diff options
author | sanine <sanine.not@pm.me> | 2022-04-16 11:55:54 -0500 |
---|---|---|
committer | sanine <sanine.not@pm.me> | 2022-04-16 11:55:54 -0500 |
commit | 8fb7916a0d0cb007a4c3a4e6a31af58765268ca3 (patch) | |
tree | 52b5524a94a5b04e17a1fd7f8aca988ab6d0c75f /src/mesh/assimp-master/include/assimp/quaternion.inl | |
parent | db81b925d776103326128bf629cbdda576a223e7 (diff) |
delete src/mesh/assimp-master
Diffstat (limited to 'src/mesh/assimp-master/include/assimp/quaternion.inl')
-rw-r--r-- | src/mesh/assimp-master/include/assimp/quaternion.inl | 310 |
1 files changed, 0 insertions, 310 deletions
diff --git a/src/mesh/assimp-master/include/assimp/quaternion.inl b/src/mesh/assimp-master/include/assimp/quaternion.inl deleted file mode 100644 index 960e91a..0000000 --- a/src/mesh/assimp-master/include/assimp/quaternion.inl +++ /dev/null @@ -1,310 +0,0 @@ -/* ---------------------------------------------------------------------------- -Open Asset Import Library (assimp) ---------------------------------------------------------------------------- - -Copyright (c) 2006-2022, assimp team - - - -All rights reserved. - -Redistribution and use of this software in source and binary forms, -with or without modification, are permitted provided that the following -conditions are met: - -* Redistributions of source code must retain the above - copyright notice, this list of conditions and the - following disclaimer. - -* Redistributions in binary form must reproduce the above - copyright notice, this list of conditions and the - following disclaimer in the documentation and/or other - materials provided with the distribution. - -* Neither the name of the assimp team, nor the names of its - contributors may be used to endorse or promote products - derived from this software without specific prior - written permission of the assimp team. - -THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS -"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT -LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR -A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT -OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, -SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT -LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, -DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY -THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT -(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE -OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------------- -*/ - -/** @file quaternion.inl - * @brief Inline implementation of aiQuaterniont<TReal> operators - */ -#pragma once -#ifndef AI_QUATERNION_INL_INC -#define AI_QUATERNION_INL_INC - -#ifdef __GNUC__ -# pragma GCC system_header -#endif - -#ifdef __cplusplus -#include <assimp/quaternion.h> - -#include <cmath> - -// ------------------------------------------------------------------------------------------------ -/** Transformation of a quaternion by a 4x4 matrix */ -template <typename TReal> -AI_FORCE_INLINE -aiQuaterniont<TReal> operator * (const aiMatrix4x4t<TReal>& pMatrix, const aiQuaterniont<TReal>& pQuaternion) { - aiQuaterniont<TReal> res; - res.x = pMatrix.a1 * pQuaternion.x + pMatrix.a2 * pQuaternion.y + pMatrix.a3 * pQuaternion.z + pMatrix.a4 * pQuaternion.w; - res.y = pMatrix.b1 * pQuaternion.x + pMatrix.b2 * pQuaternion.y + pMatrix.b3 * pQuaternion.z + pMatrix.b4 * pQuaternion.w; - res.z = pMatrix.c1 * pQuaternion.x + pMatrix.c2 * pQuaternion.y + pMatrix.c3 * pQuaternion.z + pMatrix.c4 * pQuaternion.w; - res.w = pMatrix.d1 * pQuaternion.x + pMatrix.d2 * pQuaternion.y + pMatrix.d3 * pQuaternion.z + pMatrix.d4 * pQuaternion.w; - return res; -} -// --------------------------------------------------------------------------- -template<typename TReal> -bool aiQuaterniont<TReal>::operator== (const aiQuaterniont& o) const -{ - return x == o.x && y == o.y && z == o.z && w == o.w; -} - -// --------------------------------------------------------------------------- -template<typename TReal> -bool aiQuaterniont<TReal>::operator!= (const aiQuaterniont& o) const -{ - return !(*this == o); -} - -// ------------------------------------------------------------------------------------------------ -template <typename TReal> -AI_FORCE_INLINE -aiQuaterniont<TReal>& aiQuaterniont<TReal>::operator *= (const aiMatrix4x4t<TReal>& mat){ - return (*this = mat * (*this)); -} -// ------------------------------------------------------------------------------------------------ - -// --------------------------------------------------------------------------- -template<typename TReal> -inline bool aiQuaterniont<TReal>::Equal(const aiQuaterniont& o, TReal epsilon) const { - return - std::abs(x - o.x) <= epsilon && - std::abs(y - o.y) <= epsilon && - std::abs(z - o.z) <= epsilon && - std::abs(w - o.w) <= epsilon; -} - -// --------------------------------------------------------------------------- -// Constructs a quaternion from a rotation matrix -template<typename TReal> -inline aiQuaterniont<TReal>::aiQuaterniont( const aiMatrix3x3t<TReal> &pRotMatrix) -{ - TReal t = pRotMatrix.a1 + pRotMatrix.b2 + pRotMatrix.c3; - - // large enough - if( t > static_cast<TReal>(0)) - { - TReal s = std::sqrt(1 + t) * static_cast<TReal>(2.0); - x = (pRotMatrix.c2 - pRotMatrix.b3) / s; - y = (pRotMatrix.a3 - pRotMatrix.c1) / s; - z = (pRotMatrix.b1 - pRotMatrix.a2) / s; - w = static_cast<TReal>(0.25) * s; - } // else we have to check several cases - else if( pRotMatrix.a1 > pRotMatrix.b2 && pRotMatrix.a1 > pRotMatrix.c3 ) - { - // Column 0: - TReal s = std::sqrt( static_cast<TReal>(1.0) + pRotMatrix.a1 - pRotMatrix.b2 - pRotMatrix.c3) * static_cast<TReal>(2.0); - x = static_cast<TReal>(0.25) * s; - y = (pRotMatrix.b1 + pRotMatrix.a2) / s; - z = (pRotMatrix.a3 + pRotMatrix.c1) / s; - w = (pRotMatrix.c2 - pRotMatrix.b3) / s; - } - else if( pRotMatrix.b2 > pRotMatrix.c3) - { - // Column 1: - TReal s = std::sqrt( static_cast<TReal>(1.0) + pRotMatrix.b2 - pRotMatrix.a1 - pRotMatrix.c3) * static_cast<TReal>(2.0); - x = (pRotMatrix.b1 + pRotMatrix.a2) / s; - y = static_cast<TReal>(0.25) * s; - z = (pRotMatrix.c2 + pRotMatrix.b3) / s; - w = (pRotMatrix.a3 - pRotMatrix.c1) / s; - } else - { - // Column 2: - TReal s = std::sqrt( static_cast<TReal>(1.0) + pRotMatrix.c3 - pRotMatrix.a1 - pRotMatrix.b2) * static_cast<TReal>(2.0); - x = (pRotMatrix.a3 + pRotMatrix.c1) / s; - y = (pRotMatrix.c2 + pRotMatrix.b3) / s; - z = static_cast<TReal>(0.25) * s; - w = (pRotMatrix.b1 - pRotMatrix.a2) / s; - } -} - -// --------------------------------------------------------------------------- -// Construction from euler angles -template<typename TReal> -inline aiQuaterniont<TReal>::aiQuaterniont( TReal fPitch, TReal fYaw, TReal fRoll ) -{ - const TReal fSinPitch(std::sin(fPitch*static_cast<TReal>(0.5))); - const TReal fCosPitch(std::cos(fPitch*static_cast<TReal>(0.5))); - const TReal fSinYaw(std::sin(fYaw*static_cast<TReal>(0.5))); - const TReal fCosYaw(std::cos(fYaw*static_cast<TReal>(0.5))); - const TReal fSinRoll(std::sin(fRoll*static_cast<TReal>(0.5))); - const TReal fCosRoll(std::cos(fRoll*static_cast<TReal>(0.5))); - const TReal fCosPitchCosYaw(fCosPitch*fCosYaw); - const TReal fSinPitchSinYaw(fSinPitch*fSinYaw); - x = fSinRoll * fCosPitchCosYaw - fCosRoll * fSinPitchSinYaw; - y = fCosRoll * fSinPitch * fCosYaw + fSinRoll * fCosPitch * fSinYaw; - z = fCosRoll * fCosPitch * fSinYaw - fSinRoll * fSinPitch * fCosYaw; - w = fCosRoll * fCosPitchCosYaw + fSinRoll * fSinPitchSinYaw; -} - -// --------------------------------------------------------------------------- -// Returns a matrix representation of the quaternion -template<typename TReal> -inline aiMatrix3x3t<TReal> aiQuaterniont<TReal>::GetMatrix() const -{ - aiMatrix3x3t<TReal> resMatrix; - resMatrix.a1 = static_cast<TReal>(1.0) - static_cast<TReal>(2.0) * (y * y + z * z); - resMatrix.a2 = static_cast<TReal>(2.0) * (x * y - z * w); - resMatrix.a3 = static_cast<TReal>(2.0) * (x * z + y * w); - resMatrix.b1 = static_cast<TReal>(2.0) * (x * y + z * w); - resMatrix.b2 = static_cast<TReal>(1.0) - static_cast<TReal>(2.0) * (x * x + z * z); - resMatrix.b3 = static_cast<TReal>(2.0) * (y * z - x * w); - resMatrix.c1 = static_cast<TReal>(2.0) * (x * z - y * w); - resMatrix.c2 = static_cast<TReal>(2.0) * (y * z + x * w); - resMatrix.c3 = static_cast<TReal>(1.0) - static_cast<TReal>(2.0) * (x * x + y * y); - - return resMatrix; -} - -// --------------------------------------------------------------------------- -// Construction from an axis-angle pair -template<typename TReal> -inline aiQuaterniont<TReal>::aiQuaterniont( aiVector3t<TReal> axis, TReal angle) -{ - axis.Normalize(); - - const TReal sin_a = std::sin( angle / 2 ); - const TReal cos_a = std::cos( angle / 2 ); - x = axis.x * sin_a; - y = axis.y * sin_a; - z = axis.z * sin_a; - w = cos_a; -} -// --------------------------------------------------------------------------- -// Construction from am existing, normalized quaternion -template<typename TReal> -inline aiQuaterniont<TReal>::aiQuaterniont( aiVector3t<TReal> normalized) -{ - x = normalized.x; - y = normalized.y; - z = normalized.z; - - const TReal t = static_cast<TReal>(1.0) - (x*x) - (y*y) - (z*z); - - if (t < static_cast<TReal>(0.0)) { - w = static_cast<TReal>(0.0); - } - else w = std::sqrt (t); -} - -// --------------------------------------------------------------------------- -// Performs a spherical interpolation between two quaternions -// Implementation adopted from the gmtl project. All others I found on the net fail in some cases. -// Congrats, gmtl! -template<typename TReal> -inline void aiQuaterniont<TReal>::Interpolate( aiQuaterniont& pOut, const aiQuaterniont& pStart, const aiQuaterniont& pEnd, TReal pFactor) -{ - // calc cosine theta - TReal cosom = pStart.x * pEnd.x + pStart.y * pEnd.y + pStart.z * pEnd.z + pStart.w * pEnd.w; - - // adjust signs (if necessary) - aiQuaterniont end = pEnd; - if( cosom < static_cast<TReal>(0.0)) - { - cosom = -cosom; - end.x = -end.x; // Reverse all signs - end.y = -end.y; - end.z = -end.z; - end.w = -end.w; - } - - // Calculate coefficients - TReal sclp, sclq; - if( (static_cast<TReal>(1.0) - cosom) > static_cast<TReal>(0.0001)) // 0.0001 -> some epsillon - { - // Standard case (slerp) - TReal omega, sinom; - omega = std::acos( cosom); // extract theta from dot product's cos theta - sinom = std::sin( omega); - sclp = std::sin( (static_cast<TReal>(1.0) - pFactor) * omega) / sinom; - sclq = std::sin( pFactor * omega) / sinom; - } else - { - // Very close, do linear interp (because it's faster) - sclp = static_cast<TReal>(1.0) - pFactor; - sclq = pFactor; - } - - pOut.x = sclp * pStart.x + sclq * end.x; - pOut.y = sclp * pStart.y + sclq * end.y; - pOut.z = sclp * pStart.z + sclq * end.z; - pOut.w = sclp * pStart.w + sclq * end.w; -} - -// --------------------------------------------------------------------------- -template<typename TReal> -inline aiQuaterniont<TReal>& aiQuaterniont<TReal>::Normalize() -{ - // compute the magnitude and divide through it - const TReal mag = std::sqrt(x*x + y*y + z*z + w*w); - if (mag) - { - const TReal invMag = static_cast<TReal>(1.0)/mag; - x *= invMag; - y *= invMag; - z *= invMag; - w *= invMag; - } - return *this; -} - -// --------------------------------------------------------------------------- -template<typename TReal> -inline aiQuaterniont<TReal> aiQuaterniont<TReal>::operator* (const aiQuaterniont& t) const -{ - return aiQuaterniont(w*t.w - x*t.x - y*t.y - z*t.z, - w*t.x + x*t.w + y*t.z - z*t.y, - w*t.y + y*t.w + z*t.x - x*t.z, - w*t.z + z*t.w + x*t.y - y*t.x); -} - -// --------------------------------------------------------------------------- -template<typename TReal> -inline aiQuaterniont<TReal>& aiQuaterniont<TReal>::Conjugate () -{ - x = -x; - y = -y; - z = -z; - return *this; -} - -// --------------------------------------------------------------------------- -template<typename TReal> -inline aiVector3t<TReal> aiQuaterniont<TReal>::Rotate (const aiVector3t<TReal>& v) const -{ - aiQuaterniont q2(0.f,v.x,v.y,v.z), q = *this, qinv = q; - qinv.Conjugate(); - - q = q*q2*qinv; - return aiVector3t<TReal>(q.x,q.y,q.z); -} - -#endif -#endif // AI_QUATERNION_INL_INC |