summaryrefslogtreecommitdiff
path: root/src/mesh/assimp-master/include/assimp/quaternion.inl
diff options
context:
space:
mode:
authorsanine <sanine.not@pm.me>2022-03-04 10:47:15 -0600
committersanine <sanine.not@pm.me>2022-03-04 10:47:15 -0600
commit058f98a63658dc1a2579826ba167fd61bed1e21f (patch)
treebcba07a1615a14d943f3af3f815a42f3be86b2f3 /src/mesh/assimp-master/include/assimp/quaternion.inl
parent2f8028ac9e0812cb6f3cbb08f0f419e4e717bd22 (diff)
add assimp submodule
Diffstat (limited to 'src/mesh/assimp-master/include/assimp/quaternion.inl')
-rw-r--r--src/mesh/assimp-master/include/assimp/quaternion.inl310
1 files changed, 310 insertions, 0 deletions
diff --git a/src/mesh/assimp-master/include/assimp/quaternion.inl b/src/mesh/assimp-master/include/assimp/quaternion.inl
new file mode 100644
index 0000000..960e91a
--- /dev/null
+++ b/src/mesh/assimp-master/include/assimp/quaternion.inl
@@ -0,0 +1,310 @@
+/*
+---------------------------------------------------------------------------
+Open Asset Import Library (assimp)
+---------------------------------------------------------------------------
+
+Copyright (c) 2006-2022, assimp team
+
+
+
+All rights reserved.
+
+Redistribution and use of this software in source and binary forms,
+with or without modification, are permitted provided that the following
+conditions are met:
+
+* Redistributions of source code must retain the above
+ copyright notice, this list of conditions and the
+ following disclaimer.
+
+* Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the
+ following disclaimer in the documentation and/or other
+ materials provided with the distribution.
+
+* Neither the name of the assimp team, nor the names of its
+ contributors may be used to endorse or promote products
+ derived from this software without specific prior
+ written permission of the assimp team.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+---------------------------------------------------------------------------
+*/
+
+/** @file quaternion.inl
+ * @brief Inline implementation of aiQuaterniont<TReal> operators
+ */
+#pragma once
+#ifndef AI_QUATERNION_INL_INC
+#define AI_QUATERNION_INL_INC
+
+#ifdef __GNUC__
+# pragma GCC system_header
+#endif
+
+#ifdef __cplusplus
+#include <assimp/quaternion.h>
+
+#include <cmath>
+
+// ------------------------------------------------------------------------------------------------
+/** Transformation of a quaternion by a 4x4 matrix */
+template <typename TReal>
+AI_FORCE_INLINE
+aiQuaterniont<TReal> operator * (const aiMatrix4x4t<TReal>& pMatrix, const aiQuaterniont<TReal>& pQuaternion) {
+ aiQuaterniont<TReal> res;
+ res.x = pMatrix.a1 * pQuaternion.x + pMatrix.a2 * pQuaternion.y + pMatrix.a3 * pQuaternion.z + pMatrix.a4 * pQuaternion.w;
+ res.y = pMatrix.b1 * pQuaternion.x + pMatrix.b2 * pQuaternion.y + pMatrix.b3 * pQuaternion.z + pMatrix.b4 * pQuaternion.w;
+ res.z = pMatrix.c1 * pQuaternion.x + pMatrix.c2 * pQuaternion.y + pMatrix.c3 * pQuaternion.z + pMatrix.c4 * pQuaternion.w;
+ res.w = pMatrix.d1 * pQuaternion.x + pMatrix.d2 * pQuaternion.y + pMatrix.d3 * pQuaternion.z + pMatrix.d4 * pQuaternion.w;
+ return res;
+}
+// ---------------------------------------------------------------------------
+template<typename TReal>
+bool aiQuaterniont<TReal>::operator== (const aiQuaterniont& o) const
+{
+ return x == o.x && y == o.y && z == o.z && w == o.w;
+}
+
+// ---------------------------------------------------------------------------
+template<typename TReal>
+bool aiQuaterniont<TReal>::operator!= (const aiQuaterniont& o) const
+{
+ return !(*this == o);
+}
+
+// ------------------------------------------------------------------------------------------------
+template <typename TReal>
+AI_FORCE_INLINE
+aiQuaterniont<TReal>& aiQuaterniont<TReal>::operator *= (const aiMatrix4x4t<TReal>& mat){
+ return (*this = mat * (*this));
+}
+// ------------------------------------------------------------------------------------------------
+
+// ---------------------------------------------------------------------------
+template<typename TReal>
+inline bool aiQuaterniont<TReal>::Equal(const aiQuaterniont& o, TReal epsilon) const {
+ return
+ std::abs(x - o.x) <= epsilon &&
+ std::abs(y - o.y) <= epsilon &&
+ std::abs(z - o.z) <= epsilon &&
+ std::abs(w - o.w) <= epsilon;
+}
+
+// ---------------------------------------------------------------------------
+// Constructs a quaternion from a rotation matrix
+template<typename TReal>
+inline aiQuaterniont<TReal>::aiQuaterniont( const aiMatrix3x3t<TReal> &pRotMatrix)
+{
+ TReal t = pRotMatrix.a1 + pRotMatrix.b2 + pRotMatrix.c3;
+
+ // large enough
+ if( t > static_cast<TReal>(0))
+ {
+ TReal s = std::sqrt(1 + t) * static_cast<TReal>(2.0);
+ x = (pRotMatrix.c2 - pRotMatrix.b3) / s;
+ y = (pRotMatrix.a3 - pRotMatrix.c1) / s;
+ z = (pRotMatrix.b1 - pRotMatrix.a2) / s;
+ w = static_cast<TReal>(0.25) * s;
+ } // else we have to check several cases
+ else if( pRotMatrix.a1 > pRotMatrix.b2 && pRotMatrix.a1 > pRotMatrix.c3 )
+ {
+ // Column 0:
+ TReal s = std::sqrt( static_cast<TReal>(1.0) + pRotMatrix.a1 - pRotMatrix.b2 - pRotMatrix.c3) * static_cast<TReal>(2.0);
+ x = static_cast<TReal>(0.25) * s;
+ y = (pRotMatrix.b1 + pRotMatrix.a2) / s;
+ z = (pRotMatrix.a3 + pRotMatrix.c1) / s;
+ w = (pRotMatrix.c2 - pRotMatrix.b3) / s;
+ }
+ else if( pRotMatrix.b2 > pRotMatrix.c3)
+ {
+ // Column 1:
+ TReal s = std::sqrt( static_cast<TReal>(1.0) + pRotMatrix.b2 - pRotMatrix.a1 - pRotMatrix.c3) * static_cast<TReal>(2.0);
+ x = (pRotMatrix.b1 + pRotMatrix.a2) / s;
+ y = static_cast<TReal>(0.25) * s;
+ z = (pRotMatrix.c2 + pRotMatrix.b3) / s;
+ w = (pRotMatrix.a3 - pRotMatrix.c1) / s;
+ } else
+ {
+ // Column 2:
+ TReal s = std::sqrt( static_cast<TReal>(1.0) + pRotMatrix.c3 - pRotMatrix.a1 - pRotMatrix.b2) * static_cast<TReal>(2.0);
+ x = (pRotMatrix.a3 + pRotMatrix.c1) / s;
+ y = (pRotMatrix.c2 + pRotMatrix.b3) / s;
+ z = static_cast<TReal>(0.25) * s;
+ w = (pRotMatrix.b1 - pRotMatrix.a2) / s;
+ }
+}
+
+// ---------------------------------------------------------------------------
+// Construction from euler angles
+template<typename TReal>
+inline aiQuaterniont<TReal>::aiQuaterniont( TReal fPitch, TReal fYaw, TReal fRoll )
+{
+ const TReal fSinPitch(std::sin(fPitch*static_cast<TReal>(0.5)));
+ const TReal fCosPitch(std::cos(fPitch*static_cast<TReal>(0.5)));
+ const TReal fSinYaw(std::sin(fYaw*static_cast<TReal>(0.5)));
+ const TReal fCosYaw(std::cos(fYaw*static_cast<TReal>(0.5)));
+ const TReal fSinRoll(std::sin(fRoll*static_cast<TReal>(0.5)));
+ const TReal fCosRoll(std::cos(fRoll*static_cast<TReal>(0.5)));
+ const TReal fCosPitchCosYaw(fCosPitch*fCosYaw);
+ const TReal fSinPitchSinYaw(fSinPitch*fSinYaw);
+ x = fSinRoll * fCosPitchCosYaw - fCosRoll * fSinPitchSinYaw;
+ y = fCosRoll * fSinPitch * fCosYaw + fSinRoll * fCosPitch * fSinYaw;
+ z = fCosRoll * fCosPitch * fSinYaw - fSinRoll * fSinPitch * fCosYaw;
+ w = fCosRoll * fCosPitchCosYaw + fSinRoll * fSinPitchSinYaw;
+}
+
+// ---------------------------------------------------------------------------
+// Returns a matrix representation of the quaternion
+template<typename TReal>
+inline aiMatrix3x3t<TReal> aiQuaterniont<TReal>::GetMatrix() const
+{
+ aiMatrix3x3t<TReal> resMatrix;
+ resMatrix.a1 = static_cast<TReal>(1.0) - static_cast<TReal>(2.0) * (y * y + z * z);
+ resMatrix.a2 = static_cast<TReal>(2.0) * (x * y - z * w);
+ resMatrix.a3 = static_cast<TReal>(2.0) * (x * z + y * w);
+ resMatrix.b1 = static_cast<TReal>(2.0) * (x * y + z * w);
+ resMatrix.b2 = static_cast<TReal>(1.0) - static_cast<TReal>(2.0) * (x * x + z * z);
+ resMatrix.b3 = static_cast<TReal>(2.0) * (y * z - x * w);
+ resMatrix.c1 = static_cast<TReal>(2.0) * (x * z - y * w);
+ resMatrix.c2 = static_cast<TReal>(2.0) * (y * z + x * w);
+ resMatrix.c3 = static_cast<TReal>(1.0) - static_cast<TReal>(2.0) * (x * x + y * y);
+
+ return resMatrix;
+}
+
+// ---------------------------------------------------------------------------
+// Construction from an axis-angle pair
+template<typename TReal>
+inline aiQuaterniont<TReal>::aiQuaterniont( aiVector3t<TReal> axis, TReal angle)
+{
+ axis.Normalize();
+
+ const TReal sin_a = std::sin( angle / 2 );
+ const TReal cos_a = std::cos( angle / 2 );
+ x = axis.x * sin_a;
+ y = axis.y * sin_a;
+ z = axis.z * sin_a;
+ w = cos_a;
+}
+// ---------------------------------------------------------------------------
+// Construction from am existing, normalized quaternion
+template<typename TReal>
+inline aiQuaterniont<TReal>::aiQuaterniont( aiVector3t<TReal> normalized)
+{
+ x = normalized.x;
+ y = normalized.y;
+ z = normalized.z;
+
+ const TReal t = static_cast<TReal>(1.0) - (x*x) - (y*y) - (z*z);
+
+ if (t < static_cast<TReal>(0.0)) {
+ w = static_cast<TReal>(0.0);
+ }
+ else w = std::sqrt (t);
+}
+
+// ---------------------------------------------------------------------------
+// Performs a spherical interpolation between two quaternions
+// Implementation adopted from the gmtl project. All others I found on the net fail in some cases.
+// Congrats, gmtl!
+template<typename TReal>
+inline void aiQuaterniont<TReal>::Interpolate( aiQuaterniont& pOut, const aiQuaterniont& pStart, const aiQuaterniont& pEnd, TReal pFactor)
+{
+ // calc cosine theta
+ TReal cosom = pStart.x * pEnd.x + pStart.y * pEnd.y + pStart.z * pEnd.z + pStart.w * pEnd.w;
+
+ // adjust signs (if necessary)
+ aiQuaterniont end = pEnd;
+ if( cosom < static_cast<TReal>(0.0))
+ {
+ cosom = -cosom;
+ end.x = -end.x; // Reverse all signs
+ end.y = -end.y;
+ end.z = -end.z;
+ end.w = -end.w;
+ }
+
+ // Calculate coefficients
+ TReal sclp, sclq;
+ if( (static_cast<TReal>(1.0) - cosom) > static_cast<TReal>(0.0001)) // 0.0001 -> some epsillon
+ {
+ // Standard case (slerp)
+ TReal omega, sinom;
+ omega = std::acos( cosom); // extract theta from dot product's cos theta
+ sinom = std::sin( omega);
+ sclp = std::sin( (static_cast<TReal>(1.0) - pFactor) * omega) / sinom;
+ sclq = std::sin( pFactor * omega) / sinom;
+ } else
+ {
+ // Very close, do linear interp (because it's faster)
+ sclp = static_cast<TReal>(1.0) - pFactor;
+ sclq = pFactor;
+ }
+
+ pOut.x = sclp * pStart.x + sclq * end.x;
+ pOut.y = sclp * pStart.y + sclq * end.y;
+ pOut.z = sclp * pStart.z + sclq * end.z;
+ pOut.w = sclp * pStart.w + sclq * end.w;
+}
+
+// ---------------------------------------------------------------------------
+template<typename TReal>
+inline aiQuaterniont<TReal>& aiQuaterniont<TReal>::Normalize()
+{
+ // compute the magnitude and divide through it
+ const TReal mag = std::sqrt(x*x + y*y + z*z + w*w);
+ if (mag)
+ {
+ const TReal invMag = static_cast<TReal>(1.0)/mag;
+ x *= invMag;
+ y *= invMag;
+ z *= invMag;
+ w *= invMag;
+ }
+ return *this;
+}
+
+// ---------------------------------------------------------------------------
+template<typename TReal>
+inline aiQuaterniont<TReal> aiQuaterniont<TReal>::operator* (const aiQuaterniont& t) const
+{
+ return aiQuaterniont(w*t.w - x*t.x - y*t.y - z*t.z,
+ w*t.x + x*t.w + y*t.z - z*t.y,
+ w*t.y + y*t.w + z*t.x - x*t.z,
+ w*t.z + z*t.w + x*t.y - y*t.x);
+}
+
+// ---------------------------------------------------------------------------
+template<typename TReal>
+inline aiQuaterniont<TReal>& aiQuaterniont<TReal>::Conjugate ()
+{
+ x = -x;
+ y = -y;
+ z = -z;
+ return *this;
+}
+
+// ---------------------------------------------------------------------------
+template<typename TReal>
+inline aiVector3t<TReal> aiQuaterniont<TReal>::Rotate (const aiVector3t<TReal>& v) const
+{
+ aiQuaterniont q2(0.f,v.x,v.y,v.z), q = *this, qinv = q;
+ qinv.Conjugate();
+
+ q = q*q2*qinv;
+ return aiVector3t<TReal>(q.x,q.y,q.z);
+}
+
+#endif
+#endif // AI_QUATERNION_INL_INC