summaryrefslogtreecommitdiff
path: root/src/mesh/assimp-master/code/AssetLib/IFC/IFCLoader.cpp
diff options
context:
space:
mode:
authorsanine <sanine.not@pm.me>2022-03-04 10:47:15 -0600
committersanine <sanine.not@pm.me>2022-03-04 10:47:15 -0600
commit058f98a63658dc1a2579826ba167fd61bed1e21f (patch)
treebcba07a1615a14d943f3af3f815a42f3be86b2f3 /src/mesh/assimp-master/code/AssetLib/IFC/IFCLoader.cpp
parent2f8028ac9e0812cb6f3cbb08f0f419e4e717bd22 (diff)
add assimp submodule
Diffstat (limited to 'src/mesh/assimp-master/code/AssetLib/IFC/IFCLoader.cpp')
-rw-r--r--src/mesh/assimp-master/code/AssetLib/IFC/IFCLoader.cpp931
1 files changed, 931 insertions, 0 deletions
diff --git a/src/mesh/assimp-master/code/AssetLib/IFC/IFCLoader.cpp b/src/mesh/assimp-master/code/AssetLib/IFC/IFCLoader.cpp
new file mode 100644
index 0000000..0c20686
--- /dev/null
+++ b/src/mesh/assimp-master/code/AssetLib/IFC/IFCLoader.cpp
@@ -0,0 +1,931 @@
+/*
+Open Asset Import Library (assimp)
+----------------------------------------------------------------------
+
+Copyright (c) 2006-2022, assimp team
+
+
+All rights reserved.
+
+Redistribution and use of this software in source and binary forms,
+with or without modification, are permitted provided that the
+following conditions are met:
+
+* Redistributions of source code must retain the above
+ copyright notice, this list of conditions and the
+ following disclaimer.
+
+* Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the
+ following disclaimer in the documentation and/or other
+ materials provided with the distribution.
+
+* Neither the name of the assimp team, nor the names of its
+ contributors may be used to endorse or promote products
+ derived from this software without specific prior
+ written permission of the assimp team.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+----------------------------------------------------------------------
+*/
+
+/** @file IFCLoad.cpp
+ * @brief Implementation of the Industry Foundation Classes loader.
+ */
+
+#ifndef ASSIMP_BUILD_NO_IFC_IMPORTER
+
+#include <iterator>
+#include <limits>
+#include <tuple>
+
+#ifndef ASSIMP_BUILD_NO_COMPRESSED_IFC
+#ifdef ASSIMP_USE_HUNTER
+#include <minizip/unzip.h>
+#else
+#include <unzip.h>
+#endif
+#endif
+
+#include "../STEPParser/STEPFileReader.h"
+#include "IFCLoader.h"
+
+#include "IFCUtil.h"
+
+#include <assimp/MemoryIOWrapper.h>
+#include <assimp/importerdesc.h>
+#include <assimp/scene.h>
+#include <assimp/Importer.hpp>
+
+namespace Assimp {
+template <>
+const char *LogFunctions<IFCImporter>::Prefix() {
+ static auto prefix = "IFC: ";
+ return prefix;
+}
+} // namespace Assimp
+
+using namespace Assimp;
+using namespace Assimp::Formatter;
+using namespace Assimp::IFC;
+
+/* DO NOT REMOVE this comment block. The genentitylist.sh script
+ * just looks for names adhering to the IfcSomething naming scheme
+ * and includes all matches in the whitelist for code-generation. Thus,
+ * all entity classes that are only indirectly referenced need to be
+ * mentioned explicitly.
+
+ IfcRepresentationMap
+ IfcProductRepresentation
+ IfcUnitAssignment
+ IfcClosedShell
+ IfcDoor
+
+ */
+
+namespace {
+
+// forward declarations
+void SetUnits(ConversionData &conv);
+void SetCoordinateSpace(ConversionData &conv);
+void ProcessSpatialStructures(ConversionData &conv);
+void MakeTreeRelative(ConversionData &conv);
+void ConvertUnit(const ::Assimp::STEP::EXPRESS::DataType &dt, ConversionData &conv);
+
+} // namespace
+
+static const aiImporterDesc desc = {
+ "Industry Foundation Classes (IFC) Importer",
+ "",
+ "",
+ "",
+ aiImporterFlags_SupportBinaryFlavour,
+ 0,
+ 0,
+ 0,
+ 0,
+ "ifc ifczip step stp"
+};
+
+// ------------------------------------------------------------------------------------------------
+// Constructor to be privately used by Importer
+IFCImporter::IFCImporter() {}
+
+// ------------------------------------------------------------------------------------------------
+// Destructor, private as well
+IFCImporter::~IFCImporter() {
+}
+
+// ------------------------------------------------------------------------------------------------
+// Returns whether the class can handle the format of the given file.
+bool IFCImporter::CanRead(const std::string &pFile, IOSystem *pIOHandler, bool /*checkSig*/) const {
+ // note: this is the common identification for STEP-encoded files, so
+ // it is only unambiguous as long as we don't support any further
+ // file formats with STEP as their encoding.
+ static const char *tokens[] = { "ISO-10303-21" };
+ return SearchFileHeaderForToken(pIOHandler, pFile, tokens, AI_COUNT_OF(tokens));
+}
+
+// ------------------------------------------------------------------------------------------------
+// List all extensions handled by this loader
+const aiImporterDesc *IFCImporter::GetInfo() const {
+ return &desc;
+}
+
+// ------------------------------------------------------------------------------------------------
+// Setup configuration properties for the loader
+void IFCImporter::SetupProperties(const Importer *pImp) {
+ settings.skipSpaceRepresentations = pImp->GetPropertyBool(AI_CONFIG_IMPORT_IFC_SKIP_SPACE_REPRESENTATIONS, true);
+ settings.useCustomTriangulation = pImp->GetPropertyBool(AI_CONFIG_IMPORT_IFC_CUSTOM_TRIANGULATION, true);
+ settings.conicSamplingAngle = std::min(std::max((float)pImp->GetPropertyFloat(AI_CONFIG_IMPORT_IFC_SMOOTHING_ANGLE, AI_IMPORT_IFC_DEFAULT_SMOOTHING_ANGLE), 5.0f), 120.0f);
+ settings.cylindricalTessellation = std::min(std::max(pImp->GetPropertyInteger(AI_CONFIG_IMPORT_IFC_CYLINDRICAL_TESSELLATION, AI_IMPORT_IFC_DEFAULT_CYLINDRICAL_TESSELLATION), 3), 180);
+ settings.skipAnnotations = true;
+}
+
+// ------------------------------------------------------------------------------------------------
+// Imports the given file into the given scene structure.
+void IFCImporter::InternReadFile(const std::string &pFile, aiScene *pScene, IOSystem *pIOHandler) {
+ std::shared_ptr<IOStream> stream(pIOHandler->Open(pFile));
+ if (!stream) {
+ ThrowException("Could not open file for reading");
+ }
+
+ // if this is a ifczip file, decompress its contents first
+ if (GetExtension(pFile) == "ifczip") {
+#ifndef ASSIMP_BUILD_NO_COMPRESSED_IFC
+ unzFile zip = unzOpen(pFile.c_str());
+ if (zip == nullptr) {
+ ThrowException("Could not open ifczip file for reading, unzip failed");
+ }
+
+ // chop 'zip' postfix
+ std::string fileName = pFile.substr(0, pFile.length() - 3);
+
+ std::string::size_type s = pFile.find_last_of('\\');
+ if (s == std::string::npos) {
+ s = pFile.find_last_of('/');
+ }
+ if (s != std::string::npos) {
+ fileName = fileName.substr(s + 1);
+ }
+
+ // search file (same name as the IFCZIP except for the file extension) and place file pointer there
+ if (UNZ_OK == unzGoToFirstFile(zip)) {
+ do {
+ // get file size, etc.
+ unz_file_info fileInfo;
+ char filename[256];
+ unzGetCurrentFileInfo(zip, &fileInfo, filename, sizeof(filename), 0, 0, 0, 0);
+ if (GetExtension(filename) != "ifc") {
+ continue;
+ }
+ uint8_t *buff = new uint8_t[fileInfo.uncompressed_size];
+ LogInfo("Decompressing IFCZIP file");
+ unzOpenCurrentFile(zip);
+ size_t total = 0;
+ int read = 0;
+ do {
+ int bufferSize = fileInfo.uncompressed_size < INT16_MAX ? fileInfo.uncompressed_size : INT16_MAX;
+ void *buffer = malloc(bufferSize);
+ read = unzReadCurrentFile(zip, buffer, bufferSize);
+ if (read > 0) {
+ memcpy((char *)buff + total, buffer, read);
+ total += read;
+ }
+ free(buffer);
+ } while (read > 0);
+ size_t filesize = fileInfo.uncompressed_size;
+ if (total == 0 || size_t(total) != filesize) {
+ delete[] buff;
+ ThrowException("Failed to decompress IFC ZIP file");
+ }
+ unzCloseCurrentFile(zip);
+ stream.reset(new MemoryIOStream(buff, fileInfo.uncompressed_size, true));
+ if (unzGoToNextFile(zip) == UNZ_END_OF_LIST_OF_FILE) {
+ ThrowException("Found no IFC file member in IFCZIP file (1)");
+ }
+ break;
+
+ } while (true);
+ } else {
+ ThrowException("Found no IFC file member in IFCZIP file (2)");
+ }
+
+ unzClose(zip);
+#else
+ ThrowException("Could not open ifczip file for reading, assimp was built without ifczip support");
+#endif
+ }
+
+ std::unique_ptr<STEP::DB> db(STEP::ReadFileHeader(stream));
+ const STEP::HeaderInfo &head = static_cast<const STEP::DB &>(*db).GetHeader();
+
+ if (!head.fileSchema.size() || head.fileSchema.substr(0, 3) != "IFC") {
+ ThrowException("Unrecognized file schema: " + head.fileSchema);
+ }
+
+ if (!DefaultLogger::isNullLogger()) {
+ LogDebug("File schema is \'", head.fileSchema, '\'');
+ if (head.timestamp.length()) {
+ LogDebug("Timestamp \'", head.timestamp, '\'');
+ }
+ if (head.app.length()) {
+ LogDebug("Application/Exporter identline is \'", head.app, '\'');
+ }
+ }
+
+ // obtain a copy of the machine-generated IFC scheme
+ ::Assimp::STEP::EXPRESS::ConversionSchema schema;
+ Schema_2x3::GetSchema(schema);
+
+ // tell the reader which entity types to track with special care
+ static const char *const types_to_track[] = {
+ "ifcsite", "ifcbuilding", "ifcproject"
+ };
+
+ // tell the reader for which types we need to simulate STEPs reverse indices
+ static const char *const inverse_indices_to_track[] = {
+ "ifcrelcontainedinspatialstructure", "ifcrelaggregates", "ifcrelvoidselement", "ifcreldefinesbyproperties", "ifcpropertyset", "ifcstyleditem"
+ };
+
+ // feed the IFC schema into the reader and pre-parse all lines
+ STEP::ReadFile(*db, schema, types_to_track, inverse_indices_to_track);
+ const STEP::LazyObject *proj = db->GetObject("ifcproject");
+ if (!proj) {
+ ThrowException("missing IfcProject entity");
+ }
+
+ ConversionData conv(*db, proj->To<Schema_2x3::IfcProject>(), pScene, settings);
+ SetUnits(conv);
+ SetCoordinateSpace(conv);
+ ProcessSpatialStructures(conv);
+ MakeTreeRelative(conv);
+
+// NOTE - this is a stress test for the importer, but it works only
+// in a build with no entities disabled. See
+// scripts/IFCImporter/CPPGenerator.py
+// for more information.
+#ifdef ASSIMP_IFC_TEST
+ db->EvaluateAll();
+#endif
+
+ // do final data copying
+ if (conv.meshes.size()) {
+ pScene->mNumMeshes = static_cast<unsigned int>(conv.meshes.size());
+ pScene->mMeshes = new aiMesh *[pScene->mNumMeshes]();
+ std::copy(conv.meshes.begin(), conv.meshes.end(), pScene->mMeshes);
+
+ // needed to keep the d'tor from burning us
+ conv.meshes.clear();
+ }
+
+ if (conv.materials.size()) {
+ pScene->mNumMaterials = static_cast<unsigned int>(conv.materials.size());
+ pScene->mMaterials = new aiMaterial *[pScene->mNumMaterials]();
+ std::copy(conv.materials.begin(), conv.materials.end(), pScene->mMaterials);
+
+ // needed to keep the d'tor from burning us
+ conv.materials.clear();
+ }
+
+ // apply world coordinate system (which includes the scaling to convert to meters and a -90 degrees rotation around x)
+ aiMatrix4x4 scale, rot;
+ aiMatrix4x4::Scaling(static_cast<aiVector3D>(IfcVector3(conv.len_scale)), scale);
+ aiMatrix4x4::RotationX(-AI_MATH_HALF_PI_F, rot);
+
+ pScene->mRootNode->mTransformation = rot * scale * conv.wcs * pScene->mRootNode->mTransformation;
+
+ // this must be last because objects are evaluated lazily as we process them
+ if (!DefaultLogger::isNullLogger()) {
+ LogDebug("STEP: evaluated ", db->GetEvaluatedObjectCount(), " object records");
+ }
+}
+
+namespace {
+
+// ------------------------------------------------------------------------------------------------
+void ConvertUnit(const Schema_2x3::IfcNamedUnit &unit, ConversionData &conv) {
+ if (const Schema_2x3::IfcSIUnit *const si = unit.ToPtr<Schema_2x3::IfcSIUnit>()) {
+ if (si->UnitType == "LENGTHUNIT") {
+ conv.len_scale = si->Prefix ? ConvertSIPrefix(si->Prefix) : 1.f;
+ IFCImporter::LogDebug("got units used for lengths");
+ }
+ if (si->UnitType == "PLANEANGLEUNIT") {
+ if (si->Name != "RADIAN") {
+ IFCImporter::LogWarn("expected base unit for angles to be radian");
+ }
+ }
+ } else if (const Schema_2x3::IfcConversionBasedUnit *const convu = unit.ToPtr<Schema_2x3::IfcConversionBasedUnit>()) {
+ if (convu->UnitType == "PLANEANGLEUNIT") {
+ try {
+ conv.angle_scale = convu->ConversionFactor->ValueComponent->To<::Assimp::STEP::EXPRESS::REAL>();
+ ConvertUnit(*convu->ConversionFactor->UnitComponent, conv);
+ IFCImporter::LogDebug("got units used for angles");
+ } catch (std::bad_cast &) {
+ IFCImporter::LogError("skipping unknown IfcConversionBasedUnit.ValueComponent entry - expected REAL");
+ }
+ }
+ }
+}
+
+// ------------------------------------------------------------------------------------------------
+void ConvertUnit(const ::Assimp::STEP::EXPRESS::DataType &dt, ConversionData &conv) {
+ try {
+ const ::Assimp::STEP::EXPRESS::ENTITY &e = dt.To<::Assimp::STEP::EXPRESS::ENTITY>();
+
+ const Schema_2x3::IfcNamedUnit &unit = e.ResolveSelect<Schema_2x3::IfcNamedUnit>(conv.db);
+ if (unit.UnitType != "LENGTHUNIT" && unit.UnitType != "PLANEANGLEUNIT") {
+ return;
+ }
+
+ ConvertUnit(unit, conv);
+ } catch (std::bad_cast &) {
+ // not entity, somehow
+ IFCImporter::LogError("skipping unknown IfcUnit entry - expected entity");
+ }
+}
+
+// ------------------------------------------------------------------------------------------------
+void SetUnits(ConversionData &conv) {
+ // see if we can determine the coordinate space used to express.
+ for (size_t i = 0; i < conv.proj.UnitsInContext->Units.size(); ++i) {
+ ConvertUnit(*conv.proj.UnitsInContext->Units[i], conv);
+ }
+}
+
+// ------------------------------------------------------------------------------------------------
+void SetCoordinateSpace(ConversionData &conv) {
+ const Schema_2x3::IfcRepresentationContext *fav = nullptr;
+ for (const Schema_2x3::IfcRepresentationContext &v : conv.proj.RepresentationContexts) {
+ fav = &v;
+ // Model should be the most suitable type of context, hence ignore the others
+ if (v.ContextType && v.ContextType.Get() == "Model") {
+ break;
+ }
+ }
+ if (fav) {
+ if (const Schema_2x3::IfcGeometricRepresentationContext *const geo = fav->ToPtr<Schema_2x3::IfcGeometricRepresentationContext>()) {
+ ConvertAxisPlacement(conv.wcs, *geo->WorldCoordinateSystem, conv);
+ IFCImporter::LogDebug("got world coordinate system");
+ }
+ }
+}
+
+// ------------------------------------------------------------------------------------------------
+void ResolveObjectPlacement(aiMatrix4x4 &m, const Schema_2x3::IfcObjectPlacement &place, ConversionData &conv) {
+ if (const Schema_2x3::IfcLocalPlacement *const local = place.ToPtr<Schema_2x3::IfcLocalPlacement>()) {
+ IfcMatrix4 tmp;
+ ConvertAxisPlacement(tmp, *local->RelativePlacement, conv);
+
+ m = static_cast<aiMatrix4x4>(tmp);
+
+ if (local->PlacementRelTo) {
+ aiMatrix4x4 tmpM;
+ ResolveObjectPlacement(tmpM, local->PlacementRelTo.Get(), conv);
+ m = tmpM * m;
+ }
+ } else {
+ IFCImporter::LogWarn("skipping unknown IfcObjectPlacement entity, type is ", place.GetClassName());
+ }
+}
+
+// ------------------------------------------------------------------------------------------------
+bool ProcessMappedItem(const Schema_2x3::IfcMappedItem &mapped, aiNode *nd_src, std::vector<aiNode *> &subnodes_src, unsigned int matid, ConversionData &conv) {
+ // insert a custom node here, the carthesian transform operator is simply a conventional transformation matrix
+ std::unique_ptr<aiNode> nd(new aiNode());
+ nd->mName.Set("IfcMappedItem");
+
+ // handle the Cartesian operator
+ IfcMatrix4 m;
+ ConvertTransformOperator(m, *mapped.MappingTarget);
+
+ IfcMatrix4 msrc;
+ ConvertAxisPlacement(msrc, *mapped.MappingSource->MappingOrigin, conv);
+
+ msrc = m * msrc;
+
+ std::set<unsigned int> meshes;
+ const size_t old_openings = conv.collect_openings ? conv.collect_openings->size() : 0;
+ if (conv.apply_openings) {
+ IfcMatrix4 minv = msrc;
+ minv.Inverse();
+ for (TempOpening &open : *conv.apply_openings) {
+ open.Transform(minv);
+ }
+ }
+
+ unsigned int localmatid = ProcessMaterials(mapped.GetID(), matid, conv, false);
+ const Schema_2x3::IfcRepresentation &repr = mapped.MappingSource->MappedRepresentation;
+
+ bool got = false;
+ for (const Schema_2x3::IfcRepresentationItem &item : repr.Items) {
+ if (!ProcessRepresentationItem(item, localmatid, meshes, conv)) {
+ IFCImporter::LogWarn("skipping mapped entity of type ", item.GetClassName(), ", no representations could be generated");
+ } else
+ got = true;
+ }
+
+ if (!got) {
+ return false;
+ }
+
+ AssignAddedMeshes(meshes, nd.get(), conv);
+ if (conv.collect_openings) {
+
+ // if this pass serves us only to collect opening geometry,
+ // make sure we transform the TempMesh's which we need to
+ // preserve as well.
+ if (const size_t diff = conv.collect_openings->size() - old_openings) {
+ for (size_t i = 0; i < diff; ++i) {
+ (*conv.collect_openings)[old_openings + i].Transform(msrc);
+ }
+ }
+ }
+
+ nd->mTransformation = nd_src->mTransformation * static_cast<aiMatrix4x4>(msrc);
+ subnodes_src.push_back(nd.release());
+
+ return true;
+}
+
+// ------------------------------------------------------------------------------------------------
+struct RateRepresentationPredicate {
+ int Rate(const Schema_2x3::IfcRepresentation *r) const {
+ // the smaller, the better
+
+ if (!r->RepresentationIdentifier) {
+ // neutral choice if no extra information is specified
+ return 0;
+ }
+
+ const std::string &name = r->RepresentationIdentifier.Get();
+ if (name == "MappedRepresentation") {
+ if (!r->Items.empty()) {
+ // take the first item and base our choice on it
+ const Schema_2x3::IfcMappedItem *const m = r->Items.front()->ToPtr<Schema_2x3::IfcMappedItem>();
+ if (m) {
+ return Rate(m->MappingSource->MappedRepresentation);
+ }
+ }
+ return 100;
+ }
+
+ return Rate(name);
+ }
+
+ int Rate(const std::string &r) const {
+ if (r == "SolidModel") {
+ return -3;
+ }
+
+ // give strong preference to extruded geometry.
+ if (r == "SweptSolid") {
+ return -10;
+ }
+
+ if (r == "Clipping") {
+ return -5;
+ }
+
+ // 'Brep' is difficult to get right due to possible voids in the
+ // polygon boundaries, so take it only if we are forced to (i.e.
+ // if the only alternative is (non-clipping) boolean operations,
+ // which are not supported at all).
+ if (r == "Brep") {
+ return -2;
+ }
+
+ // Curves, bounding boxes - those will most likely not be loaded
+ // as we can't make any use out of this data. So consider them
+ // last.
+ if (r == "BoundingBox" || r == "Curve2D") {
+ return 100;
+ }
+ return 0;
+ }
+
+ bool operator()(const Schema_2x3::IfcRepresentation *a, const Schema_2x3::IfcRepresentation *b) const {
+ return Rate(a) < Rate(b);
+ }
+};
+
+// ------------------------------------------------------------------------------------------------
+void ProcessProductRepresentation(const Schema_2x3::IfcProduct &el, aiNode *nd, std::vector<aiNode *> &subnodes, ConversionData &conv) {
+ if (!el.Representation) {
+ return;
+ }
+
+ // extract Color from metadata, if present
+ unsigned int matid = ProcessMaterials(el.GetID(), std::numeric_limits<uint32_t>::max(), conv, false);
+ std::set<unsigned int> meshes;
+
+ // we want only one representation type, so bring them in a suitable order (i.e try those
+ // that look as if we could read them quickly at first). This way of reading
+ // representation is relatively generic and allows the concrete implementations
+ // for the different representation types to make some sensible choices what
+ // to load and what not to load.
+ const STEP::ListOf<STEP::Lazy<Schema_2x3::IfcRepresentation>, 1, 0> &src = el.Representation.Get()->Representations;
+ std::vector<const Schema_2x3::IfcRepresentation *> repr_ordered(src.size());
+ std::copy(src.begin(), src.end(), repr_ordered.begin());
+ std::sort(repr_ordered.begin(), repr_ordered.end(), RateRepresentationPredicate());
+ for (const Schema_2x3::IfcRepresentation *repr : repr_ordered) {
+ bool res = false;
+ for (const Schema_2x3::IfcRepresentationItem &item : repr->Items) {
+ if (const Schema_2x3::IfcMappedItem *const geo = item.ToPtr<Schema_2x3::IfcMappedItem>()) {
+ res = ProcessMappedItem(*geo, nd, subnodes, matid, conv) || res;
+ } else {
+ res = ProcessRepresentationItem(item, matid, meshes, conv) || res;
+ }
+ }
+ // if we got something meaningful at this point, skip any further representations
+ if (res) {
+ break;
+ }
+ }
+ AssignAddedMeshes(meshes, nd, conv);
+}
+
+typedef std::map<std::string, std::string> Metadata;
+
+// ------------------------------------------------------------------------------------------------
+void ProcessMetadata(const Schema_2x3::ListOf<Schema_2x3::Lazy<Schema_2x3::IfcProperty>, 1, 0> &set, ConversionData &conv, Metadata &properties,
+ const std::string &prefix = std::string(),
+ unsigned int nest = 0) {
+ for (const Schema_2x3::IfcProperty &property : set) {
+ const std::string &key = prefix.length() > 0 ? (prefix + "." + property.Name) : property.Name;
+ if (const Schema_2x3::IfcPropertySingleValue *const singleValue = property.ToPtr<Schema_2x3::IfcPropertySingleValue>()) {
+ if (singleValue->NominalValue) {
+ if (const ::Assimp::STEP::EXPRESS::STRING *str = singleValue->NominalValue.Get()->ToPtr<::Assimp::STEP::EXPRESS::STRING>()) {
+ std::string value = static_cast<std::string>(*str);
+ properties[key] = value;
+ } else if (const ::Assimp::STEP::EXPRESS::REAL *val1 = singleValue->NominalValue.Get()->ToPtr<::Assimp::STEP::EXPRESS::REAL>()) {
+ float value = static_cast<float>(*val1);
+ std::stringstream s;
+ s << value;
+ properties[key] = s.str();
+ } else if (const ::Assimp::STEP::EXPRESS::INTEGER *val2 = singleValue->NominalValue.Get()->ToPtr<::Assimp::STEP::EXPRESS::INTEGER>()) {
+ int64_t curValue = static_cast<int64_t>(*val2);
+ std::stringstream s;
+ s << curValue;
+ properties[key] = s.str();
+ }
+ }
+ } else if (const Schema_2x3::IfcPropertyListValue *const listValue = property.ToPtr<Schema_2x3::IfcPropertyListValue>()) {
+ std::stringstream ss;
+ ss << "[";
+ unsigned index = 0;
+ for (const Schema_2x3::IfcValue::Out &v : listValue->ListValues) {
+ if (!v) continue;
+ if (const ::Assimp::STEP::EXPRESS::STRING *str = v->ToPtr<::Assimp::STEP::EXPRESS::STRING>()) {
+ std::string value = static_cast<std::string>(*str);
+ ss << "'" << value << "'";
+ } else if (const ::Assimp::STEP::EXPRESS::REAL *val1 = v->ToPtr<::Assimp::STEP::EXPRESS::REAL>()) {
+ float value = static_cast<float>(*val1);
+ ss << value;
+ } else if (const ::Assimp::STEP::EXPRESS::INTEGER *val2 = v->ToPtr<::Assimp::STEP::EXPRESS::INTEGER>()) {
+ int64_t value = static_cast<int64_t>(*val2);
+ ss << value;
+ }
+ if (index + 1 < listValue->ListValues.size()) {
+ ss << ",";
+ }
+ index++;
+ }
+ ss << "]";
+ properties[key] = ss.str();
+ } else if (const Schema_2x3::IfcComplexProperty *const complexProp = property.ToPtr<Schema_2x3::IfcComplexProperty>()) {
+ if (nest > 2) { // mostly arbitrary limit to prevent stack overflow vulnerabilities
+ IFCImporter::LogError("maximum nesting level for IfcComplexProperty reached, skipping this property.");
+ } else {
+ ProcessMetadata(complexProp->HasProperties, conv, properties, key, nest + 1);
+ }
+ } else {
+ properties[key] = std::string();
+ }
+ }
+}
+
+// ------------------------------------------------------------------------------------------------
+void ProcessMetadata(uint64_t relDefinesByPropertiesID, ConversionData &conv, Metadata &properties) {
+ if (const Schema_2x3::IfcRelDefinesByProperties *const pset = conv.db.GetObject(relDefinesByPropertiesID)->ToPtr<Schema_2x3::IfcRelDefinesByProperties>()) {
+ if (const Schema_2x3::IfcPropertySet *const set = conv.db.GetObject(pset->RelatingPropertyDefinition->GetID())->ToPtr<Schema_2x3::IfcPropertySet>()) {
+ ProcessMetadata(set->HasProperties, conv, properties);
+ }
+ }
+}
+
+// ------------------------------------------------------------------------------------------------
+aiNode *ProcessSpatialStructure(aiNode *parent, const Schema_2x3::IfcProduct &el, ConversionData &conv,
+ std::vector<TempOpening> *collect_openings = nullptr) {
+ const STEP::DB::RefMap &refs = conv.db.GetRefs();
+
+ // skip over space and annotation nodes - usually, these have no meaning in Assimp's context
+ bool skipGeometry = false;
+ if (conv.settings.skipSpaceRepresentations) {
+ if (el.ToPtr<Schema_2x3::IfcSpace>()) {
+ IFCImporter::LogVerboseDebug("skipping IfcSpace entity due to importer settings");
+ skipGeometry = true;
+ }
+ }
+
+ if (conv.settings.skipAnnotations) {
+ if (el.ToPtr<Schema_2x3::IfcAnnotation>()) {
+ IFCImporter::LogVerboseDebug("skipping IfcAnnotation entity due to importer settings");
+ return nullptr;
+ }
+ }
+
+ // add an output node for this spatial structure
+ aiNode *nd(new aiNode);
+ nd->mName.Set(el.GetClassName() + "_" + (el.Name ? el.Name.Get() : "Unnamed") + "_" + el.GlobalId);
+ nd->mParent = parent;
+
+ conv.already_processed.insert(el.GetID());
+
+ // check for node metadata
+ STEP::DB::RefMapRange children = refs.equal_range(el.GetID());
+ if (children.first != refs.end()) {
+ Metadata properties;
+ if (children.first == children.second) {
+ // handles single property set
+ ProcessMetadata((*children.first).second, conv, properties);
+ } else {
+ // handles multiple property sets (currently all property sets are merged,
+ // which may not be the best solution in the long run)
+ for (STEP::DB::RefMap::const_iterator it = children.first; it != children.second; ++it) {
+ ProcessMetadata((*it).second, conv, properties);
+ }
+ }
+
+ if (!properties.empty()) {
+ aiMetadata *data = aiMetadata::Alloc(static_cast<unsigned int>(properties.size()));
+ unsigned int index(0);
+ for (const Metadata::value_type &kv : properties) {
+ data->Set(index++, kv.first, aiString(kv.second));
+ }
+ nd->mMetaData = data;
+ }
+ }
+
+ if (el.ObjectPlacement) {
+ ResolveObjectPlacement(nd->mTransformation, el.ObjectPlacement.Get(), conv);
+ }
+
+ std::vector<TempOpening> openings;
+
+ IfcMatrix4 myInv;
+ bool didinv = false;
+
+ // convert everything contained directly within this structure,
+ // this may result in more nodes.
+ std::vector<aiNode *> subnodes;
+ try {
+ // locate aggregates and 'contained-in-here'-elements of this spatial structure and add them in recursively
+ // on our way, collect openings in *this* element
+ STEP::DB::RefMapRange range = refs.equal_range(el.GetID());
+
+ for (STEP::DB::RefMapRange range2 = range; range2.first != range.second; ++range2.first) {
+ // skip over meshes that have already been processed before. This is strictly necessary
+ // because the reverse indices also include references contained in argument lists and
+ // therefore every element has a back-reference hold by its parent.
+ if (conv.already_processed.find((*range2.first).second) != conv.already_processed.end()) {
+ continue;
+ }
+ const STEP::LazyObject &obj = conv.db.MustGetObject((*range2.first).second);
+
+ // handle regularly-contained elements
+ if (const Schema_2x3::IfcRelContainedInSpatialStructure *const cont = obj->ToPtr<Schema_2x3::IfcRelContainedInSpatialStructure>()) {
+ if (cont->RelatingStructure->GetID() != el.GetID()) {
+ continue;
+ }
+ for (const Schema_2x3::IfcProduct &pro : cont->RelatedElements) {
+ if (pro.ToPtr<Schema_2x3::IfcOpeningElement>()) {
+ // IfcOpeningElement is handled below. Sadly we can't use it here as is:
+ // The docs say that opening elements are USUALLY attached to building storey,
+ // but we want them for the building elements to which they belong.
+ continue;
+ }
+
+ aiNode *const ndnew = ProcessSpatialStructure(nd, pro, conv, nullptr);
+ if (ndnew) {
+ subnodes.push_back(ndnew);
+ }
+ }
+ }
+ // handle openings, which we collect in a list rather than adding them to the node graph
+ else if (const Schema_2x3::IfcRelVoidsElement *const fills = obj->ToPtr<Schema_2x3::IfcRelVoidsElement>()) {
+ if (fills->RelatingBuildingElement->GetID() == el.GetID()) {
+ const Schema_2x3::IfcFeatureElementSubtraction &open = fills->RelatedOpeningElement;
+
+ // move opening elements to a separate node since they are semantically different than elements that are just 'contained'
+ std::unique_ptr<aiNode> nd_aggr(new aiNode());
+ nd_aggr->mName.Set("$RelVoidsElement");
+ nd_aggr->mParent = nd;
+
+ nd_aggr->mTransformation = nd->mTransformation;
+
+ std::vector<TempOpening> openings_local;
+ aiNode *const ndnew = ProcessSpatialStructure(nd_aggr.get(), open, conv, &openings_local);
+ if (ndnew) {
+
+ nd_aggr->mNumChildren = 1;
+ nd_aggr->mChildren = new aiNode *[1]();
+
+ nd_aggr->mChildren[0] = ndnew;
+
+ if (openings_local.size()) {
+ if (!didinv) {
+ myInv = aiMatrix4x4(nd->mTransformation).Inverse();
+ didinv = true;
+ }
+
+ // we need all openings to be in the local space of *this* node, so transform them
+ for (TempOpening &op : openings_local) {
+ op.Transform(myInv * nd_aggr->mChildren[0]->mTransformation);
+ openings.push_back(op);
+ }
+ }
+ subnodes.push_back(nd_aggr.release());
+ }
+ }
+ }
+ }
+
+ for (; range.first != range.second; ++range.first) {
+ // see note in loop above
+ if (conv.already_processed.find((*range.first).second) != conv.already_processed.end()) {
+ continue;
+ }
+ if (const Schema_2x3::IfcRelAggregates *const aggr = conv.db.GetObject((*range.first).second)->ToPtr<Schema_2x3::IfcRelAggregates>()) {
+ if (aggr->RelatingObject->GetID() != el.GetID()) {
+ continue;
+ }
+
+ // move aggregate elements to a separate node since they are semantically different than elements that are just 'contained'
+ std::unique_ptr<aiNode> nd_aggr(new aiNode());
+ nd_aggr->mName.Set("$RelAggregates");
+ nd_aggr->mParent = nd;
+
+ nd_aggr->mTransformation = nd->mTransformation;
+
+ nd_aggr->mChildren = new aiNode *[aggr->RelatedObjects.size()]();
+ for (const Schema_2x3::IfcObjectDefinition &def : aggr->RelatedObjects) {
+ if (const Schema_2x3::IfcProduct *const prod = def.ToPtr<Schema_2x3::IfcProduct>()) {
+
+ aiNode *const ndnew = ProcessSpatialStructure(nd_aggr.get(), *prod, conv, nullptr);
+ if (ndnew) {
+ nd_aggr->mChildren[nd_aggr->mNumChildren++] = ndnew;
+ }
+ }
+ }
+
+ subnodes.push_back(nd_aggr.release());
+ }
+ }
+
+ conv.collect_openings = collect_openings;
+ if (!conv.collect_openings) {
+ conv.apply_openings = &openings;
+ }
+
+ if (!skipGeometry) {
+ ProcessProductRepresentation(el, nd, subnodes, conv);
+ conv.apply_openings = conv.collect_openings = nullptr;
+ }
+
+ if (subnodes.size()) {
+ nd->mChildren = new aiNode *[subnodes.size()]();
+ for (aiNode *nd2 : subnodes) {
+ nd->mChildren[nd->mNumChildren++] = nd2;
+ nd2->mParent = nd;
+ }
+ }
+ } catch (...) {
+ // it hurts, but I don't want to pull boost::ptr_vector into -noboost only for these few spots here
+ std::for_each(subnodes.begin(), subnodes.end(), delete_fun<aiNode>());
+ throw;
+ }
+
+ ai_assert(conv.already_processed.find(el.GetID()) != conv.already_processed.end());
+ conv.already_processed.erase(conv.already_processed.find(el.GetID()));
+ return nd;
+}
+
+// ------------------------------------------------------------------------------------------------
+void ProcessSpatialStructures(ConversionData &conv) {
+ // XXX add support for multiple sites (i.e. IfcSpatialStructureElements with composition == COMPLEX)
+
+ // process all products in the file. it is reasonable to assume that a
+ // file that is relevant for us contains at least a site or a building.
+ const STEP::DB::ObjectMapByType &map = conv.db.GetObjectsByType();
+
+ ai_assert(map.find("ifcsite") != map.end());
+ const STEP::DB::ObjectSet *range = &map.find("ifcsite")->second;
+
+ if (range->empty()) {
+ ai_assert(map.find("ifcbuilding") != map.end());
+ range = &map.find("ifcbuilding")->second;
+ if (range->empty()) {
+ // no site, no building - fail;
+ IFCImporter::ThrowException("no root element found (expected IfcBuilding or preferably IfcSite)");
+ }
+ }
+
+ std::vector<aiNode *> nodes;
+
+ for (const STEP::LazyObject *lz : *range) {
+ const Schema_2x3::IfcSpatialStructureElement *const prod = lz->ToPtr<Schema_2x3::IfcSpatialStructureElement>();
+ if (!prod) {
+ continue;
+ }
+ IFCImporter::LogVerboseDebug("looking at spatial structure `", (prod->Name ? prod->Name.Get() : "unnamed"), "`", (prod->ObjectType ? " which is of type " + prod->ObjectType.Get() : ""));
+
+ // the primary sites are referenced by an IFCRELAGGREGATES element which assigns them to the IFCPRODUCT
+ const STEP::DB::RefMap &refs = conv.db.GetRefs();
+ STEP::DB::RefMapRange ref_range = refs.equal_range(conv.proj.GetID());
+ for (; ref_range.first != ref_range.second; ++ref_range.first) {
+ if (const Schema_2x3::IfcRelAggregates *const aggr = conv.db.GetObject((*ref_range.first).second)->ToPtr<Schema_2x3::IfcRelAggregates>()) {
+
+ for (const Schema_2x3::IfcObjectDefinition &def : aggr->RelatedObjects) {
+ // comparing pointer values is not sufficient, we would need to cast them to the same type first
+ // as there is multiple inheritance in the game.
+ if (def.GetID() == prod->GetID()) {
+ IFCImporter::LogVerboseDebug("selecting this spatial structure as root structure");
+ // got it, this is one primary site.
+ nodes.push_back(ProcessSpatialStructure(nullptr, *prod, conv, nullptr));
+ }
+ }
+ }
+ }
+ }
+
+ size_t nb_nodes = nodes.size();
+
+ if (nb_nodes == 0) {
+ IFCImporter::LogWarn("failed to determine primary site element, taking all the IfcSite");
+ for (const STEP::LazyObject *lz : *range) {
+ const Schema_2x3::IfcSpatialStructureElement *const prod = lz->ToPtr<Schema_2x3::IfcSpatialStructureElement>();
+ if (!prod) {
+ continue;
+ }
+
+ nodes.push_back(ProcessSpatialStructure(nullptr, *prod, conv, nullptr));
+ }
+
+ nb_nodes = nodes.size();
+ }
+
+ if (nb_nodes == 1) {
+ conv.out->mRootNode = nodes[0];
+ } else if (nb_nodes > 1) {
+ conv.out->mRootNode = new aiNode("Root");
+ conv.out->mRootNode->mParent = nullptr;
+ conv.out->mRootNode->mNumChildren = static_cast<unsigned int>(nb_nodes);
+ conv.out->mRootNode->mChildren = new aiNode *[conv.out->mRootNode->mNumChildren];
+
+ for (size_t i = 0; i < nb_nodes; ++i) {
+ aiNode *node = nodes[i];
+
+ node->mParent = conv.out->mRootNode;
+
+ conv.out->mRootNode->mChildren[i] = node;
+ }
+ } else {
+ IFCImporter::ThrowException("failed to determine primary site element");
+ }
+}
+
+// ------------------------------------------------------------------------------------------------
+void MakeTreeRelative(aiNode *start, const aiMatrix4x4 &combined) {
+ // combined is the parent's absolute transformation matrix
+ const aiMatrix4x4 old = start->mTransformation;
+
+ if (!combined.IsIdentity()) {
+ start->mTransformation = aiMatrix4x4(combined).Inverse() * start->mTransformation;
+ }
+
+ // All nodes store absolute transformations right now, so we need to make them relative
+ for (unsigned int i = 0; i < start->mNumChildren; ++i) {
+ MakeTreeRelative(start->mChildren[i], old);
+ }
+}
+
+// ------------------------------------------------------------------------------------------------
+void MakeTreeRelative(ConversionData &conv) {
+ MakeTreeRelative(conv.out->mRootNode, IfcMatrix4());
+}
+
+} // namespace
+
+#endif