiVector3D *pvCurPtr = pcMesh->mVertices;
+ const aiVector3D *pvEndPtr = pvCurPtr + pcMesh->mNumVertices;
+ while (pvCurPtr != pvEndPtr) {
+ *pvCurPtr = m * (*pvCurPtr);
+ pvCurPtr++;
+ }
+
+ // Do the same for the normal vectors, if we have them.
+ // As always, inverse transpose.
+ if (pcMesh->mNormals) {
+ aiMatrix3x3 m3 = aiMatrix3x3(mesh->mTransform);
+ m3.Transpose();
+
+ pvCurPtr = pcMesh->mNormals;
+ pvEndPtr = pvCurPtr + pcMesh->mNumVertices;
+ while (pvCurPtr != pvEndPtr) {
+ *pvCurPtr = m3 * (*pvCurPtr);
+ pvCurPtr++;
+ }
+ }
+ }
+ }
+ }
+}
+
+// ------------------------------------------------------------------------------------------------
+// Add child nodes to a given parent node
+void ASEImporter::AddNodes(const std::vector<BaseNode *> &nodes,
+ aiNode *pcParent, const char *szName,
+ const aiMatrix4x4 &mat) {
+ const size_t len = szName ? ::strlen(szName) : 0;
+ ai_assert(4 <= AI_MAX_NUMBER_OF_COLOR_SETS);
+
+ // Receives child nodes for the pcParent node
+ std::vector<aiNode *> apcNodes;
+
+ // Now iterate through all nodes in the scene and search for one
+ // which has *us* as parent.
+ for (std::vector<BaseNode *>::const_iterator it = nodes.begin(), end = nodes.end(); it != end; ++it) {
+ const BaseNode *snode = *it;
+ if (szName) {
+ if (len != snode->mParent.length() || ::strcmp(szName, snode->mParent.c_str()))
+ continue;
+ } else if (snode->mParent.length())
+ continue;
+
+ (*it)->mProcessed = true;
+
+ // Allocate a new node and add it to the output data structure
+ apcNodes.push_back(new aiNode());
+ aiNode *node = apcNodes.back();
+
+ node->mName.Set((snode->mName.length() ? snode->mName.c_str() : "Unnamed_Node"));
+ node->mParent = pcParent;
+
+ // Setup the transformation matrix of the node
+ aiMatrix4x4 mParentAdjust = mat;
+ mParentAdjust.Inverse();
+ node->mTransformation = mParentAdjust * snode->mTransform;
+
+ // Add sub nodes - prevent stack overflow due to recursive parenting
+ if (node->mName != node->mParent->mName && node->mName != node->mParent->mParent->mName) {
+ AddNodes(nodes, node, node->mName.data, snode->mTransform);
+ }
+
+ // Further processing depends on the type of the node
+ if (snode->mType == ASE::BaseNode::Mesh) {
+ // If the type of this node is "Mesh" we need to search
+ // the list of output meshes in the data structure for
+ // all those that belonged to this node once. This is
+ // slightly inconvinient here and a better solution should
+ // be used when this code is refactored next.
+ AddMeshes(snode, node);
+ } else if (is_not_qnan(snode->mTargetPosition.x)) {
+ // If this is a target camera or light we generate a small
+ // child node which marks the position of the camera
+ // target (the direction information is contained in *this*
+ // node's animation track but the exact target position
+ // would be lost otherwise)
+ if (!node->mNumChildren) {
+ node->mChildren = new aiNode *[1];
+ }
+
+ aiNode *nd = new aiNode();
+
+ nd->mName.Set(snode->mName + ".Target");
+
+ nd->mTransformation.a4 = snode->mTargetPosition.x - snode->mTransform.a4;
+ nd->mTransformation.b4 = snode->mTargetPosition.y - snode->mTransform.b4;
+ nd->mTransformation.c4 = snode->mTargetPosition.z - snode->mTransform.c4;
+
+ nd->mParent = node;
+
+ // The .Target node is always the first child node
+ for (unsigned int m = 0; m < node->mNumChildren; ++m)
+ node->mChildren[m + 1] = node->mChildren[m];
+
+ node->mChildren[0] = nd;
+ node->mNumChildren++;
+
+ // What we did is so great, it is at least worth a debug message
+ ASSIMP_LOG_VERBOSE_DEBUG("ASE: Generating separate target node (", snode->mName, ")");
+ }
+ }
+
+ // Allocate enough space for the child nodes
+ // We allocate one slot more in case this is a target camera/light
+ pcParent->mNumChildren = (unsigned int)apcNodes.size();
+ if (pcParent->mNumChildren) {
+ pcParent->mChildren = new aiNode *[apcNodes.size() + 1 /* PLUS ONE !!! */];
+
+ // now build all nodes for our nice new children
+ for (unsigned int p = 0; p < apcNodes.size(); ++p)
+ pcParent->mChildren[p] = apcNodes[p];
+ }
+ return;
+}
+
+// ------------------------------------------------------------------------------------------------
+// Build the output node graph
+void ASEImporter::BuildNodes(std::vector<BaseNode *> &nodes) {
+ ai_assert(nullptr != pcScene);
+
+ // allocate the one and only root node
+ aiNode *root = pcScene->mRootNode = new aiNode();
+ root->mName.Set("<ASERoot>");
+
+ // Setup the coordinate system transformation
+ pcScene->mRootNode->mNumChildren = 1;
+ pcScene->mRootNode->mChildren = new aiNode *[1];
+ aiNode *ch = pcScene->mRootNode->mChildren[0] = new aiNode();
+ ch->mParent = root;
+
+ // Change the transformation matrix of all nodes
+ for (BaseNode *node : nodes) {
+ aiMatrix4x4 &m = node->mTransform;
+ m.Transpose(); // row-order vs column-order
+ }
+
+ // add all nodes
+ AddNodes(nodes, ch, nullptr);
+
+ // now iterate through al nodes and find those that have not yet
+ // been added to the nodegraph (= their parent could not be recognized)
+ std::vector<const BaseNode *> aiList;
+ for (std::vector<BaseNode *>::iterator it = nodes.begin(), end = nodes.end(); it != end; ++it) {
+ if ((*it)->mProcessed) {
+ continue;
+ }
+
+ // check whether our parent is known
+ bool bKnowParent = false;
+
+ // search the list another time, starting *here* and try to find out whether
+ // there is a node that references *us* as a parent
+ for (std::vector<BaseNode *>::const_iterator it2 = nodes.begin(); it2 != end; ++it2) {
+ if (it2 == it) {
+ continue;
+ }
+
+ if ((*it2)->mName == (*it)->mParent) {
+ bKnowParent = true;
+ break;
+ }
+ }
+ if (!bKnowParent) {
+ aiList.push_back(*it);
+ }
+ }
+
+ // Are there any orphaned nodes?
+ if (!aiList.empty()) {
+ std::vector<aiNode *> apcNodes;
+ apcNodes.reserve(aiList.size() + pcScene->mRootNode->mNumChildren);
+
+ for (unsigned int i = 0; i < pcScene->mRootNode->mNumChildren; ++i)
+ apcNodes.push_back(pcScene->mRootNode->mChildren[i]);
+
+ delete[] pcScene->mRootNode->mChildren;
+ for (std::vector<const BaseNode *>::/*const_*/ iterator i = aiList.begin(); i != aiList.end(); ++i) {
+ const ASE::BaseNode *src = *i;
+
+ // The parent is not known, so we can assume that we must add
+ // this node to the root node of the whole scene
+ aiNode *pcNode = new aiNode();
+ pcNode->mParent = pcScene->mRootNode;
+ pcNode->mName.Set(src->mName);
+ AddMeshes(src, pcNode);
+ AddNodes(nodes, pcNode, pcNode->mName.data);
+ apcNodes.push_back(pcNode);
+ }
+
+ // Regenerate our output array
+ pcScene->mRootNode->mChildren = new aiNode *[apcNodes.size()];
+ for (unsigned int i = 0; i < apcNodes.size(); ++i)
+ pcScene->mRootNode->mChildren[i] = apcNodes[i];
+
+ pcScene->mRootNode->mNumChildren = (unsigned int)apcNodes.size();
+ }
+
+ // Reset the third color set to nullptr - we used this field to store a temporary pointer
+ for (unsigned int i = 0; i < pcScene->mNumMeshes; ++i)
+ pcScene->mMeshes[i]->mColors[2] = nullptr;
+
+ // The root node should not have at least one child or the file is valid
+ if (!pcScene->mRootNode->mNumChildren) {
+ throw DeadlyImportError("ASE: No nodes loaded. The file is either empty or corrupt");
+ }
+
+ // Now rotate the whole scene 90 degrees around the x axis to convert to internal coordinate system
+ pcScene->mRootNode->mTransformation = aiMatrix4x4(1.f, 0.f, 0.f, 0.f,
+ 0.f, 0.f, 1.f, 0.f, 0.f, -1.f, 0.f, 0.f, 0.f, 0.f, 0.f, 1.f);
+}
+
+// ------------------------------------------------------------------------------------------------
+// Convert the imported data to the internal verbose representation
+void ASEImporter::BuildUniqueRepresentation(ASE::Mesh &mesh) {
+ // allocate output storage
+ std::vector<aiVector3D> mPositions;
+ std::vector<aiVector3D> amTexCoords[AI_MAX_NUMBER_OF_TEXTURECOORDS];
+ std::vector<aiColor4D> mVertexColors;
+ std::vector<aiVector3D> mNormals;
+ std::vector<BoneVertex> mBoneVertices;
+
+ unsigned int iSize = (unsigned int)mesh.mFaces.size() * 3;
+ mPositions.resize(iSize);
+
+ // optional texture coordinates
+ for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i) {
+ if (!mesh.amTexCoords[i].empty()) {
+ amTexCoords[i].resize(iSize);
+ }
+ }
+ // optional vertex colors
+ if (!mesh.mVertexColors.empty()) {
+ mVertexColors.resize(iSize);
+ }
+
+ // optional vertex normals (vertex normals can simply be copied)
+ if (!mesh.mNormals.empty()) {
+ mNormals.resize(iSize);
+ }
+ // bone vertices. There is no need to change the bone list
+ if (!mesh.mBoneVertices.empty()) {
+ mBoneVertices.resize(iSize);
+ }
+
+ // iterate through all faces in the mesh
+ unsigned int iCurrent = 0, fi = 0;
+ for (std::vector<ASE::Face>::iterator i = mesh.mFaces.begin(); i != mesh.mFaces.end(); ++i, ++fi) {
+ for (unsigned int n = 0; n < 3; ++n, ++iCurrent) {
+ mPositions[iCurrent] = mesh.mPositions[(*i).mIndices[n]];
+
+ // add texture coordinates
+ for (unsigned int c = 0; c < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++c) {
+ if (mesh.amTexCoords[c].empty()) break;
+ amTexCoords[c][iCurrent] = mesh.amTexCoords[c][(*i).amUVIndices[c][n]];
+ }
+ // add vertex colors
+ if (!mesh.mVertexColors.empty()) {
+ mVertexColors[iCurrent] = mesh.mVertexColors[(*i).mColorIndices[n]];
+ }
+ // add normal vectors
+ if (!mesh.mNormals.empty()) {
+ mNormals[iCurrent] = mesh.mNormals[fi * 3 + n];
+ mNormals[iCurrent].Normalize();
+ }
+
+ // handle bone vertices
+ if ((*i).mIndices[n] < mesh.mBoneVertices.size()) {
+ // (sometimes this will cause bone verts to be duplicated
+ // however, I' quite sure Schrompf' JoinVerticesStep
+ // will fix that again ...)
+ mBoneVertices[iCurrent] = mesh.mBoneVertices[(*i).mIndices[n]];
+ }
+ (*i).mIndices[n] = iCurrent;
+ }
+ }
+
+ // replace the old arrays
+ mesh.mNormals = mNormals;
+ mesh.mPositions = mPositions;
+ mesh.mVertexColors = mVertexColors;
+
+ for (unsigned int c = 0; c < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++c)
+ mesh.amTexCoords[c] = amTexCoords[c];
+}
+
+// ------------------------------------------------------------------------------------------------
+// Copy a texture from the ASE structs to the output material
+void CopyASETexture(aiMaterial &mat, ASE::Texture &texture, aiTextureType type) {
+ // Setup the texture name
+ aiString tex;
+ tex.Set(texture.mMapName);
+ mat.AddProperty(&tex, AI_MATKEY_TEXTURE(type, 0));
+
+ // Setup the texture blend factor
+ if (is_not_qnan(texture.mTextureBlend))
+ mat.AddProperty<ai_real>(&texture.mTextureBlend, 1, AI_MATKEY_TEXBLEND(type, 0));
+
+ // Setup texture UV transformations
+ mat.AddProperty<ai_real>(&texture.mOffsetU, 5, AI_MATKEY_UVTRANSFORM(type, 0));
+}
+
+// ------------------------------------------------------------------------------------------------
+// Convert from ASE material to output material
+void ASEImporter::ConvertMaterial(ASE::Material &mat) {
+ // LARGE TODO: Much code her is copied from 3DS ... join them maybe?
+
+ // Allocate the output material
+ mat.pcInstance = new aiMaterial();
+
+ // At first add the base ambient color of the
+ // scene to the material
+ mat.mAmbient.r += mParser->m_clrAmbient.r;
+ mat.mAmbient.g += mParser->m_clrAmbient.g;
+ mat.mAmbient.b += mParser->m_clrAmbient.b;
+
+ aiString name;
+ name.Set(mat.mName);
+ mat.pcInstance->AddProperty(&name, AI_MATKEY_NAME);
+
+ // material colors
+ mat.pcInstance->AddProperty(&mat.mAmbient, 1, AI_MATKEY_COLOR_AMBIENT);
+ mat.pcInstance->AddProperty(&mat.mDiffuse, 1, AI_MATKEY_COLOR_DIFFUSE);
+ mat.pcInstance->AddProperty(&mat.mSpecular, 1, AI_MATKEY_COLOR_SPECULAR);
+ mat.pcInstance->AddProperty(&mat.mEmissive, 1, AI_MATKEY_COLOR_EMISSIVE);
+
+ // shininess
+ if (0.0f != mat.mSpecularExponent && 0.0f != mat.mShininessStrength) {
+ mat.pcInstance->AddProperty(&mat.mSpecularExponent, 1, AI_MATKEY_SHININESS);
+ mat.pcInstance->AddProperty(&mat.mShininessStrength, 1, AI_MATKEY_SHININESS_STRENGTH);
+ }
+ // If there is no shininess, we can disable phong lighting
+ else if (D3DS::Discreet3DS::Metal == mat.mShading ||
+ D3DS::Discreet3DS::Phong == mat.mShading ||
+ D3DS::Discreet3DS::Blinn == mat.mShading) {
+ mat.mShading = D3DS::Discreet3DS::Gouraud;
+ }
+
+ // opacity
+ mat.pcInstance->AddProperty<ai_real>(&mat.mTransparency, 1, AI_MATKEY_OPACITY);
+
+ // Two sided rendering?
+ if (mat.mTwoSided) {
+ int i = 1;
+ mat.pcInstance->AddProperty<int>(&i, 1, AI_MATKEY_TWOSIDED);
+ }
+
+ // shading mode
+ aiShadingMode eShading = aiShadingMode_NoShading;
+ switch (mat.mShading) {
+ case D3DS::Discreet3DS::Flat:
+ eShading = aiShadingMode_Flat;
+ break;
+ case D3DS::Discreet3DS::Phong:
+ eShading = aiShadingMode_Phong;
+ break;
+ case D3DS::Discreet3DS::Blinn:
+ eShading = aiShadingMode_Blinn;
+ break;
+
+ // I don't know what "Wire" shading should be,
+ // assume it is simple lambertian diffuse (L dot N) shading
+ case D3DS::Discreet3DS::Wire: {
+ // set the wireframe flag
+ unsigned int iWire = 1;
+ mat.pcInstance->AddProperty<int>((int *)&iWire, 1, AI_MATKEY_ENABLE_WIREFRAME);
+ }
+ case D3DS::Discreet3DS::Gouraud:
+ eShading = aiShadingMode_Gouraud;
+ break;
+ case D3DS::Discreet3DS::Metal:
+ eShading = aiShadingMode_CookTorrance;
+ break;
+ }
+ mat.pcInstance->AddProperty<int>((int *)&eShading, 1, AI_MATKEY_SHADING_MODEL);
+
+ // DIFFUSE texture
+ if (mat.sTexDiffuse.mMapName.length() > 0)
+ CopyASETexture(*mat.pcInstance, mat.sTexDiffuse, aiTextureType_DIFFUSE);
+
+ // SPECULAR texture
+ if (mat.sTexSpecular.mMapName.length() > 0)
+ CopyASETexture(*mat.pcInstance, mat.sTexSpecular, aiTextureType_SPECULAR);
+
+ // AMBIENT texture
+ if (mat.sTexAmbient.mMapName.length() > 0)
+ CopyASETexture(*mat.pcInstance, mat.sTexAmbient, aiTextureType_AMBIENT);
+
+ // OPACITY texture
+ if (mat.sTexOpacity.mMapName.length() > 0)
+ CopyASETexture(*mat.pcInstance, mat.sTexOpacity, aiTextureType_OPACITY);
+
+ // EMISSIVE texture
+ if (mat.sTexEmissive.mMapName.length() > 0)
+ CopyASETexture(*mat.pcInstance, mat.sTexEmissive, aiTextureType_EMISSIVE);
+
+ // BUMP texture
+ if (mat.sTexBump.mMapName.length() > 0)
+ CopyASETexture(*mat.pcInstance, mat.sTexBump, aiTextureType_HEIGHT);
+
+ // SHININESS texture
+ if (mat.sTexShininess.mMapName.length() > 0)
+ CopyASETexture(*mat.pcInstance, mat.sTexShininess, aiTextureType_SHININESS);
+
+ // store the name of the material itself, too
+ if (mat.mName.length() > 0) {
+ aiString tex;
+ tex.Set(mat.mName);
+ mat.pcInstance->AddProperty(&tex, AI_MATKEY_NAME);
+ }
+ return;
+}
+
+// ------------------------------------------------------------------------------------------------
+// Build output meshes
+void ASEImporter::ConvertMeshes(ASE::Mesh &mesh, std::vector<aiMesh *> &avOutMeshes) {
+ // validate the material index of the mesh
+ if (mesh.iMaterialIndex >= mParser->m_vMaterials.size()) {
+ mesh.iMaterialIndex = (unsigned int)mParser->m_vMaterials.size() - 1;
+ ASSIMP_LOG_WARN("Material index is out of range");
+ }
+
+ // If the material the mesh is assigned to is consisting of submeshes, split it
+ if (!mParser->m_vMaterials[mesh.iMaterialIndex].avSubMaterials.empty()) {
+ std::vector<ASE::Material> vSubMaterials = mParser->m_vMaterials[mesh.iMaterialIndex].avSubMaterials;
+
+ std::vector<unsigned int> *aiSplit = new std::vector<unsigned int>[vSubMaterials.size()];
+
+ // build a list of all faces per sub-material
+ for (unsigned int i = 0; i < mesh.mFaces.size(); ++i) {
+ // check range
+ if (mesh.mFaces[i].iMaterial >= vSubMaterials.size()) {
+ ASSIMP_LOG_WARN("Submaterial index is out of range");
+
+ // use the last material instead
+ aiSplit[vSubMaterials.size() - 1].push_back(i);
+ } else
+ aiSplit[mesh.mFaces[i].iMaterial].push_back(i);
+ }
+
+ // now generate submeshes
+ for (unsigned int p = 0; p < vSubMaterials.size(); ++p) {
+ if (!aiSplit[p].empty()) {
+
+ aiMesh *p_pcOut = new aiMesh();
+ p_pcOut->mPrimitiveTypes = aiPrimitiveType_TRIANGLE;
+
+ // let the sub material index
+ p_pcOut->mMaterialIndex = p;
+
+ // we will need this material
+ mParser->m_vMaterials[mesh.iMaterialIndex].avSubMaterials[p].bNeed = true;
+
+ // store the real index here ... color channel 3
+ p_pcOut->mColors[3] = (aiColor4D *)(uintptr_t)mesh.iMaterialIndex;
+
+ // store a pointer to the mesh in color channel 2
+ p_pcOut->mColors[2] = (aiColor4D *)&mesh;
+ avOutMeshes.push_back(p_pcOut);
+
+ // convert vertices
+ p_pcOut->mNumVertices = (unsigned int)aiSplit[p].size() * 3;
+ p_pcOut->mNumFaces = (unsigned int)aiSplit[p].size();
+
+ // receive output vertex weights
+ std::vector<std::pair<unsigned int, float>> *avOutputBones = nullptr;
+ if (!mesh.mBones.empty()) {
+ avOutputBones = new std::vector<std::pair<unsigned int, float>>[mesh.mBones.size()];
+ }
+
+ // allocate enough storage for faces
+ p_pcOut->mFaces = new aiFace[p_pcOut->mNumFaces];
+
+ unsigned int iBase = 0, iIndex;
+ if (p_pcOut->mNumVertices) {
+ p_pcOut->mVertices = new aiVector3D[p_pcOut->mNumVertices];
+ p_pcOut->mNormals = new aiVector3D[p_pcOut->mNumVertices];
+ for (unsigned int q = 0; q < aiSplit[p].size(); ++q) {
+
+ iIndex = aiSplit[p][q];
+
+ p_pcOut->mFaces[q].mIndices = new unsigned int[3];
+ p_pcOut->mFaces[q].mNumIndices = 3;
+
+ for (unsigned int t = 0; t < 3; ++t, ++iBase) {
+ const uint32_t iIndex2 = mesh.mFaces[iIndex].mIndices[t];
+
+ p_pcOut->mVertices[iBase] = mesh.mPositions[iIndex2];
+ p_pcOut->mNormals[iBase] = mesh.mNormals[iIndex2];
+
+ // convert bones, if existing
+ if (!mesh.mBones.empty()) {
+ ai_assert(avOutputBones);
+ // check whether there is a vertex weight for this vertex index
+ if (iIndex2 < mesh.mBoneVertices.size()) {
+
+ for (std::vector<std::pair<int, float>>::const_iterator
+ blubb = mesh.mBoneVertices[iIndex2].mBoneWeights.begin();
+ blubb != mesh.mBoneVertices[iIndex2].mBoneWeights.end(); ++blubb) {
+
+ // NOTE: illegal cases have already been filtered out
+ avOutputBones[(*blubb).first].push_back(std::pair<unsigned int, float>(
+ iBase, (*blubb).second));
+ }
+ }
+ }
+ p_pcOut->mFaces[q].mIndices[t] = iBase;
+ }
+ }
+ }
+ // convert texture coordinates (up to AI_MAX_NUMBER_OF_TEXTURECOORDS sets supported)
+ for (unsigned int c = 0; c < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++c) {
+ if (!mesh.amTexCoords[c].empty()) {
+ p_pcOut->mTextureCoords[c] = new aiVector3D[p_pcOut->mNumVertices];
+ iBase = 0;
+ for (unsigned int q = 0; q < aiSplit[p].size(); ++q) {
+ iIndex = aiSplit[p][q];
+ for (unsigned int t = 0; t < 3; ++t) {
+ p_pcOut->mTextureCoords[c][iBase++] = mesh.amTexCoords[c][mesh.mFaces[iIndex].mIndices[t]];
+ }
+ }
+ // Setup the number of valid vertex components
+ p_pcOut->mNumUVComponents[c] = mesh.mNumUVComponents[c];
+ }
+ }
+
+ // Convert vertex colors (only one set supported)
+ if (!mesh.mVertexColors.empty()) {
+ p_pcOut->mColors[0] = new aiColor4D[p_pcOut->mNumVertices];
+ iBase = 0;
+ for (unsigned int q = 0; q < aiSplit[p].size(); ++q) {
+ iIndex = aiSplit[p][q];
+ for (unsigned int t = 0; t < 3; ++t) {
+ p_pcOut->mColors[0][iBase++] = mesh.mVertexColors[mesh.mFaces[iIndex].mIndices[t]];
+ }
+ }
+ }
+ // Copy bones
+ if (!mesh.mBones.empty()) {
+ p_pcOut->mNumBones = 0;
+ for (unsigned int mrspock = 0; mrspock < mesh.mBones.size(); ++mrspock)
+ if (!avOutputBones[mrspock].empty()) p_pcOut->mNumBones++;
+
+ p_pcOut->mBones = new aiBone *[p_pcOut->mNumBones];
+ aiBone **pcBone = p_pcOut->mBones;
+ for (unsigned int mrspock = 0; mrspock < mesh.mBones.size(); ++mrspock) {
+ if (!avOutputBones[mrspock].empty()) {
+ // we will need this bone. add it to the output mesh and
+ // add all per-vertex weights
+ aiBone *pc = *pcBone = new aiBone();
+ pc->mName.Set(mesh.mBones[mrspock].mName);
+
+ pc->mNumWeights = (unsigned int)avOutputBones[mrspock].size();
+ pc->mWeights = new aiVertexWeight[pc->mNumWeights];
+
+ for (unsigned int captainkirk = 0; captainkirk < pc->mNumWeights; ++captainkirk) {
+ const std::pair<unsigned int, float> &ref = avOutputBones[mrspock][captainkirk];
+ pc->mWeights[captainkirk].mVertexId = ref.first;
+ pc->mWeights[captainkirk].mWeight = ref.second;
+ }
+ ++pcBone;
+ }
+ }
+ // delete allocated storage
+ delete[] avOutputBones;
+ }
+ }
+ }
+ // delete storage
+ delete[] aiSplit;
+ } else {
+ // Otherwise we can simply copy the data to one output mesh
+ // This codepath needs less memory and uses fast memcpy()s
+ // to do the actual copying. So I think it is worth the
+ // effort here.
+
+ aiMesh *p_pcOut = new aiMesh();
+ p_pcOut->mPrimitiveTypes = aiPrimitiveType_TRIANGLE;
+
+ // set an empty sub material index
+ p_pcOut->mMaterialIndex = ASE::Face::DEFAULT_MATINDEX;
+ mParser->m_vMaterials[mesh.iMaterialIndex].bNeed = true;
+
+ // store the real index here ... in color channel 3
+ p_pcOut->mColors[3] = (aiColor4D *)(uintptr_t)mesh.iMaterialIndex;
+
+ // store a pointer to the mesh in color channel 2
+ p_pcOut->mColors[2] = (aiColor4D *)&mesh;
+ avOutMeshes.push_back(p_pcOut);
+
+ // If the mesh hasn't faces or vertices, there are two cases
+ // possible: 1. the model is invalid. 2. This is a dummy
+ // helper object which we are going to remove later ...
+ if (mesh.mFaces.empty() || mesh.mPositions.empty()) {
+ return;
+ }
+
+ // convert vertices
+ p_pcOut->mNumVertices = (unsigned int)mesh.mPositions.size();
+ p_pcOut->mNumFaces = (unsigned int)mesh.mFaces.size();
+
+ // allocate enough storage for faces
+ p_pcOut->mFaces = new aiFace[p_pcOut->mNumFaces];
+
+ // copy vertices
+ p_pcOut->mVertices = new aiVector3D[mesh.mPositions.size()];
+ memcpy(p_pcOut->mVertices, &mesh.mPositions[0],
+ mesh.mPositions.size() * sizeof(aiVector3D));
+
+ // copy normals
+ p_pcOut->mNormals = new aiVector3D[mesh.mNormals.size()];
+ memcpy(p_pcOut->mNormals, &mesh.mNormals[0],
+ mesh.mNormals.size() * sizeof(aiVector3D));
+
+ // copy texture coordinates
+ for (unsigned int c = 0; c < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++c) {
+ if (!mesh.amTexCoords[c].empty()) {
+ p_pcOut->mTextureCoords[c] = new aiVector3D[mesh.amTexCoords[c].size()];
+ memcpy(p_pcOut->mTextureCoords[c], &mesh.amTexCoords[c][0],
+ mesh.amTexCoords[c].size() * sizeof(aiVector3D));
+
+ // setup the number of valid vertex components
+ p_pcOut->mNumUVComponents[c] = mesh.mNumUVComponents[c];
+ }
+ }
+
+ // copy vertex colors
+ if (!mesh.mVertexColors.empty()) {
+ p_pcOut->mColors[0] = new aiColor4D[mesh.mVertexColors.size()];
+ memcpy(p_pcOut->mColors[0], &mesh.mVertexColors[0],
+ mesh.mVertexColors.size() * sizeof(aiColor4D));
+ }
+
+ // copy faces
+ for (unsigned int iFace = 0; iFace < p_pcOut->mNumFaces; ++iFace) {
+ p_pcOut->mFaces[iFace].mNumIndices = 3;
+ p_pcOut->mFaces[iFace].mIndices = new unsigned int[3];
+
+ // copy indices
+ p_pcOut->mFaces[iFace].mIndices[0] = mesh.mFaces[iFace].mIndices[0];
+ p_pcOut->mFaces[iFace].mIndices[1] = mesh.mFaces[iFace].mIndices[1];
+ p_pcOut->mFaces[iFace].mIndices[2] = mesh.mFaces[iFace].mIndices[2];
+ }
+
+ // copy vertex bones
+ if (!mesh.mBones.empty() && !mesh.mBoneVertices.empty()) {
+ std::vector<std::vector<aiVertexWeight>> avBonesOut(mesh.mBones.size());
+
+ // find all vertex weights for this bone
+ unsigned int quak = 0;
+ for (std::vector<BoneVertex>::const_iterator harrypotter = mesh.mBoneVertices.begin();
+ harrypotter != mesh.mBoneVertices.end(); ++harrypotter, ++quak) {
+
+ for (std::vector<std::pair<int, float>>::const_iterator
+ ronaldweasley = (*harrypotter).mBoneWeights.begin();
+ ronaldweasley != (*harrypotter).mBoneWeights.end(); ++ronaldweasley) {
+ aiVertexWeight weight;
+ weight.mVertexId = quak;
+ weight.mWeight = (*ronaldweasley).second;
+ avBonesOut[(*ronaldweasley).first].push_back(weight);
+ }
+ }
+
+ // now build a final bone list
+ p_pcOut->mNumBones = 0;
+ for (unsigned int jfkennedy = 0; jfkennedy < mesh.mBones.size(); ++jfkennedy)
+ if (!avBonesOut[jfkennedy].empty()) p_pcOut->mNumBones++;
+
+ p_pcOut->mBones = new aiBone *[p_pcOut->mNumBones];
+ aiBone **pcBone = p_pcOut->mBones;
+ for (unsigned int jfkennedy = 0; jfkennedy < mesh.mBones.size(); ++jfkennedy) {
+ if (!avBonesOut[jfkennedy].empty()) {
+ aiBone *pc = *pcBone = new aiBone();
+ pc->mName.Set(mesh.mBones[jfkennedy].mName);
+ pc->mNumWeights = (unsigned int)avBonesOut[jfkennedy].size();
+ pc->mWeights = new aiVertexWeight[pc->mNumWeights];
+ ::memcpy(pc->mWeights, &avBonesOut[jfkennedy][0],
+ sizeof(aiVertexWeight) * pc->mNumWeights);
+ ++pcBone;
+ }
+ }
+ }
+ }
+}
+
+// ------------------------------------------------------------------------------------------------
+// Setup proper material indices and build output materials
+void ASEImporter::BuildMaterialIndices() {
+ ai_assert(nullptr != pcScene);
+
+ // iterate through all materials and check whether we need them
+ for (unsigned int iMat = 0; iMat < mParser->m_vMaterials.size(); ++iMat) {
+ ASE::Material &mat = mParser->m_vMaterials[iMat];
+ if (mat.bNeed) {
+ // Convert it to the aiMaterial layout
+ ConvertMaterial(mat);
+ ++pcScene->mNumMaterials;
+ }
+ for (unsigned int iSubMat = 0; iSubMat < mat.avSubMaterials.size(); ++iSubMat) {
+ ASE::Material &submat = mat.avSubMaterials[iSubMat];
+ if (submat.bNeed) {
+ // Convert it to the aiMaterial layout
+ ConvertMaterial(submat);
+ ++pcScene->mNumMaterials;
+ }
+ }
+ }
+
+ // allocate the output material array
+ pcScene->mMaterials = new aiMaterial *[pcScene->mNumMaterials];
+ D3DS::Material **pcIntMaterials = new D3DS::Material *[pcScene->mNumMaterials];
+
+ unsigned int iNum = 0;
+ for (unsigned int iMat = 0; iMat < mParser->m_vMaterials.size(); ++iMat) {
+ ASE::Material &mat = mParser->m_vMaterials[iMat];
+ if (mat.bNeed) {
+ ai_assert(nullptr != mat.pcInstance);
+ pcScene->mMaterials[iNum] = mat.pcInstance;
+
+ // Store the internal material, too
+ pcIntMaterials[iNum] = &mat;
+
+ // Iterate through all meshes and search for one which is using
+ // this top-level material index
+ for (unsigned int iMesh = 0; iMesh < pcScene->mNumMeshes; ++iMesh) {
+ aiMesh *mesh = pcScene->mMeshes[iMesh];
+ if (ASE::Face::DEFAULT_MATINDEX == mesh->mMaterialIndex &&
+ iMat == (uintptr_t)mesh->mColors[3]) {
+ mesh->mMaterialIndex = iNum;
+ mesh->mColors[3] = nullptr;
+ }
+ }
+ iNum++;
+ }
+ for (unsigned int iSubMat = 0; iSubMat < mat.avSubMaterials.size(); ++iSubMat) {
+ ASE::Material &submat = mat.avSubMaterials[iSubMat];
+ if (submat.bNeed) {
+ ai_assert(nullptr != submat.pcInstance);
+ pcScene->mMaterials[iNum] = submat.pcInstance;
+
+ // Store the internal material, too
+ pcIntMaterials[iNum] = &submat;
+
+ // Iterate through all meshes and search for one which is using
+ // this sub-level material index
+ for (unsigned int iMesh = 0; iMesh < pcScene->mNumMeshes; ++iMesh) {
+ aiMesh *mesh = pcScene->mMeshes[iMesh];
+
+ if (iSubMat == mesh->mMaterialIndex && iMat == (uintptr_t)mesh->mColors[3]) {
+ mesh->mMaterialIndex = iNum;
+ mesh->mColors[3] = nullptr;
+ }
+ }
+ iNum++;
+ }
+ }
+ }
+
+ // Delete our temporary array
+ delete[] pcIntMaterials;
+}
+
+// ------------------------------------------------------------------------------------------------
+// Generate normal vectors basing on smoothing groups
+bool ASEImporter::GenerateNormals(ASE::Mesh &mesh) {
+
+ if (!mesh.mNormals.empty() && !configRecomputeNormals) {
+ // Check whether there are only uninitialized normals. If there are
+ // some, skip all normals from the file and compute them on our own
+ for (std::vector<aiVector3D>::const_iterator qq = mesh.mNormals.begin(); qq != mesh.mNormals.end(); ++qq) {
+ if ((*qq).x || (*qq).y || (*qq).z) {
+ return true;
+ }
+ }
+ }
+ // The array is reused.
+ ComputeNormalsWithSmoothingsGroups<ASE::Face>(mesh);
+ return false;
+}
+
+#endif // ASSIMP_BUILD_NO_3DS_IMPORTER
+
+#endif // !! ASSIMP_BUILD_NO_BASE_IMPORTER