summaryrefslogtreecommitdiff
path: root/src/mesh/assimp-master/port/PyAssimp/scripts/transformations.py
diff options
context:
space:
mode:
authorsanine <sanine.not@pm.me>2022-03-04 10:47:15 -0600
committersanine <sanine.not@pm.me>2022-03-04 10:47:15 -0600
commit058f98a63658dc1a2579826ba167fd61bed1e21f (patch)
treebcba07a1615a14d943f3af3f815a42f3be86b2f3 /src/mesh/assimp-master/port/PyAssimp/scripts/transformations.py
parent2f8028ac9e0812cb6f3cbb08f0f419e4e717bd22 (diff)
add assimp submodule
Diffstat (limited to 'src/mesh/assimp-master/port/PyAssimp/scripts/transformations.py')
-rw-r--r--src/mesh/assimp-master/port/PyAssimp/scripts/transformations.py1705
1 files changed, 1705 insertions, 0 deletions
diff --git a/src/mesh/assimp-master/port/PyAssimp/scripts/transformations.py b/src/mesh/assimp-master/port/PyAssimp/scripts/transformations.py
new file mode 100644
index 0000000..bf0cac9
--- /dev/null
+++ b/src/mesh/assimp-master/port/PyAssimp/scripts/transformations.py
@@ -0,0 +1,1705 @@
+# -*- coding: utf-8 -*-
+# transformations.py
+
+# Copyright (c) 2006, Christoph Gohlke
+# Copyright (c) 2006-2009, The Regents of the University of California
+# All rights reserved.
+#
+# Redistribution and use in source and binary forms, with or without
+# modification, are permitted provided that the following conditions are met:
+#
+# * Redistributions of source code must retain the above copyright
+# notice, this list of conditions and the following disclaimer.
+# * Redistributions in binary form must reproduce the above copyright
+# notice, this list of conditions and the following disclaimer in the
+# documentation and/or other materials provided with the distribution.
+# * Neither the name of the copyright holders nor the names of any
+# contributors may be used to endorse or promote products derived
+# from this software without specific prior written permission.
+#
+# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+# POSSIBILITY OF SUCH DAMAGE.
+
+"""Homogeneous Transformation Matrices and Quaternions.
+
+A library for calculating 4x4 matrices for translating, rotating, reflecting,
+scaling, shearing, projecting, orthogonalizing, and superimposing arrays of
+3D homogeneous coordinates as well as for converting between rotation matrices,
+Euler angles, and quaternions. Also includes an Arcball control object and
+functions to decompose transformation matrices.
+
+:Authors:
+ `Christoph Gohlke <http://www.lfd.uci.edu/~gohlke/>`__,
+ Laboratory for Fluorescence Dynamics, University of California, Irvine
+
+:Version: 20090418
+
+Requirements
+------------
+
+* `Python 2.6 <http://www.python.org>`__
+* `Numpy 1.3 <http://numpy.scipy.org>`__
+* `transformations.c 20090418 <http://www.lfd.uci.edu/~gohlke/>`__
+ (optional implementation of some functions in C)
+
+Notes
+-----
+
+Matrices (M) can be inverted using numpy.linalg.inv(M), concatenated using
+numpy.dot(M0, M1), or used to transform homogeneous coordinates (v) using
+numpy.dot(M, v) for shape (4, \*) "point of arrays", respectively
+numpy.dot(v, M.T) for shape (\*, 4) "array of points".
+
+Calculations are carried out with numpy.float64 precision.
+
+This Python implementation is not optimized for speed.
+
+Vector, point, quaternion, and matrix function arguments are expected to be
+"array like", i.e. tuple, list, or numpy arrays.
+
+Return types are numpy arrays unless specified otherwise.
+
+Angles are in radians unless specified otherwise.
+
+Quaternions ix+jy+kz+w are represented as [x, y, z, w].
+
+Use the transpose of transformation matrices for OpenGL glMultMatrixd().
+
+A triple of Euler angles can be applied/interpreted in 24 ways, which can
+be specified using a 4 character string or encoded 4-tuple:
+
+ *Axes 4-string*: e.g. 'sxyz' or 'ryxy'
+
+ - first character : rotations are applied to 's'tatic or 'r'otating frame
+ - remaining characters : successive rotation axis 'x', 'y', or 'z'
+
+ *Axes 4-tuple*: e.g. (0, 0, 0, 0) or (1, 1, 1, 1)
+
+ - inner axis: code of axis ('x':0, 'y':1, 'z':2) of rightmost matrix.
+ - parity : even (0) if inner axis 'x' is followed by 'y', 'y' is followed
+ by 'z', or 'z' is followed by 'x'. Otherwise odd (1).
+ - repetition : first and last axis are same (1) or different (0).
+ - frame : rotations are applied to static (0) or rotating (1) frame.
+
+References
+----------
+
+(1) Matrices and transformations. Ronald Goldman.
+ In "Graphics Gems I", pp 472-475. Morgan Kaufmann, 1990.
+(2) More matrices and transformations: shear and pseudo-perspective.
+ Ronald Goldman. In "Graphics Gems II", pp 320-323. Morgan Kaufmann, 1991.
+(3) Decomposing a matrix into simple transformations. Spencer Thomas.
+ In "Graphics Gems II", pp 320-323. Morgan Kaufmann, 1991.
+(4) Recovering the data from the transformation matrix. Ronald Goldman.
+ In "Graphics Gems II", pp 324-331. Morgan Kaufmann, 1991.
+(5) Euler angle conversion. Ken Shoemake.
+ In "Graphics Gems IV", pp 222-229. Morgan Kaufmann, 1994.
+(6) Arcball rotation control. Ken Shoemake.
+ In "Graphics Gems IV", pp 175-192. Morgan Kaufmann, 1994.
+(7) Representing attitude: Euler angles, unit quaternions, and rotation
+ vectors. James Diebel. 2006.
+(8) A discussion of the solution for the best rotation to relate two sets
+ of vectors. W Kabsch. Acta Cryst. 1978. A34, 827-828.
+(9) Closed-form solution of absolute orientation using unit quaternions.
+ BKP Horn. J Opt Soc Am A. 1987. 4(4), 629-642.
+(10) Quaternions. Ken Shoemake.
+ http://www.sfu.ca/~jwa3/cmpt461/files/quatut.pdf
+(11) From quaternion to matrix and back. JMP van Waveren. 2005.
+ http://www.intel.com/cd/ids/developer/asmo-na/eng/293748.htm
+(12) Uniform random rotations. Ken Shoemake.
+ In "Graphics Gems III", pp 124-132. Morgan Kaufmann, 1992.
+
+
+Examples
+--------
+
+>>> alpha, beta, gamma = 0.123, -1.234, 2.345
+>>> origin, xaxis, yaxis, zaxis = (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)
+>>> I = identity_matrix()
+>>> Rx = rotation_matrix(alpha, xaxis)
+>>> Ry = rotation_matrix(beta, yaxis)
+>>> Rz = rotation_matrix(gamma, zaxis)
+>>> R = concatenate_matrices(Rx, Ry, Rz)
+>>> euler = euler_from_matrix(R, 'rxyz')
+>>> numpy.allclose([alpha, beta, gamma], euler)
+True
+>>> Re = euler_matrix(alpha, beta, gamma, 'rxyz')
+>>> is_same_transform(R, Re)
+True
+>>> al, be, ga = euler_from_matrix(Re, 'rxyz')
+>>> is_same_transform(Re, euler_matrix(al, be, ga, 'rxyz'))
+True
+>>> qx = quaternion_about_axis(alpha, xaxis)
+>>> qy = quaternion_about_axis(beta, yaxis)
+>>> qz = quaternion_about_axis(gamma, zaxis)
+>>> q = quaternion_multiply(qx, qy)
+>>> q = quaternion_multiply(q, qz)
+>>> Rq = quaternion_matrix(q)
+>>> is_same_transform(R, Rq)
+True
+>>> S = scale_matrix(1.23, origin)
+>>> T = translation_matrix((1, 2, 3))
+>>> Z = shear_matrix(beta, xaxis, origin, zaxis)
+>>> R = random_rotation_matrix(numpy.random.rand(3))
+>>> M = concatenate_matrices(T, R, Z, S)
+>>> scale, shear, angles, trans, persp = decompose_matrix(M)
+>>> numpy.allclose(scale, 1.23)
+True
+>>> numpy.allclose(trans, (1, 2, 3))
+True
+>>> numpy.allclose(shear, (0, math.tan(beta), 0))
+True
+>>> is_same_transform(R, euler_matrix(axes='sxyz', *angles))
+True
+>>> M1 = compose_matrix(scale, shear, angles, trans, persp)
+>>> is_same_transform(M, M1)
+True
+
+"""
+
+from __future__ import division
+
+import warnings
+import math
+
+import numpy
+
+# Documentation in HTML format can be generated with Epydoc
+__docformat__ = "restructuredtext en"
+
+
+def identity_matrix():
+ """Return 4x4 identity/unit matrix.
+
+ >>> I = identity_matrix()
+ >>> numpy.allclose(I, numpy.dot(I, I))
+ True
+ >>> numpy.sum(I), numpy.trace(I)
+ (4.0, 4.0)
+ >>> numpy.allclose(I, numpy.identity(4, dtype=numpy.float64))
+ True
+
+ """
+ return numpy.identity(4, dtype=numpy.float64)
+
+
+def translation_matrix(direction):
+ """Return matrix to translate by direction vector.
+
+ >>> v = numpy.random.random(3) - 0.5
+ >>> numpy.allclose(v, translation_matrix(v)[:3, 3])
+ True
+
+ """
+ M = numpy.identity(4)
+ M[:3, 3] = direction[:3]
+ return M
+
+
+def translation_from_matrix(matrix):
+ """Return translation vector from translation matrix.
+
+ >>> v0 = numpy.random.random(3) - 0.5
+ >>> v1 = translation_from_matrix(translation_matrix(v0))
+ >>> numpy.allclose(v0, v1)
+ True
+
+ """
+ return numpy.array(matrix, copy=False)[:3, 3].copy()
+
+
+def reflection_matrix(point, normal):
+ """Return matrix to mirror at plane defined by point and normal vector.
+
+ >>> v0 = numpy.random.random(4) - 0.5
+ >>> v0[3] = 1.0
+ >>> v1 = numpy.random.random(3) - 0.5
+ >>> R = reflection_matrix(v0, v1)
+ >>> numpy.allclose(2., numpy.trace(R))
+ True
+ >>> numpy.allclose(v0, numpy.dot(R, v0))
+ True
+ >>> v2 = v0.copy()
+ >>> v2[:3] += v1
+ >>> v3 = v0.copy()
+ >>> v2[:3] -= v1
+ >>> numpy.allclose(v2, numpy.dot(R, v3))
+ True
+
+ """
+ normal = unit_vector(normal[:3])
+ M = numpy.identity(4)
+ M[:3, :3] -= 2.0 * numpy.outer(normal, normal)
+ M[:3, 3] = (2.0 * numpy.dot(point[:3], normal)) * normal
+ return M
+
+
+def reflection_from_matrix(matrix):
+ """Return mirror plane point and normal vector from reflection matrix.
+
+ >>> v0 = numpy.random.random(3) - 0.5
+ >>> v1 = numpy.random.random(3) - 0.5
+ >>> M0 = reflection_matrix(v0, v1)
+ >>> point, normal = reflection_from_matrix(M0)
+ >>> M1 = reflection_matrix(point, normal)
+ >>> is_same_transform(M0, M1)
+ True
+
+ """
+ M = numpy.array(matrix, dtype=numpy.float64, copy=False)
+ # normal: unit eigenvector corresponding to eigenvalue -1
+ l, V = numpy.linalg.eig(M[:3, :3])
+ i = numpy.where(abs(numpy.real(l) + 1.0) < 1e-8)[0]
+ if not len(i):
+ raise ValueError("no unit eigenvector corresponding to eigenvalue -1")
+ normal = numpy.real(V[:, i[0]]).squeeze()
+ # point: any unit eigenvector corresponding to eigenvalue 1
+ l, V = numpy.linalg.eig(M)
+ i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0]
+ if not len(i):
+ raise ValueError("no unit eigenvector corresponding to eigenvalue 1")
+ point = numpy.real(V[:, i[-1]]).squeeze()
+ point /= point[3]
+ return point, normal
+
+
+def rotation_matrix(angle, direction, point=None):
+ """Return matrix to rotate about axis defined by point and direction.
+
+ >>> angle = (random.random() - 0.5) * (2*math.pi)
+ >>> direc = numpy.random.random(3) - 0.5
+ >>> point = numpy.random.random(3) - 0.5
+ >>> R0 = rotation_matrix(angle, direc, point)
+ >>> R1 = rotation_matrix(angle-2*math.pi, direc, point)
+ >>> is_same_transform(R0, R1)
+ True
+ >>> R0 = rotation_matrix(angle, direc, point)
+ >>> R1 = rotation_matrix(-angle, -direc, point)
+ >>> is_same_transform(R0, R1)
+ True
+ >>> I = numpy.identity(4, numpy.float64)
+ >>> numpy.allclose(I, rotation_matrix(math.pi*2, direc))
+ True
+ >>> numpy.allclose(2., numpy.trace(rotation_matrix(math.pi/2,
+ ... direc, point)))
+ True
+
+ """
+ sina = math.sin(angle)
+ cosa = math.cos(angle)
+ direction = unit_vector(direction[:3])
+ # rotation matrix around unit vector
+ R = numpy.array(((cosa, 0.0, 0.0),
+ (0.0, cosa, 0.0),
+ (0.0, 0.0, cosa)), dtype=numpy.float64)
+ R += numpy.outer(direction, direction) * (1.0 - cosa)
+ direction *= sina
+ R += numpy.array((( 0.0, -direction[2], direction[1]),
+ ( direction[2], 0.0, -direction[0]),
+ (-direction[1], direction[0], 0.0)),
+ dtype=numpy.float64)
+ M = numpy.identity(4)
+ M[:3, :3] = R
+ if point is not None:
+ # rotation not around origin
+ point = numpy.array(point[:3], dtype=numpy.float64, copy=False)
+ M[:3, 3] = point - numpy.dot(R, point)
+ return M
+
+
+def rotation_from_matrix(matrix):
+ """Return rotation angle and axis from rotation matrix.
+
+ >>> angle = (random.random() - 0.5) * (2*math.pi)
+ >>> direc = numpy.random.random(3) - 0.5
+ >>> point = numpy.random.random(3) - 0.5
+ >>> R0 = rotation_matrix(angle, direc, point)
+ >>> angle, direc, point = rotation_from_matrix(R0)
+ >>> R1 = rotation_matrix(angle, direc, point)
+ >>> is_same_transform(R0, R1)
+ True
+
+ """
+ R = numpy.array(matrix, dtype=numpy.float64, copy=False)
+ R33 = R[:3, :3]
+ # direction: unit eigenvector of R33 corresponding to eigenvalue of 1
+ l, W = numpy.linalg.eig(R33.T)
+ i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0]
+ if not len(i):
+ raise ValueError("no unit eigenvector corresponding to eigenvalue 1")
+ direction = numpy.real(W[:, i[-1]]).squeeze()
+ # point: unit eigenvector of R33 corresponding to eigenvalue of 1
+ l, Q = numpy.linalg.eig(R)
+ i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0]
+ if not len(i):
+ raise ValueError("no unit eigenvector corresponding to eigenvalue 1")
+ point = numpy.real(Q[:, i[-1]]).squeeze()
+ point /= point[3]
+ # rotation angle depending on direction
+ cosa = (numpy.trace(R33) - 1.0) / 2.0
+ if abs(direction[2]) > 1e-8:
+ sina = (R[1, 0] + (cosa-1.0)*direction[0]*direction[1]) / direction[2]
+ elif abs(direction[1]) > 1e-8:
+ sina = (R[0, 2] + (cosa-1.0)*direction[0]*direction[2]) / direction[1]
+ else:
+ sina = (R[2, 1] + (cosa-1.0)*direction[1]*direction[2]) / direction[0]
+ angle = math.atan2(sina, cosa)
+ return angle, direction, point
+
+
+def scale_matrix(factor, origin=None, direction=None):
+ """Return matrix to scale by factor around origin in direction.
+
+ Use factor -1 for point symmetry.
+
+ >>> v = (numpy.random.rand(4, 5) - 0.5) * 20.0
+ >>> v[3] = 1.0
+ >>> S = scale_matrix(-1.234)
+ >>> numpy.allclose(numpy.dot(S, v)[:3], -1.234*v[:3])
+ True
+ >>> factor = random.random() * 10 - 5
+ >>> origin = numpy.random.random(3) - 0.5
+ >>> direct = numpy.random.random(3) - 0.5
+ >>> S = scale_matrix(factor, origin)
+ >>> S = scale_matrix(factor, origin, direct)
+
+ """
+ if direction is None:
+ # uniform scaling
+ M = numpy.array(((factor, 0.0, 0.0, 0.0),
+ (0.0, factor, 0.0, 0.0),
+ (0.0, 0.0, factor, 0.0),
+ (0.0, 0.0, 0.0, 1.0)), dtype=numpy.float64)
+ if origin is not None:
+ M[:3, 3] = origin[:3]
+ M[:3, 3] *= 1.0 - factor
+ else:
+ # nonuniform scaling
+ direction = unit_vector(direction[:3])
+ factor = 1.0 - factor
+ M = numpy.identity(4)
+ M[:3, :3] -= factor * numpy.outer(direction, direction)
+ if origin is not None:
+ M[:3, 3] = (factor * numpy.dot(origin[:3], direction)) * direction
+ return M
+
+
+def scale_from_matrix(matrix):
+ """Return scaling factor, origin and direction from scaling matrix.
+
+ >>> factor = random.random() * 10 - 5
+ >>> origin = numpy.random.random(3) - 0.5
+ >>> direct = numpy.random.random(3) - 0.5
+ >>> S0 = scale_matrix(factor, origin)
+ >>> factor, origin, direction = scale_from_matrix(S0)
+ >>> S1 = scale_matrix(factor, origin, direction)
+ >>> is_same_transform(S0, S1)
+ True
+ >>> S0 = scale_matrix(factor, origin, direct)
+ >>> factor, origin, direction = scale_from_matrix(S0)
+ >>> S1 = scale_matrix(factor, origin, direction)
+ >>> is_same_transform(S0, S1)
+ True
+
+ """
+ M = numpy.array(matrix, dtype=numpy.float64, copy=False)
+ M33 = M[:3, :3]
+ factor = numpy.trace(M33) - 2.0
+ try:
+ # direction: unit eigenvector corresponding to eigenvalue factor
+ l, V = numpy.linalg.eig(M33)
+ i = numpy.where(abs(numpy.real(l) - factor) < 1e-8)[0][0]
+ direction = numpy.real(V[:, i]).squeeze()
+ direction /= vector_norm(direction)
+ except IndexError:
+ # uniform scaling
+ factor = (factor + 2.0) / 3.0
+ direction = None
+ # origin: any eigenvector corresponding to eigenvalue 1
+ l, V = numpy.linalg.eig(M)
+ i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0]
+ if not len(i):
+ raise ValueError("no eigenvector corresponding to eigenvalue 1")
+ origin = numpy.real(V[:, i[-1]]).squeeze()
+ origin /= origin[3]
+ return factor, origin, direction
+
+
+def projection_matrix(point, normal, direction=None,
+ perspective=None, pseudo=False):
+ """Return matrix to project onto plane defined by point and normal.
+
+ Using either perspective point, projection direction, or none of both.
+
+ If pseudo is True, perspective projections will preserve relative depth
+ such that Perspective = dot(Orthogonal, PseudoPerspective).
+
+ >>> P = projection_matrix((0, 0, 0), (1, 0, 0))
+ >>> numpy.allclose(P[1:, 1:], numpy.identity(4)[1:, 1:])
+ True
+ >>> point = numpy.random.random(3) - 0.5
+ >>> normal = numpy.random.random(3) - 0.5
+ >>> direct = numpy.random.random(3) - 0.5
+ >>> persp = numpy.random.random(3) - 0.5
+ >>> P0 = projection_matrix(point, normal)
+ >>> P1 = projection_matrix(point, normal, direction=direct)
+ >>> P2 = projection_matrix(point, normal, perspective=persp)
+ >>> P3 = projection_matrix(point, normal, perspective=persp, pseudo=True)
+ >>> is_same_transform(P2, numpy.dot(P0, P3))
+ True
+ >>> P = projection_matrix((3, 0, 0), (1, 1, 0), (1, 0, 0))
+ >>> v0 = (numpy.random.rand(4, 5) - 0.5) * 20.0
+ >>> v0[3] = 1.0
+ >>> v1 = numpy.dot(P, v0)
+ >>> numpy.allclose(v1[1], v0[1])
+ True
+ >>> numpy.allclose(v1[0], 3.0-v1[1])
+ True
+
+ """
+ M = numpy.identity(4)
+ point = numpy.array(point[:3], dtype=numpy.float64, copy=False)
+ normal = unit_vector(normal[:3])
+ if perspective is not None:
+ # perspective projection
+ perspective = numpy.array(perspective[:3], dtype=numpy.float64,
+ copy=False)
+ M[0, 0] = M[1, 1] = M[2, 2] = numpy.dot(perspective-point, normal)
+ M[:3, :3] -= numpy.outer(perspective, normal)
+ if pseudo:
+ # preserve relative depth
+ M[:3, :3] -= numpy.outer(normal, normal)
+ M[:3, 3] = numpy.dot(point, normal) * (perspective+normal)
+ else:
+ M[:3, 3] = numpy.dot(point, normal) * perspective
+ M[3, :3] = -normal
+ M[3, 3] = numpy.dot(perspective, normal)
+ elif direction is not None:
+ # parallel projection
+ direction = numpy.array(direction[:3], dtype=numpy.float64, copy=False)
+ scale = numpy.dot(direction, normal)
+ M[:3, :3] -= numpy.outer(direction, normal) / scale
+ M[:3, 3] = direction * (numpy.dot(point, normal) / scale)
+ else:
+ # orthogonal projection
+ M[:3, :3] -= numpy.outer(normal, normal)
+ M[:3, 3] = numpy.dot(point, normal) * normal
+ return M
+
+
+def projection_from_matrix(matrix, pseudo=False):
+ """Return projection plane and perspective point from projection matrix.
+
+ Return values are same as arguments for projection_matrix function:
+ point, normal, direction, perspective, and pseudo.
+
+ >>> point = numpy.random.random(3) - 0.5
+ >>> normal = numpy.random.random(3) - 0.5
+ >>> direct = numpy.random.random(3) - 0.5
+ >>> persp = numpy.random.random(3) - 0.5
+ >>> P0 = projection_matrix(point, normal)
+ >>> result = projection_from_matrix(P0)
+ >>> P1 = projection_matrix(*result)
+ >>> is_same_transform(P0, P1)
+ True
+ >>> P0 = projection_matrix(point, normal, direct)
+ >>> result = projection_from_matrix(P0)
+ >>> P1 = projection_matrix(*result)
+ >>> is_same_transform(P0, P1)
+ True
+ >>> P0 = projection_matrix(point, normal, perspective=persp, pseudo=False)
+ >>> result = projection_from_matrix(P0, pseudo=False)
+ >>> P1 = projection_matrix(*result)
+ >>> is_same_transform(P0, P1)
+ True
+ >>> P0 = projection_matrix(point, normal, perspective=persp, pseudo=True)
+ >>> result = projection_from_matrix(P0, pseudo=True)
+ >>> P1 = projection_matrix(*result)
+ >>> is_same_transform(P0, P1)
+ True
+
+ """
+ M = numpy.array(matrix, dtype=numpy.float64, copy=False)
+ M33 = M[:3, :3]
+ l, V = numpy.linalg.eig(M)
+ i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0]
+ if not pseudo and len(i):
+ # point: any eigenvector corresponding to eigenvalue 1
+ point = numpy.real(V[:, i[-1]]).squeeze()
+ point /= point[3]
+ # direction: unit eigenvector corresponding to eigenvalue 0
+ l, V = numpy.linalg.eig(M33)
+ i = numpy.where(abs(numpy.real(l)) < 1e-8)[0]
+ if not len(i):
+ raise ValueError("no eigenvector corresponding to eigenvalue 0")
+ direction = numpy.real(V[:, i[0]]).squeeze()
+ direction /= vector_norm(direction)
+ # normal: unit eigenvector of M33.T corresponding to eigenvalue 0
+ l, V = numpy.linalg.eig(M33.T)
+ i = numpy.where(abs(numpy.real(l)) < 1e-8)[0]
+ if len(i):
+ # parallel projection
+ normal = numpy.real(V[:, i[0]]).squeeze()
+ normal /= vector_norm(normal)
+ return point, normal, direction, None, False
+ else:
+ # orthogonal projection, where normal equals direction vector
+ return point, direction, None, None, False
+ else:
+ # perspective projection
+ i = numpy.where(abs(numpy.real(l)) > 1e-8)[0]
+ if not len(i):
+ raise ValueError(
+ "no eigenvector not corresponding to eigenvalue 0")
+ point = numpy.real(V[:, i[-1]]).squeeze()
+ point /= point[3]
+ normal = - M[3, :3]
+ perspective = M[:3, 3] / numpy.dot(point[:3], normal)
+ if pseudo:
+ perspective -= normal
+ return point, normal, None, perspective, pseudo
+
+
+def clip_matrix(left, right, bottom, top, near, far, perspective=False):
+ """Return matrix to obtain normalized device coordinates from frustrum.
+
+ The frustrum bounds are axis-aligned along x (left, right),
+ y (bottom, top) and z (near, far).
+
+ Normalized device coordinates are in range [-1, 1] if coordinates are
+ inside the frustrum.
+
+ If perspective is True the frustrum is a truncated pyramid with the
+ perspective point at origin and direction along z axis, otherwise an
+ orthographic canonical view volume (a box).
+
+ Homogeneous coordinates transformed by the perspective clip matrix
+ need to be dehomogenized (divided by w coordinate).
+
+ >>> frustrum = numpy.random.rand(6)
+ >>> frustrum[1] += frustrum[0]
+ >>> frustrum[3] += frustrum[2]
+ >>> frustrum[5] += frustrum[4]
+ >>> M = clip_matrix(*frustrum, perspective=False)
+ >>> numpy.dot(M, [frustrum[0], frustrum[2], frustrum[4], 1.0])
+ array([-1., -1., -1., 1.])
+ >>> numpy.dot(M, [frustrum[1], frustrum[3], frustrum[5], 1.0])
+ array([ 1., 1., 1., 1.])
+ >>> M = clip_matrix(*frustrum, perspective=True)
+ >>> v = numpy.dot(M, [frustrum[0], frustrum[2], frustrum[4], 1.0])
+ >>> v / v[3]
+ array([-1., -1., -1., 1.])
+ >>> v = numpy.dot(M, [frustrum[1], frustrum[3], frustrum[4], 1.0])
+ >>> v / v[3]
+ array([ 1., 1., -1., 1.])
+
+ """
+ if left >= right or bottom >= top or near >= far:
+ raise ValueError("invalid frustrum")
+ if perspective:
+ if near <= _EPS:
+ raise ValueError("invalid frustrum: near <= 0")
+ t = 2.0 * near
+ M = ((-t/(right-left), 0.0, (right+left)/(right-left), 0.0),
+ (0.0, -t/(top-bottom), (top+bottom)/(top-bottom), 0.0),
+ (0.0, 0.0, -(far+near)/(far-near), t*far/(far-near)),
+ (0.0, 0.0, -1.0, 0.0))
+ else:
+ M = ((2.0/(right-left), 0.0, 0.0, (right+left)/(left-right)),
+ (0.0, 2.0/(top-bottom), 0.0, (top+bottom)/(bottom-top)),
+ (0.0, 0.0, 2.0/(far-near), (far+near)/(near-far)),
+ (0.0, 0.0, 0.0, 1.0))
+ return numpy.array(M, dtype=numpy.float64)
+
+
+def shear_matrix(angle, direction, point, normal):
+ """Return matrix to shear by angle along direction vector on shear plane.
+
+ The shear plane is defined by a point and normal vector. The direction
+ vector must be orthogonal to the plane's normal vector.
+
+ A point P is transformed by the shear matrix into P" such that
+ the vector P-P" is parallel to the direction vector and its extent is
+ given by the angle of P-P'-P", where P' is the orthogonal projection
+ of P onto the shear plane.
+
+ >>> angle = (random.random() - 0.5) * 4*math.pi
+ >>> direct = numpy.random.random(3) - 0.5
+ >>> point = numpy.random.random(3) - 0.5
+ >>> normal = numpy.cross(direct, numpy.random.random(3))
+ >>> S = shear_matrix(angle, direct, point, normal)
+ >>> numpy.allclose(1.0, numpy.linalg.det(S))
+ True
+
+ """
+ normal = unit_vector(normal[:3])
+ direction = unit_vector(direction[:3])
+ if abs(numpy.dot(normal, direction)) > 1e-6:
+ raise ValueError("direction and normal vectors are not orthogonal")
+ angle = math.tan(angle)
+ M = numpy.identity(4)
+ M[:3, :3] += angle * numpy.outer(direction, normal)
+ M[:3, 3] = -angle * numpy.dot(point[:3], normal) * direction
+ return M
+
+
+def shear_from_matrix(matrix):
+ """Return shear angle, direction and plane from shear matrix.
+
+ >>> angle = (random.random() - 0.5) * 4*math.pi
+ >>> direct = numpy.random.random(3) - 0.5
+ >>> point = numpy.random.random(3) - 0.5
+ >>> normal = numpy.cross(direct, numpy.random.random(3))
+ >>> S0 = shear_matrix(angle, direct, point, normal)
+ >>> angle, direct, point, normal = shear_from_matrix(S0)
+ >>> S1 = shear_matrix(angle, direct, point, normal)
+ >>> is_same_transform(S0, S1)
+ True
+
+ """
+ M = numpy.array(matrix, dtype=numpy.float64, copy=False)
+ M33 = M[:3, :3]
+ # normal: cross independent eigenvectors corresponding to the eigenvalue 1
+ l, V = numpy.linalg.eig(M33)
+ i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-4)[0]
+ if len(i) < 2:
+ raise ValueError("No two linear independent eigenvectors found %s" % l)
+ V = numpy.real(V[:, i]).squeeze().T
+ lenorm = -1.0
+ for i0, i1 in ((0, 1), (0, 2), (1, 2)):
+ n = numpy.cross(V[i0], V[i1])
+ l = vector_norm(n)
+ if l > lenorm:
+ lenorm = l
+ normal = n
+ normal /= lenorm
+ # direction and angle
+ direction = numpy.dot(M33 - numpy.identity(3), normal)
+ angle = vector_norm(direction)
+ direction /= angle
+ angle = math.atan(angle)
+ # point: eigenvector corresponding to eigenvalue 1
+ l, V = numpy.linalg.eig(M)
+ i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0]
+ if not len(i):
+ raise ValueError("no eigenvector corresponding to eigenvalue 1")
+ point = numpy.real(V[:, i[-1]]).squeeze()
+ point /= point[3]
+ return angle, direction, point, normal
+
+
+def decompose_matrix(matrix):
+ """Return sequence of transformations from transformation matrix.
+
+ matrix : array_like
+ Non-degenerative homogeneous transformation matrix
+
+ Return tuple of:
+ scale : vector of 3 scaling factors
+ shear : list of shear factors for x-y, x-z, y-z axes
+ angles : list of Euler angles about static x, y, z axes
+ translate : translation vector along x, y, z axes
+ perspective : perspective partition of matrix
+
+ Raise ValueError if matrix is of wrong type or degenerative.
+
+ >>> T0 = translation_matrix((1, 2, 3))
+ >>> scale, shear, angles, trans, persp = decompose_matrix(T0)
+ >>> T1 = translation_matrix(trans)
+ >>> numpy.allclose(T0, T1)
+ True
+ >>> S = scale_matrix(0.123)
+ >>> scale, shear, angles, trans, persp = decompose_matrix(S)
+ >>> scale[0]
+ 0.123
+ >>> R0 = euler_matrix(1, 2, 3)
+ >>> scale, shear, angles, trans, persp = decompose_matrix(R0)
+ >>> R1 = euler_matrix(*angles)
+ >>> numpy.allclose(R0, R1)
+ True
+
+ """
+ M = numpy.array(matrix, dtype=numpy.float64, copy=True).T
+ if abs(M[3, 3]) < _EPS:
+ raise ValueError("M[3, 3] is zero")
+ M /= M[3, 3]
+ P = M.copy()
+ P[:, 3] = 0, 0, 0, 1
+ if not numpy.linalg.det(P):
+ raise ValueError("Matrix is singular")
+
+ scale = numpy.zeros((3, ), dtype=numpy.float64)
+ shear = [0, 0, 0]
+ angles = [0, 0, 0]
+
+ if any(abs(M[:3, 3]) > _EPS):
+ perspective = numpy.dot(M[:, 3], numpy.linalg.inv(P.T))
+ M[:, 3] = 0, 0, 0, 1
+ else:
+ perspective = numpy.array((0, 0, 0, 1), dtype=numpy.float64)
+
+ translate = M[3, :3].copy()
+ M[3, :3] = 0
+
+ row = M[:3, :3].copy()
+ scale[0] = vector_norm(row[0])
+ row[0] /= scale[0]
+ shear[0] = numpy.dot(row[0], row[1])
+ row[1] -= row[0] * shear[0]
+ scale[1] = vector_norm(row[1])
+ row[1] /= scale[1]
+ shear[0] /= scale[1]
+ shear[1] = numpy.dot(row[0], row[2])
+ row[2] -= row[0] * shear[1]
+ shear[2] = numpy.dot(row[1], row[2])
+ row[2] -= row[1] * shear[2]
+ scale[2] = vector_norm(row[2])
+ row[2] /= scale[2]
+ shear[1:] /= scale[2]
+
+ if numpy.dot(row[0], numpy.cross(row[1], row[2])) < 0:
+ scale *= -1
+ row *= -1
+
+ angles[1] = math.asin(-row[0, 2])
+ if math.cos(angles[1]):
+ angles[0] = math.atan2(row[1, 2], row[2, 2])
+ angles[2] = math.atan2(row[0, 1], row[0, 0])
+ else:
+ #angles[0] = math.atan2(row[1, 0], row[1, 1])
+ angles[0] = math.atan2(-row[2, 1], row[1, 1])
+ angles[2] = 0.0
+
+ return scale, shear, angles, translate, perspective
+
+
+def compose_matrix(scale=None, shear=None, angles=None, translate=None,
+ perspective=None):
+ """Return transformation matrix from sequence of transformations.
+
+ This is the inverse of the decompose_matrix function.
+
+ Sequence of transformations:
+ scale : vector of 3 scaling factors
+ shear : list of shear factors for x-y, x-z, y-z axes
+ angles : list of Euler angles about static x, y, z axes
+ translate : translation vector along x, y, z axes
+ perspective : perspective partition of matrix
+
+ >>> scale = numpy.random.random(3) - 0.5
+ >>> shear = numpy.random.random(3) - 0.5
+ >>> angles = (numpy.random.random(3) - 0.5) * (2*math.pi)
+ >>> trans = numpy.random.random(3) - 0.5
+ >>> persp = numpy.random.random(4) - 0.5
+ >>> M0 = compose_matrix(scale, shear, angles, trans, persp)
+ >>> result = decompose_matrix(M0)
+ >>> M1 = compose_matrix(*result)
+ >>> is_same_transform(M0, M1)
+ True
+
+ """
+ M = numpy.identity(4)
+ if perspective is not None:
+ P = numpy.identity(4)
+ P[3, :] = perspective[:4]
+ M = numpy.dot(M, P)
+ if translate is not None:
+ T = numpy.identity(4)
+ T[:3, 3] = translate[:3]
+ M = numpy.dot(M, T)
+ if angles is not None:
+ R = euler_matrix(angles[0], angles[1], angles[2], 'sxyz')
+ M = numpy.dot(M, R)
+ if shear is not None:
+ Z = numpy.identity(4)
+ Z[1, 2] = shear[2]
+ Z[0, 2] = shear[1]
+ Z[0, 1] = shear[0]
+ M = numpy.dot(M, Z)
+ if scale is not None:
+ S = numpy.identity(4)
+ S[0, 0] = scale[0]
+ S[1, 1] = scale[1]
+ S[2, 2] = scale[2]
+ M = numpy.dot(M, S)
+ M /= M[3, 3]
+ return M
+
+
+def orthogonalization_matrix(lengths, angles):
+ """Return orthogonalization matrix for crystallographic cell coordinates.
+
+ Angles are expected in degrees.
+
+ The de-orthogonalization matrix is the inverse.
+
+ >>> O = orthogonalization_matrix((10., 10., 10.), (90., 90., 90.))
+ >>> numpy.allclose(O[:3, :3], numpy.identity(3, float) * 10)
+ True
+ >>> O = orthogonalization_matrix([9.8, 12.0, 15.5], [87.2, 80.7, 69.7])
+ >>> numpy.allclose(numpy.sum(O), 43.063229)
+ True
+
+ """
+ a, b, c = lengths
+ angles = numpy.radians(angles)
+ sina, sinb, _ = numpy.sin(angles)
+ cosa, cosb, cosg = numpy.cos(angles)
+ co = (cosa * cosb - cosg) / (sina * sinb)
+ return numpy.array((
+ ( a*sinb*math.sqrt(1.0-co*co), 0.0, 0.0, 0.0),
+ (-a*sinb*co, b*sina, 0.0, 0.0),
+ ( a*cosb, b*cosa, c, 0.0),
+ ( 0.0, 0.0, 0.0, 1.0)),
+ dtype=numpy.float64)
+
+
+def superimposition_matrix(v0, v1, scaling=False, usesvd=True):
+ """Return matrix to transform given vector set into second vector set.
+
+ v0 and v1 are shape (3, \*) or (4, \*) arrays of at least 3 vectors.
+
+ If usesvd is True, the weighted sum of squared deviations (RMSD) is
+ minimized according to the algorithm by W. Kabsch [8]. Otherwise the
+ quaternion based algorithm by B. Horn [9] is used (slower when using
+ this Python implementation).
+
+ The returned matrix performs rotation, translation and uniform scaling
+ (if specified).
+
+ >>> v0 = numpy.random.rand(3, 10)
+ >>> M = superimposition_matrix(v0, v0)
+ >>> numpy.allclose(M, numpy.identity(4))
+ True
+ >>> R = random_rotation_matrix(numpy.random.random(3))
+ >>> v0 = ((1,0,0), (0,1,0), (0,0,1), (1,1,1))
+ >>> v1 = numpy.dot(R, v0)
+ >>> M = superimposition_matrix(v0, v1)
+ >>> numpy.allclose(v1, numpy.dot(M, v0))
+ True
+ >>> v0 = (numpy.random.rand(4, 100) - 0.5) * 20.0
+ >>> v0[3] = 1.0
+ >>> v1 = numpy.dot(R, v0)
+ >>> M = superimposition_matrix(v0, v1)
+ >>> numpy.allclose(v1, numpy.dot(M, v0))
+ True
+ >>> S = scale_matrix(random.random())
+ >>> T = translation_matrix(numpy.random.random(3)-0.5)
+ >>> M = concatenate_matrices(T, R, S)
+ >>> v1 = numpy.dot(M, v0)
+ >>> v0[:3] += numpy.random.normal(0.0, 1e-9, 300).reshape(3, -1)
+ >>> M = superimposition_matrix(v0, v1, scaling=True)
+ >>> numpy.allclose(v1, numpy.dot(M, v0))
+ True
+ >>> M = superimposition_matrix(v0, v1, scaling=True, usesvd=False)
+ >>> numpy.allclose(v1, numpy.dot(M, v0))
+ True
+ >>> v = numpy.empty((4, 100, 3), dtype=numpy.float64)
+ >>> v[:, :, 0] = v0
+ >>> M = superimposition_matrix(v0, v1, scaling=True, usesvd=False)
+ >>> numpy.allclose(v1, numpy.dot(M, v[:, :, 0]))
+ True
+
+ """
+ v0 = numpy.array(v0, dtype=numpy.float64, copy=False)[:3]
+ v1 = numpy.array(v1, dtype=numpy.float64, copy=False)[:3]
+
+ if v0.shape != v1.shape or v0.shape[1] < 3:
+ raise ValueError("Vector sets are of wrong shape or type.")
+
+ # move centroids to origin
+ t0 = numpy.mean(v0, axis=1)
+ t1 = numpy.mean(v1, axis=1)
+ v0 = v0 - t0.reshape(3, 1)
+ v1 = v1 - t1.reshape(3, 1)
+
+ if usesvd:
+ # Singular Value Decomposition of covariance matrix
+ u, s, vh = numpy.linalg.svd(numpy.dot(v1, v0.T))
+ # rotation matrix from SVD orthonormal bases
+ R = numpy.dot(u, vh)
+ if numpy.linalg.det(R) < 0.0:
+ # R does not constitute right handed system
+ R -= numpy.outer(u[:, 2], vh[2, :]*2.0)
+ s[-1] *= -1.0
+ # homogeneous transformation matrix
+ M = numpy.identity(4)
+ M[:3, :3] = R
+ else:
+ # compute symmetric matrix N
+ xx, yy, zz = numpy.sum(v0 * v1, axis=1)
+ xy, yz, zx = numpy.sum(v0 * numpy.roll(v1, -1, axis=0), axis=1)
+ xz, yx, zy = numpy.sum(v0 * numpy.roll(v1, -2, axis=0), axis=1)
+ N = ((xx+yy+zz, yz-zy, zx-xz, xy-yx),
+ (yz-zy, xx-yy-zz, xy+yx, zx+xz),
+ (zx-xz, xy+yx, -xx+yy-zz, yz+zy),
+ (xy-yx, zx+xz, yz+zy, -xx-yy+zz))
+ # quaternion: eigenvector corresponding to most positive eigenvalue
+ l, V = numpy.linalg.eig(N)
+ q = V[:, numpy.argmax(l)]
+ q /= vector_norm(q) # unit quaternion
+ q = numpy.roll(q, -1) # move w component to end
+ # homogeneous transformation matrix
+ M = quaternion_matrix(q)
+
+ # scale: ratio of rms deviations from centroid
+ if scaling:
+ v0 *= v0
+ v1 *= v1
+ M[:3, :3] *= math.sqrt(numpy.sum(v1) / numpy.sum(v0))
+
+ # translation
+ M[:3, 3] = t1
+ T = numpy.identity(4)
+ T[:3, 3] = -t0
+ M = numpy.dot(M, T)
+ return M
+
+
+def euler_matrix(ai, aj, ak, axes='sxyz'):
+ """Return homogeneous rotation matrix from Euler angles and axis sequence.
+
+ ai, aj, ak : Euler's roll, pitch and yaw angles
+ axes : One of 24 axis sequences as string or encoded tuple
+
+ >>> R = euler_matrix(1, 2, 3, 'syxz')
+ >>> numpy.allclose(numpy.sum(R[0]), -1.34786452)
+ True
+ >>> R = euler_matrix(1, 2, 3, (0, 1, 0, 1))
+ >>> numpy.allclose(numpy.sum(R[0]), -0.383436184)
+ True
+ >>> ai, aj, ak = (4.0*math.pi) * (numpy.random.random(3) - 0.5)
+ >>> for axes in _AXES2TUPLE.keys():
+ ... R = euler_matrix(ai, aj, ak, axes)
+ >>> for axes in _TUPLE2AXES.keys():
+ ... R = euler_matrix(ai, aj, ak, axes)
+
+ """
+ try:
+ firstaxis, parity, repetition, frame = _AXES2TUPLE[axes]
+ except (AttributeError, KeyError):
+ _ = _TUPLE2AXES[axes]
+ firstaxis, parity, repetition, frame = axes
+
+ i = firstaxis
+ j = _NEXT_AXIS[i+parity]
+ k = _NEXT_AXIS[i-parity+1]
+
+ if frame:
+ ai, ak = ak, ai
+ if parity:
+ ai, aj, ak = -ai, -aj, -ak
+
+ si, sj, sk = math.sin(ai), math.sin(aj), math.sin(ak)
+ ci, cj, ck = math.cos(ai), math.cos(aj), math.cos(ak)
+ cc, cs = ci*ck, ci*sk
+ sc, ss = si*ck, si*sk
+
+ M = numpy.identity(4)
+ if repetition:
+ M[i, i] = cj
+ M[i, j] = sj*si
+ M[i, k] = sj*ci
+ M[j, i] = sj*sk
+ M[j, j] = -cj*ss+cc
+ M[j, k] = -cj*cs-sc
+ M[k, i] = -sj*ck
+ M[k, j] = cj*sc+cs
+ M[k, k] = cj*cc-ss
+ else:
+ M[i, i] = cj*ck
+ M[i, j] = sj*sc-cs
+ M[i, k] = sj*cc+ss
+ M[j, i] = cj*sk
+ M[j, j] = sj*ss+cc
+ M[j, k] = sj*cs-sc
+ M[k, i] = -sj
+ M[k, j] = cj*si
+ M[k, k] = cj*ci
+ return M
+
+
+def euler_from_matrix(matrix, axes='sxyz'):
+ """Return Euler angles from rotation matrix for specified axis sequence.
+
+ axes : One of 24 axis sequences as string or encoded tuple
+
+ Note that many Euler angle triplets can describe one matrix.
+
+ >>> R0 = euler_matrix(1, 2, 3, 'syxz')
+ >>> al, be, ga = euler_from_matrix(R0, 'syxz')
+ >>> R1 = euler_matrix(al, be, ga, 'syxz')
+ >>> numpy.allclose(R0, R1)
+ True
+ >>> angles = (4.0*math.pi) * (numpy.random.random(3) - 0.5)
+ >>> for axes in _AXES2TUPLE.keys():
+ ... R0 = euler_matrix(axes=axes, *angles)
+ ... R1 = euler_matrix(axes=axes, *euler_from_matrix(R0, axes))
+ ... if not numpy.allclose(R0, R1): print axes, "failed"
+
+ """
+ try:
+ firstaxis, parity, repetition, frame = _AXES2TUPLE[axes.lower()]
+ except (AttributeError, KeyError):
+ _ = _TUPLE2AXES[axes]
+ firstaxis, parity, repetition, frame = axes
+
+ i = firstaxis
+ j = _NEXT_AXIS[i+parity]
+ k = _NEXT_AXIS[i-parity+1]
+
+ M = numpy.array(matrix, dtype=numpy.float64, copy=False)[:3, :3]
+ if repetition:
+ sy = math.sqrt(M[i, j]*M[i, j] + M[i, k]*M[i, k])
+ if sy > _EPS:
+ ax = math.atan2( M[i, j], M[i, k])
+ ay = math.atan2( sy, M[i, i])
+ az = math.atan2( M[j, i], -M[k, i])
+ else:
+ ax = math.atan2(-M[j, k], M[j, j])
+ ay = math.atan2( sy, M[i, i])
+ az = 0.0
+ else:
+ cy = math.sqrt(M[i, i]*M[i, i] + M[j, i]*M[j, i])
+ if cy > _EPS:
+ ax = math.atan2( M[k, j], M[k, k])
+ ay = math.atan2(-M[k, i], cy)
+ az = math.atan2( M[j, i], M[i, i])
+ else:
+ ax = math.atan2(-M[j, k], M[j, j])
+ ay = math.atan2(-M[k, i], cy)
+ az = 0.0
+
+ if parity:
+ ax, ay, az = -ax, -ay, -az
+ if frame:
+ ax, az = az, ax
+ return ax, ay, az
+
+
+def euler_from_quaternion(quaternion, axes='sxyz'):
+ """Return Euler angles from quaternion for specified axis sequence.
+
+ >>> angles = euler_from_quaternion([0.06146124, 0, 0, 0.99810947])
+ >>> numpy.allclose(angles, [0.123, 0, 0])
+ True
+
+ """
+ return euler_from_matrix(quaternion_matrix(quaternion), axes)
+
+
+def quaternion_from_euler(ai, aj, ak, axes='sxyz'):
+ """Return quaternion from Euler angles and axis sequence.
+
+ ai, aj, ak : Euler's roll, pitch and yaw angles
+ axes : One of 24 axis sequences as string or encoded tuple
+
+ >>> q = quaternion_from_euler(1, 2, 3, 'ryxz')
+ >>> numpy.allclose(q, [0.310622, -0.718287, 0.444435, 0.435953])
+ True
+
+ """
+ try:
+ firstaxis, parity, repetition, frame = _AXES2TUPLE[axes.lower()]
+ except (AttributeError, KeyError):
+ _ = _TUPLE2AXES[axes]
+ firstaxis, parity, repetition, frame = axes
+
+ i = firstaxis
+ j = _NEXT_AXIS[i+parity]
+ k = _NEXT_AXIS[i-parity+1]
+
+ if frame:
+ ai, ak = ak, ai
+ if parity:
+ aj = -aj
+
+ ai /= 2.0
+ aj /= 2.0
+ ak /= 2.0
+ ci = math.cos(ai)
+ si = math.sin(ai)
+ cj = math.cos(aj)
+ sj = math.sin(aj)
+ ck = math.cos(ak)
+ sk = math.sin(ak)
+ cc = ci*ck
+ cs = ci*sk
+ sc = si*ck
+ ss = si*sk
+
+ quaternion = numpy.empty((4, ), dtype=numpy.float64)
+ if repetition:
+ quaternion[i] = cj*(cs + sc)
+ quaternion[j] = sj*(cc + ss)
+ quaternion[k] = sj*(cs - sc)
+ quaternion[3] = cj*(cc - ss)
+ else:
+ quaternion[i] = cj*sc - sj*cs
+ quaternion[j] = cj*ss + sj*cc
+ quaternion[k] = cj*cs - sj*sc
+ quaternion[3] = cj*cc + sj*ss
+ if parity:
+ quaternion[j] *= -1
+
+ return quaternion
+
+
+def quaternion_about_axis(angle, axis):
+ """Return quaternion for rotation about axis.
+
+ >>> q = quaternion_about_axis(0.123, (1, 0, 0))
+ >>> numpy.allclose(q, [0.06146124, 0, 0, 0.99810947])
+ True
+
+ """
+ quaternion = numpy.zeros((4, ), dtype=numpy.float64)
+ quaternion[:3] = axis[:3]
+ qlen = vector_norm(quaternion)
+ if qlen > _EPS:
+ quaternion *= math.sin(angle/2.0) / qlen
+ quaternion[3] = math.cos(angle/2.0)
+ return quaternion
+
+
+def quaternion_matrix(quaternion):
+ """Return homogeneous rotation matrix from quaternion.
+
+ >>> R = quaternion_matrix([0.06146124, 0, 0, 0.99810947])
+ >>> numpy.allclose(R, rotation_matrix(0.123, (1, 0, 0)))
+ True
+
+ """
+ q = numpy.array(quaternion[:4], dtype=numpy.float64, copy=True)
+ nq = numpy.dot(q, q)
+ if nq < _EPS:
+ return numpy.identity(4)
+ q *= math.sqrt(2.0 / nq)
+ q = numpy.outer(q, q)
+ return numpy.array((
+ (1.0-q[1, 1]-q[2, 2], q[0, 1]-q[2, 3], q[0, 2]+q[1, 3], 0.0),
+ ( q[0, 1]+q[2, 3], 1.0-q[0, 0]-q[2, 2], q[1, 2]-q[0, 3], 0.0),
+ ( q[0, 2]-q[1, 3], q[1, 2]+q[0, 3], 1.0-q[0, 0]-q[1, 1], 0.0),
+ ( 0.0, 0.0, 0.0, 1.0)
+ ), dtype=numpy.float64)
+
+
+def quaternion_from_matrix(matrix):
+ """Return quaternion from rotation matrix.
+
+ >>> R = rotation_matrix(0.123, (1, 2, 3))
+ >>> q = quaternion_from_matrix(R)
+ >>> numpy.allclose(q, [0.0164262, 0.0328524, 0.0492786, 0.9981095])
+ True
+
+ """
+ q = numpy.empty((4, ), dtype=numpy.float64)
+ M = numpy.array(matrix, dtype=numpy.float64, copy=False)[:4, :4]
+ t = numpy.trace(M)
+ if t > M[3, 3]:
+ q[3] = t
+ q[2] = M[1, 0] - M[0, 1]
+ q[1] = M[0, 2] - M[2, 0]
+ q[0] = M[2, 1] - M[1, 2]
+ else:
+ i, j, k = 0, 1, 2
+ if M[1, 1] > M[0, 0]:
+ i, j, k = 1, 2, 0
+ if M[2, 2] > M[i, i]:
+ i, j, k = 2, 0, 1
+ t = M[i, i] - (M[j, j] + M[k, k]) + M[3, 3]
+ q[i] = t
+ q[j] = M[i, j] + M[j, i]
+ q[k] = M[k, i] + M[i, k]
+ q[3] = M[k, j] - M[j, k]
+ q *= 0.5 / math.sqrt(t * M[3, 3])
+ return q
+
+
+def quaternion_multiply(quaternion1, quaternion0):
+ """Return multiplication of two quaternions.
+
+ >>> q = quaternion_multiply([1, -2, 3, 4], [-5, 6, 7, 8])
+ >>> numpy.allclose(q, [-44, -14, 48, 28])
+ True
+
+ """
+ x0, y0, z0, w0 = quaternion0
+ x1, y1, z1, w1 = quaternion1
+ return numpy.array((
+ x1*w0 + y1*z0 - z1*y0 + w1*x0,
+ -x1*z0 + y1*w0 + z1*x0 + w1*y0,
+ x1*y0 - y1*x0 + z1*w0 + w1*z0,
+ -x1*x0 - y1*y0 - z1*z0 + w1*w0), dtype=numpy.float64)
+
+
+def quaternion_conjugate(quaternion):
+ """Return conjugate of quaternion.
+
+ >>> q0 = random_quaternion()
+ >>> q1 = quaternion_conjugate(q0)
+ >>> q1[3] == q0[3] and all(q1[:3] == -q0[:3])
+ True
+
+ """
+ return numpy.array((-quaternion[0], -quaternion[1],
+ -quaternion[2], quaternion[3]), dtype=numpy.float64)
+
+
+def quaternion_inverse(quaternion):
+ """Return inverse of quaternion.
+
+ >>> q0 = random_quaternion()
+ >>> q1 = quaternion_inverse(q0)
+ >>> numpy.allclose(quaternion_multiply(q0, q1), [0, 0, 0, 1])
+ True
+
+ """
+ return quaternion_conjugate(quaternion) / numpy.dot(quaternion, quaternion)
+
+
+def quaternion_slerp(quat0, quat1, fraction, spin=0, shortestpath=True):
+ """Return spherical linear interpolation between two quaternions.
+
+ >>> q0 = random_quaternion()
+ >>> q1 = random_quaternion()
+ >>> q = quaternion_slerp(q0, q1, 0.0)
+ >>> numpy.allclose(q, q0)
+ True
+ >>> q = quaternion_slerp(q0, q1, 1.0, 1)
+ >>> numpy.allclose(q, q1)
+ True
+ >>> q = quaternion_slerp(q0, q1, 0.5)
+ >>> angle = math.acos(numpy.dot(q0, q))
+ >>> numpy.allclose(2.0, math.acos(numpy.dot(q0, q1)) / angle) or \
+ numpy.allclose(2.0, math.acos(-numpy.dot(q0, q1)) / angle)
+ True
+
+ """
+ q0 = unit_vector(quat0[:4])
+ q1 = unit_vector(quat1[:4])
+ if fraction == 0.0:
+ return q0
+ elif fraction == 1.0:
+ return q1
+ d = numpy.dot(q0, q1)
+ if abs(abs(d) - 1.0) < _EPS:
+ return q0
+ if shortestpath and d < 0.0:
+ # invert rotation
+ d = -d
+ q1 *= -1.0
+ angle = math.acos(d) + spin * math.pi
+ if abs(angle) < _EPS:
+ return q0
+ isin = 1.0 / math.sin(angle)
+ q0 *= math.sin((1.0 - fraction) * angle) * isin
+ q1 *= math.sin(fraction * angle) * isin
+ q0 += q1
+ return q0
+
+
+def random_quaternion(rand=None):
+ """Return uniform random unit quaternion.
+
+ rand: array like or None
+ Three independent random variables that are uniformly distributed
+ between 0 and 1.
+
+ >>> q = random_quaternion()
+ >>> numpy.allclose(1.0, vector_norm(q))
+ True
+ >>> q = random_quaternion(numpy.random.random(3))
+ >>> q.shape
+ (4,)
+
+ """
+ if rand is None:
+ rand = numpy.random.rand(3)
+ else:
+ assert len(rand) == 3
+ r1 = numpy.sqrt(1.0 - rand[0])
+ r2 = numpy.sqrt(rand[0])
+ pi2 = math.pi * 2.0
+ t1 = pi2 * rand[1]
+ t2 = pi2 * rand[2]
+ return numpy.array((numpy.sin(t1)*r1,
+ numpy.cos(t1)*r1,
+ numpy.sin(t2)*r2,
+ numpy.cos(t2)*r2), dtype=numpy.float64)
+
+
+def random_rotation_matrix(rand=None):
+ """Return uniform random rotation matrix.
+
+ rnd: array like
+ Three independent random variables that are uniformly distributed
+ between 0 and 1 for each returned quaternion.
+
+ >>> R = random_rotation_matrix()
+ >>> numpy.allclose(numpy.dot(R.T, R), numpy.identity(4))
+ True
+
+ """
+ return quaternion_matrix(random_quaternion(rand))
+
+
+class Arcball(object):
+ """Virtual Trackball Control.
+
+ >>> ball = Arcball()
+ >>> ball = Arcball(initial=numpy.identity(4))
+ >>> ball.place([320, 320], 320)
+ >>> ball.down([500, 250])
+ >>> ball.drag([475, 275])
+ >>> R = ball.matrix()
+ >>> numpy.allclose(numpy.sum(R), 3.90583455)
+ True
+ >>> ball = Arcball(initial=[0, 0, 0, 1])
+ >>> ball.place([320, 320], 320)
+ >>> ball.setaxes([1,1,0], [-1, 1, 0])
+ >>> ball.setconstrain(True)
+ >>> ball.down([400, 200])
+ >>> ball.drag([200, 400])
+ >>> R = ball.matrix()
+ >>> numpy.allclose(numpy.sum(R), 0.2055924)
+ True
+ >>> ball.next()
+
+ """
+
+ def __init__(self, initial=None):
+ """Initialize virtual trackball control.
+
+ initial : quaternion or rotation matrix
+
+ """
+ self._axis = None
+ self._axes = None
+ self._radius = 1.0
+ self._center = [0.0, 0.0]
+ self._vdown = numpy.array([0, 0, 1], dtype=numpy.float64)
+ self._constrain = False
+
+ if initial is None:
+ self._qdown = numpy.array([0, 0, 0, 1], dtype=numpy.float64)
+ else:
+ initial = numpy.array(initial, dtype=numpy.float64)
+ if initial.shape == (4, 4):
+ self._qdown = quaternion_from_matrix(initial)
+ elif initial.shape == (4, ):
+ initial /= vector_norm(initial)
+ self._qdown = initial
+ else:
+ raise ValueError("initial not a quaternion or matrix.")
+
+ self._qnow = self._qpre = self._qdown
+
+ def place(self, center, radius):
+ """Place Arcball, e.g. when window size changes.
+
+ center : sequence[2]
+ Window coordinates of trackball center.
+ radius : float
+ Radius of trackball in window coordinates.
+
+ """
+ self._radius = float(radius)
+ self._center[0] = center[0]
+ self._center[1] = center[1]
+
+ def setaxes(self, *axes):
+ """Set axes to constrain rotations."""
+ if axes is None:
+ self._axes = None
+ else:
+ self._axes = [unit_vector(axis) for axis in axes]
+
+ def setconstrain(self, constrain):
+ """Set state of constrain to axis mode."""
+ self._constrain = constrain == True
+
+ def getconstrain(self):
+ """Return state of constrain to axis mode."""
+ return self._constrain
+
+ def down(self, point):
+ """Set initial cursor window coordinates and pick constrain-axis."""
+ self._vdown = arcball_map_to_sphere(point, self._center, self._radius)
+ self._qdown = self._qpre = self._qnow
+
+ if self._constrain and self._axes is not None:
+ self._axis = arcball_nearest_axis(self._vdown, self._axes)
+ self._vdown = arcball_constrain_to_axis(self._vdown, self._axis)
+ else:
+ self._axis = None
+
+ def drag(self, point):
+ """Update current cursor window coordinates."""
+ vnow = arcball_map_to_sphere(point, self._center, self._radius)
+
+ if self._axis is not None:
+ vnow = arcball_constrain_to_axis(vnow, self._axis)
+
+ self._qpre = self._qnow
+
+ t = numpy.cross(self._vdown, vnow)
+ if numpy.dot(t, t) < _EPS:
+ self._qnow = self._qdown
+ else:
+ q = [t[0], t[1], t[2], numpy.dot(self._vdown, vnow)]
+ self._qnow = quaternion_multiply(q, self._qdown)
+
+ def next(self, acceleration=0.0):
+ """Continue rotation in direction of last drag."""
+ q = quaternion_slerp(self._qpre, self._qnow, 2.0+acceleration, False)
+ self._qpre, self._qnow = self._qnow, q
+
+ def matrix(self):
+ """Return homogeneous rotation matrix."""
+ return quaternion_matrix(self._qnow)
+
+
+def arcball_map_to_sphere(point, center, radius):
+ """Return unit sphere coordinates from window coordinates."""
+ v = numpy.array(((point[0] - center[0]) / radius,
+ (center[1] - point[1]) / radius,
+ 0.0), dtype=numpy.float64)
+ n = v[0]*v[0] + v[1]*v[1]
+ if n > 1.0:
+ v /= math.sqrt(n) # position outside of sphere
+ else:
+ v[2] = math.sqrt(1.0 - n)
+ return v
+
+
+def arcball_constrain_to_axis(point, axis):
+ """Return sphere point perpendicular to axis."""
+ v = numpy.array(point, dtype=numpy.float64, copy=True)
+ a = numpy.array(axis, dtype=numpy.float64, copy=True)
+ v -= a * numpy.dot(a, v) # on plane
+ n = vector_norm(v)
+ if n > _EPS:
+ if v[2] < 0.0:
+ v *= -1.0
+ v /= n
+ return v
+ if a[2] == 1.0:
+ return numpy.array([1, 0, 0], dtype=numpy.float64)
+ return unit_vector([-a[1], a[0], 0])
+
+
+def arcball_nearest_axis(point, axes):
+ """Return axis, which arc is nearest to point."""
+ point = numpy.array(point, dtype=numpy.float64, copy=False)
+ nearest = None
+ mx = -1.0
+ for axis in axes:
+ t = numpy.dot(arcball_constrain_to_axis(point, axis), point)
+ if t > mx:
+ nearest = axis
+ mx = t
+ return nearest
+
+
+# epsilon for testing whether a number is close to zero
+_EPS = numpy.finfo(float).eps * 4.0
+
+# axis sequences for Euler angles
+_NEXT_AXIS = [1, 2, 0, 1]
+
+# map axes strings to/from tuples of inner axis, parity, repetition, frame
+_AXES2TUPLE = {
+ 'sxyz': (0, 0, 0, 0), 'sxyx': (0, 0, 1, 0), 'sxzy': (0, 1, 0, 0),
+ 'sxzx': (0, 1, 1, 0), 'syzx': (1, 0, 0, 0), 'syzy': (1, 0, 1, 0),
+ 'syxz': (1, 1, 0, 0), 'syxy': (1, 1, 1, 0), 'szxy': (2, 0, 0, 0),
+ 'szxz': (2, 0, 1, 0), 'szyx': (2, 1, 0, 0), 'szyz': (2, 1, 1, 0),
+ 'rzyx': (0, 0, 0, 1), 'rxyx': (0, 0, 1, 1), 'ryzx': (0, 1, 0, 1),
+ 'rxzx': (0, 1, 1, 1), 'rxzy': (1, 0, 0, 1), 'ryzy': (1, 0, 1, 1),
+ 'rzxy': (1, 1, 0, 1), 'ryxy': (1, 1, 1, 1), 'ryxz': (2, 0, 0, 1),
+ 'rzxz': (2, 0, 1, 1), 'rxyz': (2, 1, 0, 1), 'rzyz': (2, 1, 1, 1)}
+
+_TUPLE2AXES = dict((v, k) for k, v in _AXES2TUPLE.items())
+
+# helper functions
+
+def vector_norm(data, axis=None, out=None):
+ """Return length, i.e. eucledian norm, of ndarray along axis.
+
+ >>> v = numpy.random.random(3)
+ >>> n = vector_norm(v)
+ >>> numpy.allclose(n, numpy.linalg.norm(v))
+ True
+ >>> v = numpy.random.rand(6, 5, 3)
+ >>> n = vector_norm(v, axis=-1)
+ >>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=2)))
+ True
+ >>> n = vector_norm(v, axis=1)
+ >>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=1)))
+ True
+ >>> v = numpy.random.rand(5, 4, 3)
+ >>> n = numpy.empty((5, 3), dtype=numpy.float64)
+ >>> vector_norm(v, axis=1, out=n)
+ >>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=1)))
+ True
+ >>> vector_norm([])
+ 0.0
+ >>> vector_norm([1.0])
+ 1.0
+
+ """
+ data = numpy.array(data, dtype=numpy.float64, copy=True)
+ if out is None:
+ if data.ndim == 1:
+ return math.sqrt(numpy.dot(data, data))
+ data *= data
+ out = numpy.atleast_1d(numpy.sum(data, axis=axis))
+ numpy.sqrt(out, out)
+ return out
+ else:
+ data *= data
+ numpy.sum(data, axis=axis, out=out)
+ numpy.sqrt(out, out)
+
+
+def unit_vector(data, axis=None, out=None):
+ """Return ndarray normalized by length, i.e. eucledian norm, along axis.
+
+ >>> v0 = numpy.random.random(3)
+ >>> v1 = unit_vector(v0)
+ >>> numpy.allclose(v1, v0 / numpy.linalg.norm(v0))
+ True
+ >>> v0 = numpy.random.rand(5, 4, 3)
+ >>> v1 = unit_vector(v0, axis=-1)
+ >>> v2 = v0 / numpy.expand_dims(numpy.sqrt(numpy.sum(v0*v0, axis=2)), 2)
+ >>> numpy.allclose(v1, v2)
+ True
+ >>> v1 = unit_vector(v0, axis=1)
+ >>> v2 = v0 / numpy.expand_dims(numpy.sqrt(numpy.sum(v0*v0, axis=1)), 1)
+ >>> numpy.allclose(v1, v2)
+ True
+ >>> v1 = numpy.empty((5, 4, 3), dtype=numpy.float64)
+ >>> unit_vector(v0, axis=1, out=v1)
+ >>> numpy.allclose(v1, v2)
+ True
+ >>> list(unit_vector([]))
+ []
+ >>> list(unit_vector([1.0]))
+ [1.0]
+
+ """
+ if out is None:
+ data = numpy.array(data, dtype=numpy.float64, copy=True)
+ if data.ndim == 1:
+ data /= math.sqrt(numpy.dot(data, data))
+ return data
+ else:
+ if out is not data:
+ out[:] = numpy.array(data, copy=False)
+ data = out
+ length = numpy.atleast_1d(numpy.sum(data*data, axis))
+ numpy.sqrt(length, length)
+ if axis is not None:
+ length = numpy.expand_dims(length, axis)
+ data /= length
+ if out is None:
+ return data
+
+
+def random_vector(size):
+ """Return array of random doubles in the half-open interval [0.0, 1.0).
+
+ >>> v = random_vector(10000)
+ >>> numpy.all(v >= 0.0) and numpy.all(v < 1.0)
+ True
+ >>> v0 = random_vector(10)
+ >>> v1 = random_vector(10)
+ >>> numpy.any(v0 == v1)
+ False
+
+ """
+ return numpy.random.random(size)
+
+
+def inverse_matrix(matrix):
+ """Return inverse of square transformation matrix.
+
+ >>> M0 = random_rotation_matrix()
+ >>> M1 = inverse_matrix(M0.T)
+ >>> numpy.allclose(M1, numpy.linalg.inv(M0.T))
+ True
+ >>> for size in range(1, 7):
+ ... M0 = numpy.random.rand(size, size)
+ ... M1 = inverse_matrix(M0)
+ ... if not numpy.allclose(M1, numpy.linalg.inv(M0)): print size
+
+ """
+ return numpy.linalg.inv(matrix)
+
+
+def concatenate_matrices(*matrices):
+ """Return concatenation of series of transformation matrices.
+
+ >>> M = numpy.random.rand(16).reshape((4, 4)) - 0.5
+ >>> numpy.allclose(M, concatenate_matrices(M))
+ True
+ >>> numpy.allclose(numpy.dot(M, M.T), concatenate_matrices(M, M.T))
+ True
+
+ """
+ M = numpy.identity(4)
+ for i in matrices:
+ M = numpy.dot(M, i)
+ return M
+
+
+def is_same_transform(matrix0, matrix1):
+ """Return True if two matrices perform same transformation.
+
+ >>> is_same_transform(numpy.identity(4), numpy.identity(4))
+ True
+ >>> is_same_transform(numpy.identity(4), random_rotation_matrix())
+ False
+
+ """
+ matrix0 = numpy.array(matrix0, dtype=numpy.float64, copy=True)
+ matrix0 /= matrix0[3, 3]
+ matrix1 = numpy.array(matrix1, dtype=numpy.float64, copy=True)
+ matrix1 /= matrix1[3, 3]
+ return numpy.allclose(matrix0, matrix1)
+
+
+def _import_module(module_name, warn=True, prefix='_py_', ignore='_'):
+ """Try import all public attributes from module into global namespace.
+
+ Existing attributes with name clashes are renamed with prefix.
+ Attributes starting with underscore are ignored by default.
+
+ Return True on successful import.
+
+ """
+ try:
+ module = __import__(module_name)
+ except ImportError:
+ if warn:
+ warnings.warn("Failed to import module " + module_name)
+ else:
+ for attr in dir(module):
+ if ignore and attr.startswith(ignore):
+ continue
+ if prefix:
+ if attr in globals():
+ globals()[prefix + attr] = globals()[attr]
+ elif warn:
+ warnings.warn("No Python implementation of " + attr)
+ globals()[attr] = getattr(module, attr)
+ return True