diff options
author | sanine <sanine.not@pm.me> | 2022-03-04 10:47:15 -0600 |
---|---|---|
committer | sanine <sanine.not@pm.me> | 2022-03-04 10:47:15 -0600 |
commit | 058f98a63658dc1a2579826ba167fd61bed1e21f (patch) | |
tree | bcba07a1615a14d943f3af3f815a42f3be86b2f3 /src/mesh/assimp-master/code/AssetLib/ASE/ASELoader.cpp | |
parent | 2f8028ac9e0812cb6f3cbb08f0f419e4e717bd22 (diff) |
add assimp submodule
Diffstat (limited to 'src/mesh/assimp-master/code/AssetLib/ASE/ASELoader.cpp')
-rw-r--r-- | src/mesh/assimp-master/code/AssetLib/ASE/ASELoader.cpp | 1288 |
1 files changed, 1288 insertions, 0 deletions
diff --git a/src/mesh/assimp-master/code/AssetLib/ASE/ASELoader.cpp b/src/mesh/assimp-master/code/AssetLib/ASE/ASELoader.cpp new file mode 100644 index 0000000..caa7089 --- /dev/null +++ b/src/mesh/assimp-master/code/AssetLib/ASE/ASELoader.cpp @@ -0,0 +1,1288 @@ +/* +--------------------------------------------------------------------------- +Open Asset Import Library (assimp) +--------------------------------------------------------------------------- + +Copyright (c) 2006-2022, assimp team + +All rights reserved. + +Redistribution and use of this software in source and binary forms, +with or without modification, are permitted provided that the following +conditions are met: + +* Redistributions of source code must retain the above + copyright notice, this list of conditions and the + following disclaimer. + +* Redistributions in binary form must reproduce the above + copyright notice, this list of conditions and the + following disclaimer in the documentation and/or other + materials provided with the distribution. + +* Neither the name of the assimp team, nor the names of its + contributors may be used to endorse or promote products + derived from this software without specific prior + written permission of the assimp team. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +--------------------------------------------------------------------------- +*/ + +/** @file ASELoader.cpp + * @brief Implementation of the ASE importer class + */ + +#ifndef ASSIMP_BUILD_NO_ASE_IMPORTER + +#ifndef ASSIMP_BUILD_NO_3DS_IMPORTER + +// internal headers +#include "ASELoader.h" +#include "Common/TargetAnimation.h" +#include <assimp/SkeletonMeshBuilder.h> +#include <assimp/StringComparison.h> + +#include <assimp/importerdesc.h> +#include <assimp/scene.h> +#include <assimp/DefaultLogger.hpp> +#include <assimp/IOSystem.hpp> +#include <assimp/Importer.hpp> + +#include <memory> + +// utilities +#include <assimp/fast_atof.h> + +using namespace Assimp; +using namespace Assimp::ASE; + +static const aiImporterDesc desc = { + "ASE Importer", + "", + "", + "Similar to 3DS but text-encoded", + aiImporterFlags_SupportTextFlavour, + 0, + 0, + 0, + 0, + "ase ask" +}; + +// ------------------------------------------------------------------------------------------------ +// Constructor to be privately used by Importer +ASEImporter::ASEImporter() : + mParser(), mBuffer(), pcScene(), configRecomputeNormals(), noSkeletonMesh() { + // empty +} + +// ------------------------------------------------------------------------------------------------ +// Destructor, private as well +ASEImporter::~ASEImporter() { + // empty +} + +// ------------------------------------------------------------------------------------------------ +// Returns whether the class can handle the format of the given file. +bool ASEImporter::CanRead(const std::string &pFile, IOSystem *pIOHandler, bool /*checkSig*/) const { + static const char *tokens[] = { "*3dsmax_asciiexport" }; + return SearchFileHeaderForToken(pIOHandler, pFile, tokens, AI_COUNT_OF(tokens)); +} + +// ------------------------------------------------------------------------------------------------ +// Loader meta information +const aiImporterDesc *ASEImporter::GetInfo() const { + return &desc; +} + +// ------------------------------------------------------------------------------------------------ +// Setup configuration options +void ASEImporter::SetupProperties(const Importer *pImp) { + configRecomputeNormals = (pImp->GetPropertyInteger( + AI_CONFIG_IMPORT_ASE_RECONSTRUCT_NORMALS, 1) ? + true : + false); + + noSkeletonMesh = pImp->GetPropertyInteger(AI_CONFIG_IMPORT_NO_SKELETON_MESHES, 0) != 0; +} + +// ------------------------------------------------------------------------------------------------ +// Imports the given file into the given scene structure. +void ASEImporter::InternReadFile(const std::string &pFile, + aiScene *pScene, IOSystem *pIOHandler) { + std::unique_ptr<IOStream> file(pIOHandler->Open(pFile, "rb")); + + // Check whether we can read from the file + if (file.get() == nullptr) { + throw DeadlyImportError("Failed to open ASE file ", pFile, "."); + } + + // Allocate storage and copy the contents of the file to a memory buffer + std::vector<char> mBuffer2; + TextFileToBuffer(file.get(), mBuffer2); + + this->mBuffer = &mBuffer2[0]; + this->pcScene = pScene; + + // ------------------------------------------------------------------ + // Guess the file format by looking at the extension + // ASC is considered to be the older format 110, + // ASE is the actual version 200 (that is currently written by max) + // ------------------------------------------------------------------ + unsigned int defaultFormat; + std::string::size_type s = pFile.length() - 1; + switch (pFile.c_str()[s]) { + + case 'C': + case 'c': + defaultFormat = AI_ASE_OLD_FILE_FORMAT; + break; + default: + defaultFormat = AI_ASE_NEW_FILE_FORMAT; + }; + + // Construct an ASE parser and parse the file + ASE::Parser parser(mBuffer, defaultFormat); + mParser = &parser; + mParser->Parse(); + + //------------------------------------------------------------------ + // Check whether we god at least one mesh. If we did - generate + // materials and copy meshes. + // ------------------------------------------------------------------ + if (!mParser->m_vMeshes.empty()) { + + // If absolutely no material has been loaded from the file + // we need to generate a default material + GenerateDefaultMaterial(); + + // process all meshes + bool tookNormals = false; + std::vector<aiMesh *> avOutMeshes; + avOutMeshes.reserve(mParser->m_vMeshes.size() * 2); + for (std::vector<ASE::Mesh>::iterator i = mParser->m_vMeshes.begin(); i != mParser->m_vMeshes.end(); ++i) { + if ((*i).bSkip) { + continue; + } + BuildUniqueRepresentation(*i); + + // Need to generate proper vertex normals if necessary + if (GenerateNormals(*i)) { + tookNormals = true; + } + + // Convert all meshes to aiMesh objects + ConvertMeshes(*i, avOutMeshes); + } + if (tookNormals) { + ASSIMP_LOG_DEBUG("ASE: Taking normals from the file. Use " + "the AI_CONFIG_IMPORT_ASE_RECONSTRUCT_NORMALS setting if you " + "experience problems"); + } + + // Now build the output mesh list. Remove dummies + pScene->mNumMeshes = (unsigned int)avOutMeshes.size(); + aiMesh **pp = pScene->mMeshes = new aiMesh *[pScene->mNumMeshes]; + for (std::vector<aiMesh *>::const_iterator i = avOutMeshes.begin(); i != avOutMeshes.end(); ++i) { + if (!(*i)->mNumFaces) { + continue; + } + *pp++ = *i; + } + pScene->mNumMeshes = (unsigned int)(pp - pScene->mMeshes); + + // Build final material indices (remove submaterials and setup + // the final list) + BuildMaterialIndices(); + } + + // ------------------------------------------------------------------ + // Copy all scene graph nodes - lights, cameras, dummies and meshes + // into one huge list. + //------------------------------------------------------------------ + std::vector<BaseNode *> nodes; + nodes.reserve(mParser->m_vMeshes.size() + mParser->m_vLights.size() + mParser->m_vCameras.size() + mParser->m_vDummies.size()); + + // Lights + for (auto &light : mParser->m_vLights) + nodes.push_back(&light); + // Cameras + for (auto &camera : mParser->m_vCameras) + nodes.push_back(&camera); + // Meshes + for (auto &mesh : mParser->m_vMeshes) + nodes.push_back(&mesh); + // Dummies + for (auto &dummy : mParser->m_vDummies) + nodes.push_back(&dummy); + + // build the final node graph + BuildNodes(nodes); + + // build output animations + BuildAnimations(nodes); + + // build output cameras + BuildCameras(); + + // build output lights + BuildLights(); + + // ------------------------------------------------------------------ + // If we have no meshes use the SkeletonMeshBuilder helper class + // to build a mesh for the animation skeleton + // FIXME: very strange results + // ------------------------------------------------------------------ + if (!pScene->mNumMeshes) { + pScene->mFlags |= AI_SCENE_FLAGS_INCOMPLETE; + if (!noSkeletonMesh) { + SkeletonMeshBuilder skeleton(pScene); + } + } +} +// ------------------------------------------------------------------------------------------------ +void ASEImporter::GenerateDefaultMaterial() { + ai_assert(nullptr != mParser); + + bool bHas = false; + for (std::vector<ASE::Mesh>::iterator i = mParser->m_vMeshes.begin(); i != mParser->m_vMeshes.end(); ++i) { + if ((*i).bSkip) continue; + if (ASE::Face::DEFAULT_MATINDEX == (*i).iMaterialIndex) { + (*i).iMaterialIndex = (unsigned int)mParser->m_vMaterials.size(); + bHas = true; + } + } + if (bHas || mParser->m_vMaterials.empty()) { + // add a simple material without submaterials to the parser's list + mParser->m_vMaterials.push_back(ASE::Material(AI_DEFAULT_MATERIAL_NAME)); + ASE::Material &mat = mParser->m_vMaterials.back(); + + mat.mDiffuse = aiColor3D(0.6f, 0.6f, 0.6f); + mat.mSpecular = aiColor3D(1.0f, 1.0f, 1.0f); + mat.mAmbient = aiColor3D(0.05f, 0.05f, 0.05f); + mat.mShading = Discreet3DS::Gouraud; + } +} + +// ------------------------------------------------------------------------------------------------ +void ASEImporter::BuildAnimations(const std::vector<BaseNode *> &nodes) { + // check whether we have at least one mesh which has animations + std::vector<ASE::BaseNode *>::const_iterator i = nodes.begin(); + unsigned int iNum = 0; + for (; i != nodes.end(); ++i) { + + // TODO: Implement Bezier & TCB support + if ((*i)->mAnim.mPositionType != ASE::Animation::TRACK) { + ASSIMP_LOG_WARN("ASE: Position controller uses Bezier/TCB keys. " + "This is not supported."); + } + if ((*i)->mAnim.mRotationType != ASE::Animation::TRACK) { + ASSIMP_LOG_WARN("ASE: Rotation controller uses Bezier/TCB keys. " + "This is not supported."); + } + if ((*i)->mAnim.mScalingType != ASE::Animation::TRACK) { + ASSIMP_LOG_WARN("ASE: Position controller uses Bezier/TCB keys. " + "This is not supported."); + } + + // We compare against 1 here - firstly one key is not + // really an animation and secondly MAX writes dummies + // that represent the node transformation. + if ((*i)->mAnim.akeyPositions.size() > 1 || (*i)->mAnim.akeyRotations.size() > 1 || (*i)->mAnim.akeyScaling.size() > 1) { + ++iNum; + } + if ((*i)->mTargetAnim.akeyPositions.size() > 1 && is_not_qnan((*i)->mTargetPosition.x)) { + ++iNum; + } + } + if (iNum) { + // Generate a new animation channel and setup everything for it + pcScene->mNumAnimations = 1; + pcScene->mAnimations = new aiAnimation *[1]; + aiAnimation *pcAnim = pcScene->mAnimations[0] = new aiAnimation(); + pcAnim->mNumChannels = iNum; + pcAnim->mChannels = new aiNodeAnim *[iNum]; + pcAnim->mTicksPerSecond = mParser->iFrameSpeed * mParser->iTicksPerFrame; + + iNum = 0; + + // Now iterate through all meshes and collect all data we can find + for (i = nodes.begin(); i != nodes.end(); ++i) { + + ASE::BaseNode *me = *i; + if (me->mTargetAnim.akeyPositions.size() > 1 && is_not_qnan(me->mTargetPosition.x)) { + // Generate an extra channel for the camera/light target. + // BuildNodes() does also generate an extra node, named + // <baseName>.Target. + aiNodeAnim *nd = pcAnim->mChannels[iNum++] = new aiNodeAnim(); + nd->mNodeName.Set(me->mName + ".Target"); + + // If there is no input position channel we will need + // to supply the default position from the node's + // local transformation matrix. + /*TargetAnimationHelper helper; + if (me->mAnim.akeyPositions.empty()) + { + aiMatrix4x4& mat = (*i)->mTransform; + helper.SetFixedMainAnimationChannel(aiVector3D( + mat.a4, mat.b4, mat.c4)); + } + else helper.SetMainAnimationChannel (&me->mAnim.akeyPositions); + helper.SetTargetAnimationChannel (&me->mTargetAnim.akeyPositions); + + helper.Process(&me->mTargetAnim.akeyPositions);*/ + + // Allocate the key array and fill it + nd->mNumPositionKeys = (unsigned int)me->mTargetAnim.akeyPositions.size(); + nd->mPositionKeys = new aiVectorKey[nd->mNumPositionKeys]; + + ::memcpy(nd->mPositionKeys, &me->mTargetAnim.akeyPositions[0], + nd->mNumPositionKeys * sizeof(aiVectorKey)); + } + + if (me->mAnim.akeyPositions.size() > 1 || me->mAnim.akeyRotations.size() > 1 || me->mAnim.akeyScaling.size() > 1) { + // Begin a new node animation channel for this node + aiNodeAnim *nd = pcAnim->mChannels[iNum++] = new aiNodeAnim(); + nd->mNodeName.Set(me->mName); + + // copy position keys + if (me->mAnim.akeyPositions.size() > 1) { + // Allocate the key array and fill it + nd->mNumPositionKeys = (unsigned int)me->mAnim.akeyPositions.size(); + nd->mPositionKeys = new aiVectorKey[nd->mNumPositionKeys]; + + ::memcpy(nd->mPositionKeys, &me->mAnim.akeyPositions[0], + nd->mNumPositionKeys * sizeof(aiVectorKey)); + } + // copy rotation keys + if (me->mAnim.akeyRotations.size() > 1) { + // Allocate the key array and fill it + nd->mNumRotationKeys = (unsigned int)me->mAnim.akeyRotations.size(); + nd->mRotationKeys = new aiQuatKey[nd->mNumRotationKeys]; + + // -------------------------------------------------------------------- + // Rotation keys are offsets to the previous keys. + // We have the quaternion representations of all + // of them, so we just need to concatenate all + // (unit-length) quaternions to get the absolute + // rotations. + // Rotation keys are ABSOLUTE for older files + // -------------------------------------------------------------------- + + aiQuaternion cur; + for (unsigned int a = 0; a < nd->mNumRotationKeys; ++a) { + aiQuatKey q = me->mAnim.akeyRotations[a]; + + if (mParser->iFileFormat > 110) { + cur = (a ? cur * q.mValue : q.mValue); + q.mValue = cur.Normalize(); + } + nd->mRotationKeys[a] = q; + + // need this to get to Assimp quaternion conventions + nd->mRotationKeys[a].mValue.w *= -1.f; + } + } + // copy scaling keys + if (me->mAnim.akeyScaling.size() > 1) { + // Allocate the key array and fill it + nd->mNumScalingKeys = (unsigned int)me->mAnim.akeyScaling.size(); + nd->mScalingKeys = new aiVectorKey[nd->mNumScalingKeys]; + + ::memcpy(nd->mScalingKeys, &me->mAnim.akeyScaling[0], + nd->mNumScalingKeys * sizeof(aiVectorKey)); + } + } + } + } +} + +// ------------------------------------------------------------------------------------------------ +// Build output cameras +void ASEImporter::BuildCameras() { + if (!mParser->m_vCameras.empty()) { + pcScene->mNumCameras = (unsigned int)mParser->m_vCameras.size(); + pcScene->mCameras = new aiCamera *[pcScene->mNumCameras]; + + for (unsigned int i = 0; i < pcScene->mNumCameras; ++i) { + aiCamera *out = pcScene->mCameras[i] = new aiCamera(); + ASE::Camera &in = mParser->m_vCameras[i]; + + // copy members + out->mClipPlaneFar = in.mFar; + out->mClipPlaneNear = (in.mNear ? in.mNear : 0.1f); + out->mHorizontalFOV = in.mFOV; + + out->mName.Set(in.mName); + } + } +} + +// ------------------------------------------------------------------------------------------------ +// Build output lights +void ASEImporter::BuildLights() { + if (!mParser->m_vLights.empty()) { + pcScene->mNumLights = (unsigned int)mParser->m_vLights.size(); + pcScene->mLights = new aiLight *[pcScene->mNumLights]; + + for (unsigned int i = 0; i < pcScene->mNumLights; ++i) { + aiLight *out = pcScene->mLights[i] = new aiLight(); + ASE::Light &in = mParser->m_vLights[i]; + + // The direction is encoded in the transformation matrix of the node. + // In 3DS MAX the light source points into negative Z direction if + // the node transformation is the identity. + out->mDirection = aiVector3D(0.f, 0.f, -1.f); + + out->mName.Set(in.mName); + switch (in.mLightType) { + case ASE::Light::TARGET: + out->mType = aiLightSource_SPOT; + out->mAngleInnerCone = AI_DEG_TO_RAD(in.mAngle); + out->mAngleOuterCone = (in.mFalloff ? AI_DEG_TO_RAD(in.mFalloff) : out->mAngleInnerCone); + break; + + case ASE::Light::DIRECTIONAL: + out->mType = aiLightSource_DIRECTIONAL; + break; + + default: + //case ASE::Light::OMNI: + out->mType = aiLightSource_POINT; + break; + }; + out->mColorDiffuse = out->mColorSpecular = in.mColor * in.mIntensity; + } + } +} + +// ------------------------------------------------------------------------------------------------ +void ASEImporter::AddNodes(const std::vector<BaseNode *> &nodes, + aiNode *pcParent, const char *szName) { + aiMatrix4x4 m; + AddNodes(nodes, pcParent, szName, m); +} + +// ------------------------------------------------------------------------------------------------ +// Add meshes to a given node +void ASEImporter::AddMeshes(const ASE::BaseNode *snode, aiNode *node) { + for (unsigned int i = 0; i < pcScene->mNumMeshes; ++i) { + // Get the name of the mesh (the mesh instance has been temporarily stored in the third vertex color) + const aiMesh *pcMesh = pcScene->mMeshes[i]; + const ASE::Mesh *mesh = (const ASE::Mesh *)pcMesh->mColors[2]; + + if (mesh == snode) { + ++node->mNumMeshes; + } + } + + if (node->mNumMeshes) { + node->mMeshes = new unsigned int[node->mNumMeshes]; + for (unsigned int i = 0, p = 0; i < pcScene->mNumMeshes; ++i) { + + const aiMesh *pcMesh = pcScene->mMeshes[i]; + const ASE::Mesh *mesh = (const ASE::Mesh *)pcMesh->mColors[2]; + if (mesh == snode) { + node->mMeshes[p++] = i; + + // Transform all vertices of the mesh back into their local space -> + // at the moment they are pretransformed + aiMatrix4x4 m = mesh->mTransform; + m.Inverse(); + + aiVector3D *pvCurPtr = pcMesh->mVertices; + const aiVector3D *pvEndPtr = pvCurPtr + pcMesh->mNumVertices; + while (pvCurPtr != pvEndPtr) { + *pvCurPtr = m * (*pvCurPtr); + pvCurPtr++; + } + + // Do the same for the normal vectors, if we have them. + // As always, inverse transpose. + if (pcMesh->mNormals) { + aiMatrix3x3 m3 = aiMatrix3x3(mesh->mTransform); + m3.Transpose(); + + pvCurPtr = pcMesh->mNormals; + pvEndPtr = pvCurPtr + pcMesh->mNumVertices; + while (pvCurPtr != pvEndPtr) { + *pvCurPtr = m3 * (*pvCurPtr); + pvCurPtr++; + } + } + } + } + } +} + +// ------------------------------------------------------------------------------------------------ +// Add child nodes to a given parent node +void ASEImporter::AddNodes(const std::vector<BaseNode *> &nodes, + aiNode *pcParent, const char *szName, + const aiMatrix4x4 &mat) { + const size_t len = szName ? ::strlen(szName) : 0; + ai_assert(4 <= AI_MAX_NUMBER_OF_COLOR_SETS); + + // Receives child nodes for the pcParent node + std::vector<aiNode *> apcNodes; + + // Now iterate through all nodes in the scene and search for one + // which has *us* as parent. + for (std::vector<BaseNode *>::const_iterator it = nodes.begin(), end = nodes.end(); it != end; ++it) { + const BaseNode *snode = *it; + if (szName) { + if (len != snode->mParent.length() || ::strcmp(szName, snode->mParent.c_str())) + continue; + } else if (snode->mParent.length()) + continue; + + (*it)->mProcessed = true; + + // Allocate a new node and add it to the output data structure + apcNodes.push_back(new aiNode()); + aiNode *node = apcNodes.back(); + + node->mName.Set((snode->mName.length() ? snode->mName.c_str() : "Unnamed_Node")); + node->mParent = pcParent; + + // Setup the transformation matrix of the node + aiMatrix4x4 mParentAdjust = mat; + mParentAdjust.Inverse(); + node->mTransformation = mParentAdjust * snode->mTransform; + + // Add sub nodes - prevent stack overflow due to recursive parenting + if (node->mName != node->mParent->mName && node->mName != node->mParent->mParent->mName) { + AddNodes(nodes, node, node->mName.data, snode->mTransform); + } + + // Further processing depends on the type of the node + if (snode->mType == ASE::BaseNode::Mesh) { + // If the type of this node is "Mesh" we need to search + // the list of output meshes in the data structure for + // all those that belonged to this node once. This is + // slightly inconvinient here and a better solution should + // be used when this code is refactored next. + AddMeshes(snode, node); + } else if (is_not_qnan(snode->mTargetPosition.x)) { + // If this is a target camera or light we generate a small + // child node which marks the position of the camera + // target (the direction information is contained in *this* + // node's animation track but the exact target position + // would be lost otherwise) + if (!node->mNumChildren) { + node->mChildren = new aiNode *[1]; + } + + aiNode *nd = new aiNode(); + + nd->mName.Set(snode->mName + ".Target"); + + nd->mTransformation.a4 = snode->mTargetPosition.x - snode->mTransform.a4; + nd->mTransformation.b4 = snode->mTargetPosition.y - snode->mTransform.b4; + nd->mTransformation.c4 = snode->mTargetPosition.z - snode->mTransform.c4; + + nd->mParent = node; + + // The .Target node is always the first child node + for (unsigned int m = 0; m < node->mNumChildren; ++m) + node->mChildren[m + 1] = node->mChildren[m]; + + node->mChildren[0] = nd; + node->mNumChildren++; + + // What we did is so great, it is at least worth a debug message + ASSIMP_LOG_VERBOSE_DEBUG("ASE: Generating separate target node (", snode->mName, ")"); + } + } + + // Allocate enough space for the child nodes + // We allocate one slot more in case this is a target camera/light + pcParent->mNumChildren = (unsigned int)apcNodes.size(); + if (pcParent->mNumChildren) { + pcParent->mChildren = new aiNode *[apcNodes.size() + 1 /* PLUS ONE !!! */]; + + // now build all nodes for our nice new children + for (unsigned int p = 0; p < apcNodes.size(); ++p) + pcParent->mChildren[p] = apcNodes[p]; + } + return; +} + +// ------------------------------------------------------------------------------------------------ +// Build the output node graph +void ASEImporter::BuildNodes(std::vector<BaseNode *> &nodes) { + ai_assert(nullptr != pcScene); + + // allocate the one and only root node + aiNode *root = pcScene->mRootNode = new aiNode(); + root->mName.Set("<ASERoot>"); + + // Setup the coordinate system transformation + pcScene->mRootNode->mNumChildren = 1; + pcScene->mRootNode->mChildren = new aiNode *[1]; + aiNode *ch = pcScene->mRootNode->mChildren[0] = new aiNode(); + ch->mParent = root; + + // Change the transformation matrix of all nodes + for (BaseNode *node : nodes) { + aiMatrix4x4 &m = node->mTransform; + m.Transpose(); // row-order vs column-order + } + + // add all nodes + AddNodes(nodes, ch, nullptr); + + // now iterate through al nodes and find those that have not yet + // been added to the nodegraph (= their parent could not be recognized) + std::vector<const BaseNode *> aiList; + for (std::vector<BaseNode *>::iterator it = nodes.begin(), end = nodes.end(); it != end; ++it) { + if ((*it)->mProcessed) { + continue; + } + + // check whether our parent is known + bool bKnowParent = false; + + // search the list another time, starting *here* and try to find out whether + // there is a node that references *us* as a parent + for (std::vector<BaseNode *>::const_iterator it2 = nodes.begin(); it2 != end; ++it2) { + if (it2 == it) { + continue; + } + + if ((*it2)->mName == (*it)->mParent) { + bKnowParent = true; + break; + } + } + if (!bKnowParent) { + aiList.push_back(*it); + } + } + + // Are there any orphaned nodes? + if (!aiList.empty()) { + std::vector<aiNode *> apcNodes; + apcNodes.reserve(aiList.size() + pcScene->mRootNode->mNumChildren); + + for (unsigned int i = 0; i < pcScene->mRootNode->mNumChildren; ++i) + apcNodes.push_back(pcScene->mRootNode->mChildren[i]); + + delete[] pcScene->mRootNode->mChildren; + for (std::vector<const BaseNode *>::/*const_*/ iterator i = aiList.begin(); i != aiList.end(); ++i) { + const ASE::BaseNode *src = *i; + + // The parent is not known, so we can assume that we must add + // this node to the root node of the whole scene + aiNode *pcNode = new aiNode(); + pcNode->mParent = pcScene->mRootNode; + pcNode->mName.Set(src->mName); + AddMeshes(src, pcNode); + AddNodes(nodes, pcNode, pcNode->mName.data); + apcNodes.push_back(pcNode); + } + + // Regenerate our output array + pcScene->mRootNode->mChildren = new aiNode *[apcNodes.size()]; + for (unsigned int i = 0; i < apcNodes.size(); ++i) + pcScene->mRootNode->mChildren[i] = apcNodes[i]; + + pcScene->mRootNode->mNumChildren = (unsigned int)apcNodes.size(); + } + + // Reset the third color set to nullptr - we used this field to store a temporary pointer + for (unsigned int i = 0; i < pcScene->mNumMeshes; ++i) + pcScene->mMeshes[i]->mColors[2] = nullptr; + + // The root node should not have at least one child or the file is valid + if (!pcScene->mRootNode->mNumChildren) { + throw DeadlyImportError("ASE: No nodes loaded. The file is either empty or corrupt"); + } + + // Now rotate the whole scene 90 degrees around the x axis to convert to internal coordinate system + pcScene->mRootNode->mTransformation = aiMatrix4x4(1.f, 0.f, 0.f, 0.f, + 0.f, 0.f, 1.f, 0.f, 0.f, -1.f, 0.f, 0.f, 0.f, 0.f, 0.f, 1.f); +} + +// ------------------------------------------------------------------------------------------------ +// Convert the imported data to the internal verbose representation +void ASEImporter::BuildUniqueRepresentation(ASE::Mesh &mesh) { + // allocate output storage + std::vector<aiVector3D> mPositions; + std::vector<aiVector3D> amTexCoords[AI_MAX_NUMBER_OF_TEXTURECOORDS]; + std::vector<aiColor4D> mVertexColors; + std::vector<aiVector3D> mNormals; + std::vector<BoneVertex> mBoneVertices; + + unsigned int iSize = (unsigned int)mesh.mFaces.size() * 3; + mPositions.resize(iSize); + + // optional texture coordinates + for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i) { + if (!mesh.amTexCoords[i].empty()) { + amTexCoords[i].resize(iSize); + } + } + // optional vertex colors + if (!mesh.mVertexColors.empty()) { + mVertexColors.resize(iSize); + } + + // optional vertex normals (vertex normals can simply be copied) + if (!mesh.mNormals.empty()) { + mNormals.resize(iSize); + } + // bone vertices. There is no need to change the bone list + if (!mesh.mBoneVertices.empty()) { + mBoneVertices.resize(iSize); + } + + // iterate through all faces in the mesh + unsigned int iCurrent = 0, fi = 0; + for (std::vector<ASE::Face>::iterator i = mesh.mFaces.begin(); i != mesh.mFaces.end(); ++i, ++fi) { + for (unsigned int n = 0; n < 3; ++n, ++iCurrent) { + mPositions[iCurrent] = mesh.mPositions[(*i).mIndices[n]]; + + // add texture coordinates + for (unsigned int c = 0; c < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++c) { + if (mesh.amTexCoords[c].empty()) break; + amTexCoords[c][iCurrent] = mesh.amTexCoords[c][(*i).amUVIndices[c][n]]; + } + // add vertex colors + if (!mesh.mVertexColors.empty()) { + mVertexColors[iCurrent] = mesh.mVertexColors[(*i).mColorIndices[n]]; + } + // add normal vectors + if (!mesh.mNormals.empty()) { + mNormals[iCurrent] = mesh.mNormals[fi * 3 + n]; + mNormals[iCurrent].Normalize(); + } + + // handle bone vertices + if ((*i).mIndices[n] < mesh.mBoneVertices.size()) { + // (sometimes this will cause bone verts to be duplicated + // however, I' quite sure Schrompf' JoinVerticesStep + // will fix that again ...) + mBoneVertices[iCurrent] = mesh.mBoneVertices[(*i).mIndices[n]]; + } + (*i).mIndices[n] = iCurrent; + } + } + + // replace the old arrays + mesh.mNormals = mNormals; + mesh.mPositions = mPositions; + mesh.mVertexColors = mVertexColors; + + for (unsigned int c = 0; c < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++c) + mesh.amTexCoords[c] = amTexCoords[c]; +} + +// ------------------------------------------------------------------------------------------------ +// Copy a texture from the ASE structs to the output material +void CopyASETexture(aiMaterial &mat, ASE::Texture &texture, aiTextureType type) { + // Setup the texture name + aiString tex; + tex.Set(texture.mMapName); + mat.AddProperty(&tex, AI_MATKEY_TEXTURE(type, 0)); + + // Setup the texture blend factor + if (is_not_qnan(texture.mTextureBlend)) + mat.AddProperty<ai_real>(&texture.mTextureBlend, 1, AI_MATKEY_TEXBLEND(type, 0)); + + // Setup texture UV transformations + mat.AddProperty<ai_real>(&texture.mOffsetU, 5, AI_MATKEY_UVTRANSFORM(type, 0)); +} + +// ------------------------------------------------------------------------------------------------ +// Convert from ASE material to output material +void ASEImporter::ConvertMaterial(ASE::Material &mat) { + // LARGE TODO: Much code her is copied from 3DS ... join them maybe? + + // Allocate the output material + mat.pcInstance = new aiMaterial(); + + // At first add the base ambient color of the + // scene to the material + mat.mAmbient.r += mParser->m_clrAmbient.r; + mat.mAmbient.g += mParser->m_clrAmbient.g; + mat.mAmbient.b += mParser->m_clrAmbient.b; + + aiString name; + name.Set(mat.mName); + mat.pcInstance->AddProperty(&name, AI_MATKEY_NAME); + + // material colors + mat.pcInstance->AddProperty(&mat.mAmbient, 1, AI_MATKEY_COLOR_AMBIENT); + mat.pcInstance->AddProperty(&mat.mDiffuse, 1, AI_MATKEY_COLOR_DIFFUSE); + mat.pcInstance->AddProperty(&mat.mSpecular, 1, AI_MATKEY_COLOR_SPECULAR); + mat.pcInstance->AddProperty(&mat.mEmissive, 1, AI_MATKEY_COLOR_EMISSIVE); + + // shininess + if (0.0f != mat.mSpecularExponent && 0.0f != mat.mShininessStrength) { + mat.pcInstance->AddProperty(&mat.mSpecularExponent, 1, AI_MATKEY_SHININESS); + mat.pcInstance->AddProperty(&mat.mShininessStrength, 1, AI_MATKEY_SHININESS_STRENGTH); + } + // If there is no shininess, we can disable phong lighting + else if (D3DS::Discreet3DS::Metal == mat.mShading || + D3DS::Discreet3DS::Phong == mat.mShading || + D3DS::Discreet3DS::Blinn == mat.mShading) { + mat.mShading = D3DS::Discreet3DS::Gouraud; + } + + // opacity + mat.pcInstance->AddProperty<ai_real>(&mat.mTransparency, 1, AI_MATKEY_OPACITY); + + // Two sided rendering? + if (mat.mTwoSided) { + int i = 1; + mat.pcInstance->AddProperty<int>(&i, 1, AI_MATKEY_TWOSIDED); + } + + // shading mode + aiShadingMode eShading = aiShadingMode_NoShading; + switch (mat.mShading) { + case D3DS::Discreet3DS::Flat: + eShading = aiShadingMode_Flat; + break; + case D3DS::Discreet3DS::Phong: + eShading = aiShadingMode_Phong; + break; + case D3DS::Discreet3DS::Blinn: + eShading = aiShadingMode_Blinn; + break; + + // I don't know what "Wire" shading should be, + // assume it is simple lambertian diffuse (L dot N) shading + case D3DS::Discreet3DS::Wire: { + // set the wireframe flag + unsigned int iWire = 1; + mat.pcInstance->AddProperty<int>((int *)&iWire, 1, AI_MATKEY_ENABLE_WIREFRAME); + } + case D3DS::Discreet3DS::Gouraud: + eShading = aiShadingMode_Gouraud; + break; + case D3DS::Discreet3DS::Metal: + eShading = aiShadingMode_CookTorrance; + break; + } + mat.pcInstance->AddProperty<int>((int *)&eShading, 1, AI_MATKEY_SHADING_MODEL); + + // DIFFUSE texture + if (mat.sTexDiffuse.mMapName.length() > 0) + CopyASETexture(*mat.pcInstance, mat.sTexDiffuse, aiTextureType_DIFFUSE); + + // SPECULAR texture + if (mat.sTexSpecular.mMapName.length() > 0) + CopyASETexture(*mat.pcInstance, mat.sTexSpecular, aiTextureType_SPECULAR); + + // AMBIENT texture + if (mat.sTexAmbient.mMapName.length() > 0) + CopyASETexture(*mat.pcInstance, mat.sTexAmbient, aiTextureType_AMBIENT); + + // OPACITY texture + if (mat.sTexOpacity.mMapName.length() > 0) + CopyASETexture(*mat.pcInstance, mat.sTexOpacity, aiTextureType_OPACITY); + + // EMISSIVE texture + if (mat.sTexEmissive.mMapName.length() > 0) + CopyASETexture(*mat.pcInstance, mat.sTexEmissive, aiTextureType_EMISSIVE); + + // BUMP texture + if (mat.sTexBump.mMapName.length() > 0) + CopyASETexture(*mat.pcInstance, mat.sTexBump, aiTextureType_HEIGHT); + + // SHININESS texture + if (mat.sTexShininess.mMapName.length() > 0) + CopyASETexture(*mat.pcInstance, mat.sTexShininess, aiTextureType_SHININESS); + + // store the name of the material itself, too + if (mat.mName.length() > 0) { + aiString tex; + tex.Set(mat.mName); + mat.pcInstance->AddProperty(&tex, AI_MATKEY_NAME); + } + return; +} + +// ------------------------------------------------------------------------------------------------ +// Build output meshes +void ASEImporter::ConvertMeshes(ASE::Mesh &mesh, std::vector<aiMesh *> &avOutMeshes) { + // validate the material index of the mesh + if (mesh.iMaterialIndex >= mParser->m_vMaterials.size()) { + mesh.iMaterialIndex = (unsigned int)mParser->m_vMaterials.size() - 1; + ASSIMP_LOG_WARN("Material index is out of range"); + } + + // If the material the mesh is assigned to is consisting of submeshes, split it + if (!mParser->m_vMaterials[mesh.iMaterialIndex].avSubMaterials.empty()) { + std::vector<ASE::Material> vSubMaterials = mParser->m_vMaterials[mesh.iMaterialIndex].avSubMaterials; + + std::vector<unsigned int> *aiSplit = new std::vector<unsigned int>[vSubMaterials.size()]; + + // build a list of all faces per sub-material + for (unsigned int i = 0; i < mesh.mFaces.size(); ++i) { + // check range + if (mesh.mFaces[i].iMaterial >= vSubMaterials.size()) { + ASSIMP_LOG_WARN("Submaterial index is out of range"); + + // use the last material instead + aiSplit[vSubMaterials.size() - 1].push_back(i); + } else + aiSplit[mesh.mFaces[i].iMaterial].push_back(i); + } + + // now generate submeshes + for (unsigned int p = 0; p < vSubMaterials.size(); ++p) { + if (!aiSplit[p].empty()) { + + aiMesh *p_pcOut = new aiMesh(); + p_pcOut->mPrimitiveTypes = aiPrimitiveType_TRIANGLE; + + // let the sub material index + p_pcOut->mMaterialIndex = p; + + // we will need this material + mParser->m_vMaterials[mesh.iMaterialIndex].avSubMaterials[p].bNeed = true; + + // store the real index here ... color channel 3 + p_pcOut->mColors[3] = (aiColor4D *)(uintptr_t)mesh.iMaterialIndex; + + // store a pointer to the mesh in color channel 2 + p_pcOut->mColors[2] = (aiColor4D *)&mesh; + avOutMeshes.push_back(p_pcOut); + + // convert vertices + p_pcOut->mNumVertices = (unsigned int)aiSplit[p].size() * 3; + p_pcOut->mNumFaces = (unsigned int)aiSplit[p].size(); + + // receive output vertex weights + std::vector<std::pair<unsigned int, float>> *avOutputBones = nullptr; + if (!mesh.mBones.empty()) { + avOutputBones = new std::vector<std::pair<unsigned int, float>>[mesh.mBones.size()]; + } + + // allocate enough storage for faces + p_pcOut->mFaces = new aiFace[p_pcOut->mNumFaces]; + + unsigned int iBase = 0, iIndex; + if (p_pcOut->mNumVertices) { + p_pcOut->mVertices = new aiVector3D[p_pcOut->mNumVertices]; + p_pcOut->mNormals = new aiVector3D[p_pcOut->mNumVertices]; + for (unsigned int q = 0; q < aiSplit[p].size(); ++q) { + + iIndex = aiSplit[p][q]; + + p_pcOut->mFaces[q].mIndices = new unsigned int[3]; + p_pcOut->mFaces[q].mNumIndices = 3; + + for (unsigned int t = 0; t < 3; ++t, ++iBase) { + const uint32_t iIndex2 = mesh.mFaces[iIndex].mIndices[t]; + + p_pcOut->mVertices[iBase] = mesh.mPositions[iIndex2]; + p_pcOut->mNormals[iBase] = mesh.mNormals[iIndex2]; + + // convert bones, if existing + if (!mesh.mBones.empty()) { + ai_assert(avOutputBones); + // check whether there is a vertex weight for this vertex index + if (iIndex2 < mesh.mBoneVertices.size()) { + + for (std::vector<std::pair<int, float>>::const_iterator + blubb = mesh.mBoneVertices[iIndex2].mBoneWeights.begin(); + blubb != mesh.mBoneVertices[iIndex2].mBoneWeights.end(); ++blubb) { + + // NOTE: illegal cases have already been filtered out + avOutputBones[(*blubb).first].push_back(std::pair<unsigned int, float>( + iBase, (*blubb).second)); + } + } + } + p_pcOut->mFaces[q].mIndices[t] = iBase; + } + } + } + // convert texture coordinates (up to AI_MAX_NUMBER_OF_TEXTURECOORDS sets supported) + for (unsigned int c = 0; c < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++c) { + if (!mesh.amTexCoords[c].empty()) { + p_pcOut->mTextureCoords[c] = new aiVector3D[p_pcOut->mNumVertices]; + iBase = 0; + for (unsigned int q = 0; q < aiSplit[p].size(); ++q) { + iIndex = aiSplit[p][q]; + for (unsigned int t = 0; t < 3; ++t) { + p_pcOut->mTextureCoords[c][iBase++] = mesh.amTexCoords[c][mesh.mFaces[iIndex].mIndices[t]]; + } + } + // Setup the number of valid vertex components + p_pcOut->mNumUVComponents[c] = mesh.mNumUVComponents[c]; + } + } + + // Convert vertex colors (only one set supported) + if (!mesh.mVertexColors.empty()) { + p_pcOut->mColors[0] = new aiColor4D[p_pcOut->mNumVertices]; + iBase = 0; + for (unsigned int q = 0; q < aiSplit[p].size(); ++q) { + iIndex = aiSplit[p][q]; + for (unsigned int t = 0; t < 3; ++t) { + p_pcOut->mColors[0][iBase++] = mesh.mVertexColors[mesh.mFaces[iIndex].mIndices[t]]; + } + } + } + // Copy bones + if (!mesh.mBones.empty()) { + p_pcOut->mNumBones = 0; + for (unsigned int mrspock = 0; mrspock < mesh.mBones.size(); ++mrspock) + if (!avOutputBones[mrspock].empty()) p_pcOut->mNumBones++; + + p_pcOut->mBones = new aiBone *[p_pcOut->mNumBones]; + aiBone **pcBone = p_pcOut->mBones; + for (unsigned int mrspock = 0; mrspock < mesh.mBones.size(); ++mrspock) { + if (!avOutputBones[mrspock].empty()) { + // we will need this bone. add it to the output mesh and + // add all per-vertex weights + aiBone *pc = *pcBone = new aiBone(); + pc->mName.Set(mesh.mBones[mrspock].mName); + + pc->mNumWeights = (unsigned int)avOutputBones[mrspock].size(); + pc->mWeights = new aiVertexWeight[pc->mNumWeights]; + + for (unsigned int captainkirk = 0; captainkirk < pc->mNumWeights; ++captainkirk) { + const std::pair<unsigned int, float> &ref = avOutputBones[mrspock][captainkirk]; + pc->mWeights[captainkirk].mVertexId = ref.first; + pc->mWeights[captainkirk].mWeight = ref.second; + } + ++pcBone; + } + } + // delete allocated storage + delete[] avOutputBones; + } + } + } + // delete storage + delete[] aiSplit; + } else { + // Otherwise we can simply copy the data to one output mesh + // This codepath needs less memory and uses fast memcpy()s + // to do the actual copying. So I think it is worth the + // effort here. + + aiMesh *p_pcOut = new aiMesh(); + p_pcOut->mPrimitiveTypes = aiPrimitiveType_TRIANGLE; + + // set an empty sub material index + p_pcOut->mMaterialIndex = ASE::Face::DEFAULT_MATINDEX; + mParser->m_vMaterials[mesh.iMaterialIndex].bNeed = true; + + // store the real index here ... in color channel 3 + p_pcOut->mColors[3] = (aiColor4D *)(uintptr_t)mesh.iMaterialIndex; + + // store a pointer to the mesh in color channel 2 + p_pcOut->mColors[2] = (aiColor4D *)&mesh; + avOutMeshes.push_back(p_pcOut); + + // If the mesh hasn't faces or vertices, there are two cases + // possible: 1. the model is invalid. 2. This is a dummy + // helper object which we are going to remove later ... + if (mesh.mFaces.empty() || mesh.mPositions.empty()) { + return; + } + + // convert vertices + p_pcOut->mNumVertices = (unsigned int)mesh.mPositions.size(); + p_pcOut->mNumFaces = (unsigned int)mesh.mFaces.size(); + + // allocate enough storage for faces + p_pcOut->mFaces = new aiFace[p_pcOut->mNumFaces]; + + // copy vertices + p_pcOut->mVertices = new aiVector3D[mesh.mPositions.size()]; + memcpy(p_pcOut->mVertices, &mesh.mPositions[0], + mesh.mPositions.size() * sizeof(aiVector3D)); + + // copy normals + p_pcOut->mNormals = new aiVector3D[mesh.mNormals.size()]; + memcpy(p_pcOut->mNormals, &mesh.mNormals[0], + mesh.mNormals.size() * sizeof(aiVector3D)); + + // copy texture coordinates + for (unsigned int c = 0; c < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++c) { + if (!mesh.amTexCoords[c].empty()) { + p_pcOut->mTextureCoords[c] = new aiVector3D[mesh.amTexCoords[c].size()]; + memcpy(p_pcOut->mTextureCoords[c], &mesh.amTexCoords[c][0], + mesh.amTexCoords[c].size() * sizeof(aiVector3D)); + + // setup the number of valid vertex components + p_pcOut->mNumUVComponents[c] = mesh.mNumUVComponents[c]; + } + } + + // copy vertex colors + if (!mesh.mVertexColors.empty()) { + p_pcOut->mColors[0] = new aiColor4D[mesh.mVertexColors.size()]; + memcpy(p_pcOut->mColors[0], &mesh.mVertexColors[0], + mesh.mVertexColors.size() * sizeof(aiColor4D)); + } + + // copy faces + for (unsigned int iFace = 0; iFace < p_pcOut->mNumFaces; ++iFace) { + p_pcOut->mFaces[iFace].mNumIndices = 3; + p_pcOut->mFaces[iFace].mIndices = new unsigned int[3]; + + // copy indices + p_pcOut->mFaces[iFace].mIndices[0] = mesh.mFaces[iFace].mIndices[0]; + p_pcOut->mFaces[iFace].mIndices[1] = mesh.mFaces[iFace].mIndices[1]; + p_pcOut->mFaces[iFace].mIndices[2] = mesh.mFaces[iFace].mIndices[2]; + } + + // copy vertex bones + if (!mesh.mBones.empty() && !mesh.mBoneVertices.empty()) { + std::vector<std::vector<aiVertexWeight>> avBonesOut(mesh.mBones.size()); + + // find all vertex weights for this bone + unsigned int quak = 0; + for (std::vector<BoneVertex>::const_iterator harrypotter = mesh.mBoneVertices.begin(); + harrypotter != mesh.mBoneVertices.end(); ++harrypotter, ++quak) { + + for (std::vector<std::pair<int, float>>::const_iterator + ronaldweasley = (*harrypotter).mBoneWeights.begin(); + ronaldweasley != (*harrypotter).mBoneWeights.end(); ++ronaldweasley) { + aiVertexWeight weight; + weight.mVertexId = quak; + weight.mWeight = (*ronaldweasley).second; + avBonesOut[(*ronaldweasley).first].push_back(weight); + } + } + + // now build a final bone list + p_pcOut->mNumBones = 0; + for (unsigned int jfkennedy = 0; jfkennedy < mesh.mBones.size(); ++jfkennedy) + if (!avBonesOut[jfkennedy].empty()) p_pcOut->mNumBones++; + + p_pcOut->mBones = new aiBone *[p_pcOut->mNumBones]; + aiBone **pcBone = p_pcOut->mBones; + for (unsigned int jfkennedy = 0; jfkennedy < mesh.mBones.size(); ++jfkennedy) { + if (!avBonesOut[jfkennedy].empty()) { + aiBone *pc = *pcBone = new aiBone(); + pc->mName.Set(mesh.mBones[jfkennedy].mName); + pc->mNumWeights = (unsigned int)avBonesOut[jfkennedy].size(); + pc->mWeights = new aiVertexWeight[pc->mNumWeights]; + ::memcpy(pc->mWeights, &avBonesOut[jfkennedy][0], + sizeof(aiVertexWeight) * pc->mNumWeights); + ++pcBone; + } + } + } + } +} + +// ------------------------------------------------------------------------------------------------ +// Setup proper material indices and build output materials +void ASEImporter::BuildMaterialIndices() { + ai_assert(nullptr != pcScene); + + // iterate through all materials and check whether we need them + for (unsigned int iMat = 0; iMat < mParser->m_vMaterials.size(); ++iMat) { + ASE::Material &mat = mParser->m_vMaterials[iMat]; + if (mat.bNeed) { + // Convert it to the aiMaterial layout + ConvertMaterial(mat); + ++pcScene->mNumMaterials; + } + for (unsigned int iSubMat = 0; iSubMat < mat.avSubMaterials.size(); ++iSubMat) { + ASE::Material &submat = mat.avSubMaterials[iSubMat]; + if (submat.bNeed) { + // Convert it to the aiMaterial layout + ConvertMaterial(submat); + ++pcScene->mNumMaterials; + } + } + } + + // allocate the output material array + pcScene->mMaterials = new aiMaterial *[pcScene->mNumMaterials]; + D3DS::Material **pcIntMaterials = new D3DS::Material *[pcScene->mNumMaterials]; + + unsigned int iNum = 0; + for (unsigned int iMat = 0; iMat < mParser->m_vMaterials.size(); ++iMat) { + ASE::Material &mat = mParser->m_vMaterials[iMat]; + if (mat.bNeed) { + ai_assert(nullptr != mat.pcInstance); + pcScene->mMaterials[iNum] = mat.pcInstance; + + // Store the internal material, too + pcIntMaterials[iNum] = &mat; + + // Iterate through all meshes and search for one which is using + // this top-level material index + for (unsigned int iMesh = 0; iMesh < pcScene->mNumMeshes; ++iMesh) { + aiMesh *mesh = pcScene->mMeshes[iMesh]; + if (ASE::Face::DEFAULT_MATINDEX == mesh->mMaterialIndex && + iMat == (uintptr_t)mesh->mColors[3]) { + mesh->mMaterialIndex = iNum; + mesh->mColors[3] = nullptr; + } + } + iNum++; + } + for (unsigned int iSubMat = 0; iSubMat < mat.avSubMaterials.size(); ++iSubMat) { + ASE::Material &submat = mat.avSubMaterials[iSubMat]; + if (submat.bNeed) { + ai_assert(nullptr != submat.pcInstance); + pcScene->mMaterials[iNum] = submat.pcInstance; + + // Store the internal material, too + pcIntMaterials[iNum] = &submat; + + // Iterate through all meshes and search for one which is using + // this sub-level material index + for (unsigned int iMesh = 0; iMesh < pcScene->mNumMeshes; ++iMesh) { + aiMesh *mesh = pcScene->mMeshes[iMesh]; + + if (iSubMat == mesh->mMaterialIndex && iMat == (uintptr_t)mesh->mColors[3]) { + mesh->mMaterialIndex = iNum; + mesh->mColors[3] = nullptr; + } + } + iNum++; + } + } + } + + // Delete our temporary array + delete[] pcIntMaterials; +} + +// ------------------------------------------------------------------------------------------------ +// Generate normal vectors basing on smoothing groups +bool ASEImporter::GenerateNormals(ASE::Mesh &mesh) { + + if (!mesh.mNormals.empty() && !configRecomputeNormals) { + // Check whether there are only uninitialized normals. If there are + // some, skip all normals from the file and compute them on our own + for (std::vector<aiVector3D>::const_iterator qq = mesh.mNormals.begin(); qq != mesh.mNormals.end(); ++qq) { + if ((*qq).x || (*qq).y || (*qq).z) { + return true; + } + } + } + // The array is reused. + ComputeNormalsWithSmoothingsGroups<ASE::Face>(mesh); + return false; +} + +#endif // ASSIMP_BUILD_NO_3DS_IMPORTER + +#endif // !! ASSIMP_BUILD_NO_BASE_IMPORTER |