diff options
author | sanine <sanine.not@pm.me> | 2022-03-04 10:47:15 -0600 |
---|---|---|
committer | sanine <sanine.not@pm.me> | 2022-03-04 10:47:15 -0600 |
commit | 058f98a63658dc1a2579826ba167fd61bed1e21f (patch) | |
tree | bcba07a1615a14d943f3af3f815a42f3be86b2f3 /src/mesh/assimp-master/port/PyAssimp/scripts/transformations.py | |
parent | 2f8028ac9e0812cb6f3cbb08f0f419e4e717bd22 (diff) |
add assimp submodule
Diffstat (limited to 'src/mesh/assimp-master/port/PyAssimp/scripts/transformations.py')
-rw-r--r-- | src/mesh/assimp-master/port/PyAssimp/scripts/transformations.py | 1705 |
1 files changed, 1705 insertions, 0 deletions
diff --git a/src/mesh/assimp-master/port/PyAssimp/scripts/transformations.py b/src/mesh/assimp-master/port/PyAssimp/scripts/transformations.py new file mode 100644 index 0000000..bf0cac9 --- /dev/null +++ b/src/mesh/assimp-master/port/PyAssimp/scripts/transformations.py @@ -0,0 +1,1705 @@ +# -*- coding: utf-8 -*- +# transformations.py + +# Copyright (c) 2006, Christoph Gohlke +# Copyright (c) 2006-2009, The Regents of the University of California +# All rights reserved. +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions are met: +# +# * Redistributions of source code must retain the above copyright +# notice, this list of conditions and the following disclaimer. +# * Redistributions in binary form must reproduce the above copyright +# notice, this list of conditions and the following disclaimer in the +# documentation and/or other materials provided with the distribution. +# * Neither the name of the copyright holders nor the names of any +# contributors may be used to endorse or promote products derived +# from this software without specific prior written permission. +# +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE +# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +# POSSIBILITY OF SUCH DAMAGE. + +"""Homogeneous Transformation Matrices and Quaternions. + +A library for calculating 4x4 matrices for translating, rotating, reflecting, +scaling, shearing, projecting, orthogonalizing, and superimposing arrays of +3D homogeneous coordinates as well as for converting between rotation matrices, +Euler angles, and quaternions. Also includes an Arcball control object and +functions to decompose transformation matrices. + +:Authors: + `Christoph Gohlke <http://www.lfd.uci.edu/~gohlke/>`__, + Laboratory for Fluorescence Dynamics, University of California, Irvine + +:Version: 20090418 + +Requirements +------------ + +* `Python 2.6 <http://www.python.org>`__ +* `Numpy 1.3 <http://numpy.scipy.org>`__ +* `transformations.c 20090418 <http://www.lfd.uci.edu/~gohlke/>`__ + (optional implementation of some functions in C) + +Notes +----- + +Matrices (M) can be inverted using numpy.linalg.inv(M), concatenated using +numpy.dot(M0, M1), or used to transform homogeneous coordinates (v) using +numpy.dot(M, v) for shape (4, \*) "point of arrays", respectively +numpy.dot(v, M.T) for shape (\*, 4) "array of points". + +Calculations are carried out with numpy.float64 precision. + +This Python implementation is not optimized for speed. + +Vector, point, quaternion, and matrix function arguments are expected to be +"array like", i.e. tuple, list, or numpy arrays. + +Return types are numpy arrays unless specified otherwise. + +Angles are in radians unless specified otherwise. + +Quaternions ix+jy+kz+w are represented as [x, y, z, w]. + +Use the transpose of transformation matrices for OpenGL glMultMatrixd(). + +A triple of Euler angles can be applied/interpreted in 24 ways, which can +be specified using a 4 character string or encoded 4-tuple: + + *Axes 4-string*: e.g. 'sxyz' or 'ryxy' + + - first character : rotations are applied to 's'tatic or 'r'otating frame + - remaining characters : successive rotation axis 'x', 'y', or 'z' + + *Axes 4-tuple*: e.g. (0, 0, 0, 0) or (1, 1, 1, 1) + + - inner axis: code of axis ('x':0, 'y':1, 'z':2) of rightmost matrix. + - parity : even (0) if inner axis 'x' is followed by 'y', 'y' is followed + by 'z', or 'z' is followed by 'x'. Otherwise odd (1). + - repetition : first and last axis are same (1) or different (0). + - frame : rotations are applied to static (0) or rotating (1) frame. + +References +---------- + +(1) Matrices and transformations. Ronald Goldman. + In "Graphics Gems I", pp 472-475. Morgan Kaufmann, 1990. +(2) More matrices and transformations: shear and pseudo-perspective. + Ronald Goldman. In "Graphics Gems II", pp 320-323. Morgan Kaufmann, 1991. +(3) Decomposing a matrix into simple transformations. Spencer Thomas. + In "Graphics Gems II", pp 320-323. Morgan Kaufmann, 1991. +(4) Recovering the data from the transformation matrix. Ronald Goldman. + In "Graphics Gems II", pp 324-331. Morgan Kaufmann, 1991. +(5) Euler angle conversion. Ken Shoemake. + In "Graphics Gems IV", pp 222-229. Morgan Kaufmann, 1994. +(6) Arcball rotation control. Ken Shoemake. + In "Graphics Gems IV", pp 175-192. Morgan Kaufmann, 1994. +(7) Representing attitude: Euler angles, unit quaternions, and rotation + vectors. James Diebel. 2006. +(8) A discussion of the solution for the best rotation to relate two sets + of vectors. W Kabsch. Acta Cryst. 1978. A34, 827-828. +(9) Closed-form solution of absolute orientation using unit quaternions. + BKP Horn. J Opt Soc Am A. 1987. 4(4), 629-642. +(10) Quaternions. Ken Shoemake. + http://www.sfu.ca/~jwa3/cmpt461/files/quatut.pdf +(11) From quaternion to matrix and back. JMP van Waveren. 2005. + http://www.intel.com/cd/ids/developer/asmo-na/eng/293748.htm +(12) Uniform random rotations. Ken Shoemake. + In "Graphics Gems III", pp 124-132. Morgan Kaufmann, 1992. + + +Examples +-------- + +>>> alpha, beta, gamma = 0.123, -1.234, 2.345 +>>> origin, xaxis, yaxis, zaxis = (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1) +>>> I = identity_matrix() +>>> Rx = rotation_matrix(alpha, xaxis) +>>> Ry = rotation_matrix(beta, yaxis) +>>> Rz = rotation_matrix(gamma, zaxis) +>>> R = concatenate_matrices(Rx, Ry, Rz) +>>> euler = euler_from_matrix(R, 'rxyz') +>>> numpy.allclose([alpha, beta, gamma], euler) +True +>>> Re = euler_matrix(alpha, beta, gamma, 'rxyz') +>>> is_same_transform(R, Re) +True +>>> al, be, ga = euler_from_matrix(Re, 'rxyz') +>>> is_same_transform(Re, euler_matrix(al, be, ga, 'rxyz')) +True +>>> qx = quaternion_about_axis(alpha, xaxis) +>>> qy = quaternion_about_axis(beta, yaxis) +>>> qz = quaternion_about_axis(gamma, zaxis) +>>> q = quaternion_multiply(qx, qy) +>>> q = quaternion_multiply(q, qz) +>>> Rq = quaternion_matrix(q) +>>> is_same_transform(R, Rq) +True +>>> S = scale_matrix(1.23, origin) +>>> T = translation_matrix((1, 2, 3)) +>>> Z = shear_matrix(beta, xaxis, origin, zaxis) +>>> R = random_rotation_matrix(numpy.random.rand(3)) +>>> M = concatenate_matrices(T, R, Z, S) +>>> scale, shear, angles, trans, persp = decompose_matrix(M) +>>> numpy.allclose(scale, 1.23) +True +>>> numpy.allclose(trans, (1, 2, 3)) +True +>>> numpy.allclose(shear, (0, math.tan(beta), 0)) +True +>>> is_same_transform(R, euler_matrix(axes='sxyz', *angles)) +True +>>> M1 = compose_matrix(scale, shear, angles, trans, persp) +>>> is_same_transform(M, M1) +True + +""" + +from __future__ import division + +import warnings +import math + +import numpy + +# Documentation in HTML format can be generated with Epydoc +__docformat__ = "restructuredtext en" + + +def identity_matrix(): + """Return 4x4 identity/unit matrix. + + >>> I = identity_matrix() + >>> numpy.allclose(I, numpy.dot(I, I)) + True + >>> numpy.sum(I), numpy.trace(I) + (4.0, 4.0) + >>> numpy.allclose(I, numpy.identity(4, dtype=numpy.float64)) + True + + """ + return numpy.identity(4, dtype=numpy.float64) + + +def translation_matrix(direction): + """Return matrix to translate by direction vector. + + >>> v = numpy.random.random(3) - 0.5 + >>> numpy.allclose(v, translation_matrix(v)[:3, 3]) + True + + """ + M = numpy.identity(4) + M[:3, 3] = direction[:3] + return M + + +def translation_from_matrix(matrix): + """Return translation vector from translation matrix. + + >>> v0 = numpy.random.random(3) - 0.5 + >>> v1 = translation_from_matrix(translation_matrix(v0)) + >>> numpy.allclose(v0, v1) + True + + """ + return numpy.array(matrix, copy=False)[:3, 3].copy() + + +def reflection_matrix(point, normal): + """Return matrix to mirror at plane defined by point and normal vector. + + >>> v0 = numpy.random.random(4) - 0.5 + >>> v0[3] = 1.0 + >>> v1 = numpy.random.random(3) - 0.5 + >>> R = reflection_matrix(v0, v1) + >>> numpy.allclose(2., numpy.trace(R)) + True + >>> numpy.allclose(v0, numpy.dot(R, v0)) + True + >>> v2 = v0.copy() + >>> v2[:3] += v1 + >>> v3 = v0.copy() + >>> v2[:3] -= v1 + >>> numpy.allclose(v2, numpy.dot(R, v3)) + True + + """ + normal = unit_vector(normal[:3]) + M = numpy.identity(4) + M[:3, :3] -= 2.0 * numpy.outer(normal, normal) + M[:3, 3] = (2.0 * numpy.dot(point[:3], normal)) * normal + return M + + +def reflection_from_matrix(matrix): + """Return mirror plane point and normal vector from reflection matrix. + + >>> v0 = numpy.random.random(3) - 0.5 + >>> v1 = numpy.random.random(3) - 0.5 + >>> M0 = reflection_matrix(v0, v1) + >>> point, normal = reflection_from_matrix(M0) + >>> M1 = reflection_matrix(point, normal) + >>> is_same_transform(M0, M1) + True + + """ + M = numpy.array(matrix, dtype=numpy.float64, copy=False) + # normal: unit eigenvector corresponding to eigenvalue -1 + l, V = numpy.linalg.eig(M[:3, :3]) + i = numpy.where(abs(numpy.real(l) + 1.0) < 1e-8)[0] + if not len(i): + raise ValueError("no unit eigenvector corresponding to eigenvalue -1") + normal = numpy.real(V[:, i[0]]).squeeze() + # point: any unit eigenvector corresponding to eigenvalue 1 + l, V = numpy.linalg.eig(M) + i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0] + if not len(i): + raise ValueError("no unit eigenvector corresponding to eigenvalue 1") + point = numpy.real(V[:, i[-1]]).squeeze() + point /= point[3] + return point, normal + + +def rotation_matrix(angle, direction, point=None): + """Return matrix to rotate about axis defined by point and direction. + + >>> angle = (random.random() - 0.5) * (2*math.pi) + >>> direc = numpy.random.random(3) - 0.5 + >>> point = numpy.random.random(3) - 0.5 + >>> R0 = rotation_matrix(angle, direc, point) + >>> R1 = rotation_matrix(angle-2*math.pi, direc, point) + >>> is_same_transform(R0, R1) + True + >>> R0 = rotation_matrix(angle, direc, point) + >>> R1 = rotation_matrix(-angle, -direc, point) + >>> is_same_transform(R0, R1) + True + >>> I = numpy.identity(4, numpy.float64) + >>> numpy.allclose(I, rotation_matrix(math.pi*2, direc)) + True + >>> numpy.allclose(2., numpy.trace(rotation_matrix(math.pi/2, + ... direc, point))) + True + + """ + sina = math.sin(angle) + cosa = math.cos(angle) + direction = unit_vector(direction[:3]) + # rotation matrix around unit vector + R = numpy.array(((cosa, 0.0, 0.0), + (0.0, cosa, 0.0), + (0.0, 0.0, cosa)), dtype=numpy.float64) + R += numpy.outer(direction, direction) * (1.0 - cosa) + direction *= sina + R += numpy.array((( 0.0, -direction[2], direction[1]), + ( direction[2], 0.0, -direction[0]), + (-direction[1], direction[0], 0.0)), + dtype=numpy.float64) + M = numpy.identity(4) + M[:3, :3] = R + if point is not None: + # rotation not around origin + point = numpy.array(point[:3], dtype=numpy.float64, copy=False) + M[:3, 3] = point - numpy.dot(R, point) + return M + + +def rotation_from_matrix(matrix): + """Return rotation angle and axis from rotation matrix. + + >>> angle = (random.random() - 0.5) * (2*math.pi) + >>> direc = numpy.random.random(3) - 0.5 + >>> point = numpy.random.random(3) - 0.5 + >>> R0 = rotation_matrix(angle, direc, point) + >>> angle, direc, point = rotation_from_matrix(R0) + >>> R1 = rotation_matrix(angle, direc, point) + >>> is_same_transform(R0, R1) + True + + """ + R = numpy.array(matrix, dtype=numpy.float64, copy=False) + R33 = R[:3, :3] + # direction: unit eigenvector of R33 corresponding to eigenvalue of 1 + l, W = numpy.linalg.eig(R33.T) + i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0] + if not len(i): + raise ValueError("no unit eigenvector corresponding to eigenvalue 1") + direction = numpy.real(W[:, i[-1]]).squeeze() + # point: unit eigenvector of R33 corresponding to eigenvalue of 1 + l, Q = numpy.linalg.eig(R) + i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0] + if not len(i): + raise ValueError("no unit eigenvector corresponding to eigenvalue 1") + point = numpy.real(Q[:, i[-1]]).squeeze() + point /= point[3] + # rotation angle depending on direction + cosa = (numpy.trace(R33) - 1.0) / 2.0 + if abs(direction[2]) > 1e-8: + sina = (R[1, 0] + (cosa-1.0)*direction[0]*direction[1]) / direction[2] + elif abs(direction[1]) > 1e-8: + sina = (R[0, 2] + (cosa-1.0)*direction[0]*direction[2]) / direction[1] + else: + sina = (R[2, 1] + (cosa-1.0)*direction[1]*direction[2]) / direction[0] + angle = math.atan2(sina, cosa) + return angle, direction, point + + +def scale_matrix(factor, origin=None, direction=None): + """Return matrix to scale by factor around origin in direction. + + Use factor -1 for point symmetry. + + >>> v = (numpy.random.rand(4, 5) - 0.5) * 20.0 + >>> v[3] = 1.0 + >>> S = scale_matrix(-1.234) + >>> numpy.allclose(numpy.dot(S, v)[:3], -1.234*v[:3]) + True + >>> factor = random.random() * 10 - 5 + >>> origin = numpy.random.random(3) - 0.5 + >>> direct = numpy.random.random(3) - 0.5 + >>> S = scale_matrix(factor, origin) + >>> S = scale_matrix(factor, origin, direct) + + """ + if direction is None: + # uniform scaling + M = numpy.array(((factor, 0.0, 0.0, 0.0), + (0.0, factor, 0.0, 0.0), + (0.0, 0.0, factor, 0.0), + (0.0, 0.0, 0.0, 1.0)), dtype=numpy.float64) + if origin is not None: + M[:3, 3] = origin[:3] + M[:3, 3] *= 1.0 - factor + else: + # nonuniform scaling + direction = unit_vector(direction[:3]) + factor = 1.0 - factor + M = numpy.identity(4) + M[:3, :3] -= factor * numpy.outer(direction, direction) + if origin is not None: + M[:3, 3] = (factor * numpy.dot(origin[:3], direction)) * direction + return M + + +def scale_from_matrix(matrix): + """Return scaling factor, origin and direction from scaling matrix. + + >>> factor = random.random() * 10 - 5 + >>> origin = numpy.random.random(3) - 0.5 + >>> direct = numpy.random.random(3) - 0.5 + >>> S0 = scale_matrix(factor, origin) + >>> factor, origin, direction = scale_from_matrix(S0) + >>> S1 = scale_matrix(factor, origin, direction) + >>> is_same_transform(S0, S1) + True + >>> S0 = scale_matrix(factor, origin, direct) + >>> factor, origin, direction = scale_from_matrix(S0) + >>> S1 = scale_matrix(factor, origin, direction) + >>> is_same_transform(S0, S1) + True + + """ + M = numpy.array(matrix, dtype=numpy.float64, copy=False) + M33 = M[:3, :3] + factor = numpy.trace(M33) - 2.0 + try: + # direction: unit eigenvector corresponding to eigenvalue factor + l, V = numpy.linalg.eig(M33) + i = numpy.where(abs(numpy.real(l) - factor) < 1e-8)[0][0] + direction = numpy.real(V[:, i]).squeeze() + direction /= vector_norm(direction) + except IndexError: + # uniform scaling + factor = (factor + 2.0) / 3.0 + direction = None + # origin: any eigenvector corresponding to eigenvalue 1 + l, V = numpy.linalg.eig(M) + i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0] + if not len(i): + raise ValueError("no eigenvector corresponding to eigenvalue 1") + origin = numpy.real(V[:, i[-1]]).squeeze() + origin /= origin[3] + return factor, origin, direction + + +def projection_matrix(point, normal, direction=None, + perspective=None, pseudo=False): + """Return matrix to project onto plane defined by point and normal. + + Using either perspective point, projection direction, or none of both. + + If pseudo is True, perspective projections will preserve relative depth + such that Perspective = dot(Orthogonal, PseudoPerspective). + + >>> P = projection_matrix((0, 0, 0), (1, 0, 0)) + >>> numpy.allclose(P[1:, 1:], numpy.identity(4)[1:, 1:]) + True + >>> point = numpy.random.random(3) - 0.5 + >>> normal = numpy.random.random(3) - 0.5 + >>> direct = numpy.random.random(3) - 0.5 + >>> persp = numpy.random.random(3) - 0.5 + >>> P0 = projection_matrix(point, normal) + >>> P1 = projection_matrix(point, normal, direction=direct) + >>> P2 = projection_matrix(point, normal, perspective=persp) + >>> P3 = projection_matrix(point, normal, perspective=persp, pseudo=True) + >>> is_same_transform(P2, numpy.dot(P0, P3)) + True + >>> P = projection_matrix((3, 0, 0), (1, 1, 0), (1, 0, 0)) + >>> v0 = (numpy.random.rand(4, 5) - 0.5) * 20.0 + >>> v0[3] = 1.0 + >>> v1 = numpy.dot(P, v0) + >>> numpy.allclose(v1[1], v0[1]) + True + >>> numpy.allclose(v1[0], 3.0-v1[1]) + True + + """ + M = numpy.identity(4) + point = numpy.array(point[:3], dtype=numpy.float64, copy=False) + normal = unit_vector(normal[:3]) + if perspective is not None: + # perspective projection + perspective = numpy.array(perspective[:3], dtype=numpy.float64, + copy=False) + M[0, 0] = M[1, 1] = M[2, 2] = numpy.dot(perspective-point, normal) + M[:3, :3] -= numpy.outer(perspective, normal) + if pseudo: + # preserve relative depth + M[:3, :3] -= numpy.outer(normal, normal) + M[:3, 3] = numpy.dot(point, normal) * (perspective+normal) + else: + M[:3, 3] = numpy.dot(point, normal) * perspective + M[3, :3] = -normal + M[3, 3] = numpy.dot(perspective, normal) + elif direction is not None: + # parallel projection + direction = numpy.array(direction[:3], dtype=numpy.float64, copy=False) + scale = numpy.dot(direction, normal) + M[:3, :3] -= numpy.outer(direction, normal) / scale + M[:3, 3] = direction * (numpy.dot(point, normal) / scale) + else: + # orthogonal projection + M[:3, :3] -= numpy.outer(normal, normal) + M[:3, 3] = numpy.dot(point, normal) * normal + return M + + +def projection_from_matrix(matrix, pseudo=False): + """Return projection plane and perspective point from projection matrix. + + Return values are same as arguments for projection_matrix function: + point, normal, direction, perspective, and pseudo. + + >>> point = numpy.random.random(3) - 0.5 + >>> normal = numpy.random.random(3) - 0.5 + >>> direct = numpy.random.random(3) - 0.5 + >>> persp = numpy.random.random(3) - 0.5 + >>> P0 = projection_matrix(point, normal) + >>> result = projection_from_matrix(P0) + >>> P1 = projection_matrix(*result) + >>> is_same_transform(P0, P1) + True + >>> P0 = projection_matrix(point, normal, direct) + >>> result = projection_from_matrix(P0) + >>> P1 = projection_matrix(*result) + >>> is_same_transform(P0, P1) + True + >>> P0 = projection_matrix(point, normal, perspective=persp, pseudo=False) + >>> result = projection_from_matrix(P0, pseudo=False) + >>> P1 = projection_matrix(*result) + >>> is_same_transform(P0, P1) + True + >>> P0 = projection_matrix(point, normal, perspective=persp, pseudo=True) + >>> result = projection_from_matrix(P0, pseudo=True) + >>> P1 = projection_matrix(*result) + >>> is_same_transform(P0, P1) + True + + """ + M = numpy.array(matrix, dtype=numpy.float64, copy=False) + M33 = M[:3, :3] + l, V = numpy.linalg.eig(M) + i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0] + if not pseudo and len(i): + # point: any eigenvector corresponding to eigenvalue 1 + point = numpy.real(V[:, i[-1]]).squeeze() + point /= point[3] + # direction: unit eigenvector corresponding to eigenvalue 0 + l, V = numpy.linalg.eig(M33) + i = numpy.where(abs(numpy.real(l)) < 1e-8)[0] + if not len(i): + raise ValueError("no eigenvector corresponding to eigenvalue 0") + direction = numpy.real(V[:, i[0]]).squeeze() + direction /= vector_norm(direction) + # normal: unit eigenvector of M33.T corresponding to eigenvalue 0 + l, V = numpy.linalg.eig(M33.T) + i = numpy.where(abs(numpy.real(l)) < 1e-8)[0] + if len(i): + # parallel projection + normal = numpy.real(V[:, i[0]]).squeeze() + normal /= vector_norm(normal) + return point, normal, direction, None, False + else: + # orthogonal projection, where normal equals direction vector + return point, direction, None, None, False + else: + # perspective projection + i = numpy.where(abs(numpy.real(l)) > 1e-8)[0] + if not len(i): + raise ValueError( + "no eigenvector not corresponding to eigenvalue 0") + point = numpy.real(V[:, i[-1]]).squeeze() + point /= point[3] + normal = - M[3, :3] + perspective = M[:3, 3] / numpy.dot(point[:3], normal) + if pseudo: + perspective -= normal + return point, normal, None, perspective, pseudo + + +def clip_matrix(left, right, bottom, top, near, far, perspective=False): + """Return matrix to obtain normalized device coordinates from frustrum. + + The frustrum bounds are axis-aligned along x (left, right), + y (bottom, top) and z (near, far). + + Normalized device coordinates are in range [-1, 1] if coordinates are + inside the frustrum. + + If perspective is True the frustrum is a truncated pyramid with the + perspective point at origin and direction along z axis, otherwise an + orthographic canonical view volume (a box). + + Homogeneous coordinates transformed by the perspective clip matrix + need to be dehomogenized (divided by w coordinate). + + >>> frustrum = numpy.random.rand(6) + >>> frustrum[1] += frustrum[0] + >>> frustrum[3] += frustrum[2] + >>> frustrum[5] += frustrum[4] + >>> M = clip_matrix(*frustrum, perspective=False) + >>> numpy.dot(M, [frustrum[0], frustrum[2], frustrum[4], 1.0]) + array([-1., -1., -1., 1.]) + >>> numpy.dot(M, [frustrum[1], frustrum[3], frustrum[5], 1.0]) + array([ 1., 1., 1., 1.]) + >>> M = clip_matrix(*frustrum, perspective=True) + >>> v = numpy.dot(M, [frustrum[0], frustrum[2], frustrum[4], 1.0]) + >>> v / v[3] + array([-1., -1., -1., 1.]) + >>> v = numpy.dot(M, [frustrum[1], frustrum[3], frustrum[4], 1.0]) + >>> v / v[3] + array([ 1., 1., -1., 1.]) + + """ + if left >= right or bottom >= top or near >= far: + raise ValueError("invalid frustrum") + if perspective: + if near <= _EPS: + raise ValueError("invalid frustrum: near <= 0") + t = 2.0 * near + M = ((-t/(right-left), 0.0, (right+left)/(right-left), 0.0), + (0.0, -t/(top-bottom), (top+bottom)/(top-bottom), 0.0), + (0.0, 0.0, -(far+near)/(far-near), t*far/(far-near)), + (0.0, 0.0, -1.0, 0.0)) + else: + M = ((2.0/(right-left), 0.0, 0.0, (right+left)/(left-right)), + (0.0, 2.0/(top-bottom), 0.0, (top+bottom)/(bottom-top)), + (0.0, 0.0, 2.0/(far-near), (far+near)/(near-far)), + (0.0, 0.0, 0.0, 1.0)) + return numpy.array(M, dtype=numpy.float64) + + +def shear_matrix(angle, direction, point, normal): + """Return matrix to shear by angle along direction vector on shear plane. + + The shear plane is defined by a point and normal vector. The direction + vector must be orthogonal to the plane's normal vector. + + A point P is transformed by the shear matrix into P" such that + the vector P-P" is parallel to the direction vector and its extent is + given by the angle of P-P'-P", where P' is the orthogonal projection + of P onto the shear plane. + + >>> angle = (random.random() - 0.5) * 4*math.pi + >>> direct = numpy.random.random(3) - 0.5 + >>> point = numpy.random.random(3) - 0.5 + >>> normal = numpy.cross(direct, numpy.random.random(3)) + >>> S = shear_matrix(angle, direct, point, normal) + >>> numpy.allclose(1.0, numpy.linalg.det(S)) + True + + """ + normal = unit_vector(normal[:3]) + direction = unit_vector(direction[:3]) + if abs(numpy.dot(normal, direction)) > 1e-6: + raise ValueError("direction and normal vectors are not orthogonal") + angle = math.tan(angle) + M = numpy.identity(4) + M[:3, :3] += angle * numpy.outer(direction, normal) + M[:3, 3] = -angle * numpy.dot(point[:3], normal) * direction + return M + + +def shear_from_matrix(matrix): + """Return shear angle, direction and plane from shear matrix. + + >>> angle = (random.random() - 0.5) * 4*math.pi + >>> direct = numpy.random.random(3) - 0.5 + >>> point = numpy.random.random(3) - 0.5 + >>> normal = numpy.cross(direct, numpy.random.random(3)) + >>> S0 = shear_matrix(angle, direct, point, normal) + >>> angle, direct, point, normal = shear_from_matrix(S0) + >>> S1 = shear_matrix(angle, direct, point, normal) + >>> is_same_transform(S0, S1) + True + + """ + M = numpy.array(matrix, dtype=numpy.float64, copy=False) + M33 = M[:3, :3] + # normal: cross independent eigenvectors corresponding to the eigenvalue 1 + l, V = numpy.linalg.eig(M33) + i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-4)[0] + if len(i) < 2: + raise ValueError("No two linear independent eigenvectors found %s" % l) + V = numpy.real(V[:, i]).squeeze().T + lenorm = -1.0 + for i0, i1 in ((0, 1), (0, 2), (1, 2)): + n = numpy.cross(V[i0], V[i1]) + l = vector_norm(n) + if l > lenorm: + lenorm = l + normal = n + normal /= lenorm + # direction and angle + direction = numpy.dot(M33 - numpy.identity(3), normal) + angle = vector_norm(direction) + direction /= angle + angle = math.atan(angle) + # point: eigenvector corresponding to eigenvalue 1 + l, V = numpy.linalg.eig(M) + i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0] + if not len(i): + raise ValueError("no eigenvector corresponding to eigenvalue 1") + point = numpy.real(V[:, i[-1]]).squeeze() + point /= point[3] + return angle, direction, point, normal + + +def decompose_matrix(matrix): + """Return sequence of transformations from transformation matrix. + + matrix : array_like + Non-degenerative homogeneous transformation matrix + + Return tuple of: + scale : vector of 3 scaling factors + shear : list of shear factors for x-y, x-z, y-z axes + angles : list of Euler angles about static x, y, z axes + translate : translation vector along x, y, z axes + perspective : perspective partition of matrix + + Raise ValueError if matrix is of wrong type or degenerative. + + >>> T0 = translation_matrix((1, 2, 3)) + >>> scale, shear, angles, trans, persp = decompose_matrix(T0) + >>> T1 = translation_matrix(trans) + >>> numpy.allclose(T0, T1) + True + >>> S = scale_matrix(0.123) + >>> scale, shear, angles, trans, persp = decompose_matrix(S) + >>> scale[0] + 0.123 + >>> R0 = euler_matrix(1, 2, 3) + >>> scale, shear, angles, trans, persp = decompose_matrix(R0) + >>> R1 = euler_matrix(*angles) + >>> numpy.allclose(R0, R1) + True + + """ + M = numpy.array(matrix, dtype=numpy.float64, copy=True).T + if abs(M[3, 3]) < _EPS: + raise ValueError("M[3, 3] is zero") + M /= M[3, 3] + P = M.copy() + P[:, 3] = 0, 0, 0, 1 + if not numpy.linalg.det(P): + raise ValueError("Matrix is singular") + + scale = numpy.zeros((3, ), dtype=numpy.float64) + shear = [0, 0, 0] + angles = [0, 0, 0] + + if any(abs(M[:3, 3]) > _EPS): + perspective = numpy.dot(M[:, 3], numpy.linalg.inv(P.T)) + M[:, 3] = 0, 0, 0, 1 + else: + perspective = numpy.array((0, 0, 0, 1), dtype=numpy.float64) + + translate = M[3, :3].copy() + M[3, :3] = 0 + + row = M[:3, :3].copy() + scale[0] = vector_norm(row[0]) + row[0] /= scale[0] + shear[0] = numpy.dot(row[0], row[1]) + row[1] -= row[0] * shear[0] + scale[1] = vector_norm(row[1]) + row[1] /= scale[1] + shear[0] /= scale[1] + shear[1] = numpy.dot(row[0], row[2]) + row[2] -= row[0] * shear[1] + shear[2] = numpy.dot(row[1], row[2]) + row[2] -= row[1] * shear[2] + scale[2] = vector_norm(row[2]) + row[2] /= scale[2] + shear[1:] /= scale[2] + + if numpy.dot(row[0], numpy.cross(row[1], row[2])) < 0: + scale *= -1 + row *= -1 + + angles[1] = math.asin(-row[0, 2]) + if math.cos(angles[1]): + angles[0] = math.atan2(row[1, 2], row[2, 2]) + angles[2] = math.atan2(row[0, 1], row[0, 0]) + else: + #angles[0] = math.atan2(row[1, 0], row[1, 1]) + angles[0] = math.atan2(-row[2, 1], row[1, 1]) + angles[2] = 0.0 + + return scale, shear, angles, translate, perspective + + +def compose_matrix(scale=None, shear=None, angles=None, translate=None, + perspective=None): + """Return transformation matrix from sequence of transformations. + + This is the inverse of the decompose_matrix function. + + Sequence of transformations: + scale : vector of 3 scaling factors + shear : list of shear factors for x-y, x-z, y-z axes + angles : list of Euler angles about static x, y, z axes + translate : translation vector along x, y, z axes + perspective : perspective partition of matrix + + >>> scale = numpy.random.random(3) - 0.5 + >>> shear = numpy.random.random(3) - 0.5 + >>> angles = (numpy.random.random(3) - 0.5) * (2*math.pi) + >>> trans = numpy.random.random(3) - 0.5 + >>> persp = numpy.random.random(4) - 0.5 + >>> M0 = compose_matrix(scale, shear, angles, trans, persp) + >>> result = decompose_matrix(M0) + >>> M1 = compose_matrix(*result) + >>> is_same_transform(M0, M1) + True + + """ + M = numpy.identity(4) + if perspective is not None: + P = numpy.identity(4) + P[3, :] = perspective[:4] + M = numpy.dot(M, P) + if translate is not None: + T = numpy.identity(4) + T[:3, 3] = translate[:3] + M = numpy.dot(M, T) + if angles is not None: + R = euler_matrix(angles[0], angles[1], angles[2], 'sxyz') + M = numpy.dot(M, R) + if shear is not None: + Z = numpy.identity(4) + Z[1, 2] = shear[2] + Z[0, 2] = shear[1] + Z[0, 1] = shear[0] + M = numpy.dot(M, Z) + if scale is not None: + S = numpy.identity(4) + S[0, 0] = scale[0] + S[1, 1] = scale[1] + S[2, 2] = scale[2] + M = numpy.dot(M, S) + M /= M[3, 3] + return M + + +def orthogonalization_matrix(lengths, angles): + """Return orthogonalization matrix for crystallographic cell coordinates. + + Angles are expected in degrees. + + The de-orthogonalization matrix is the inverse. + + >>> O = orthogonalization_matrix((10., 10., 10.), (90., 90., 90.)) + >>> numpy.allclose(O[:3, :3], numpy.identity(3, float) * 10) + True + >>> O = orthogonalization_matrix([9.8, 12.0, 15.5], [87.2, 80.7, 69.7]) + >>> numpy.allclose(numpy.sum(O), 43.063229) + True + + """ + a, b, c = lengths + angles = numpy.radians(angles) + sina, sinb, _ = numpy.sin(angles) + cosa, cosb, cosg = numpy.cos(angles) + co = (cosa * cosb - cosg) / (sina * sinb) + return numpy.array(( + ( a*sinb*math.sqrt(1.0-co*co), 0.0, 0.0, 0.0), + (-a*sinb*co, b*sina, 0.0, 0.0), + ( a*cosb, b*cosa, c, 0.0), + ( 0.0, 0.0, 0.0, 1.0)), + dtype=numpy.float64) + + +def superimposition_matrix(v0, v1, scaling=False, usesvd=True): + """Return matrix to transform given vector set into second vector set. + + v0 and v1 are shape (3, \*) or (4, \*) arrays of at least 3 vectors. + + If usesvd is True, the weighted sum of squared deviations (RMSD) is + minimized according to the algorithm by W. Kabsch [8]. Otherwise the + quaternion based algorithm by B. Horn [9] is used (slower when using + this Python implementation). + + The returned matrix performs rotation, translation and uniform scaling + (if specified). + + >>> v0 = numpy.random.rand(3, 10) + >>> M = superimposition_matrix(v0, v0) + >>> numpy.allclose(M, numpy.identity(4)) + True + >>> R = random_rotation_matrix(numpy.random.random(3)) + >>> v0 = ((1,0,0), (0,1,0), (0,0,1), (1,1,1)) + >>> v1 = numpy.dot(R, v0) + >>> M = superimposition_matrix(v0, v1) + >>> numpy.allclose(v1, numpy.dot(M, v0)) + True + >>> v0 = (numpy.random.rand(4, 100) - 0.5) * 20.0 + >>> v0[3] = 1.0 + >>> v1 = numpy.dot(R, v0) + >>> M = superimposition_matrix(v0, v1) + >>> numpy.allclose(v1, numpy.dot(M, v0)) + True + >>> S = scale_matrix(random.random()) + >>> T = translation_matrix(numpy.random.random(3)-0.5) + >>> M = concatenate_matrices(T, R, S) + >>> v1 = numpy.dot(M, v0) + >>> v0[:3] += numpy.random.normal(0.0, 1e-9, 300).reshape(3, -1) + >>> M = superimposition_matrix(v0, v1, scaling=True) + >>> numpy.allclose(v1, numpy.dot(M, v0)) + True + >>> M = superimposition_matrix(v0, v1, scaling=True, usesvd=False) + >>> numpy.allclose(v1, numpy.dot(M, v0)) + True + >>> v = numpy.empty((4, 100, 3), dtype=numpy.float64) + >>> v[:, :, 0] = v0 + >>> M = superimposition_matrix(v0, v1, scaling=True, usesvd=False) + >>> numpy.allclose(v1, numpy.dot(M, v[:, :, 0])) + True + + """ + v0 = numpy.array(v0, dtype=numpy.float64, copy=False)[:3] + v1 = numpy.array(v1, dtype=numpy.float64, copy=False)[:3] + + if v0.shape != v1.shape or v0.shape[1] < 3: + raise ValueError("Vector sets are of wrong shape or type.") + + # move centroids to origin + t0 = numpy.mean(v0, axis=1) + t1 = numpy.mean(v1, axis=1) + v0 = v0 - t0.reshape(3, 1) + v1 = v1 - t1.reshape(3, 1) + + if usesvd: + # Singular Value Decomposition of covariance matrix + u, s, vh = numpy.linalg.svd(numpy.dot(v1, v0.T)) + # rotation matrix from SVD orthonormal bases + R = numpy.dot(u, vh) + if numpy.linalg.det(R) < 0.0: + # R does not constitute right handed system + R -= numpy.outer(u[:, 2], vh[2, :]*2.0) + s[-1] *= -1.0 + # homogeneous transformation matrix + M = numpy.identity(4) + M[:3, :3] = R + else: + # compute symmetric matrix N + xx, yy, zz = numpy.sum(v0 * v1, axis=1) + xy, yz, zx = numpy.sum(v0 * numpy.roll(v1, -1, axis=0), axis=1) + xz, yx, zy = numpy.sum(v0 * numpy.roll(v1, -2, axis=0), axis=1) + N = ((xx+yy+zz, yz-zy, zx-xz, xy-yx), + (yz-zy, xx-yy-zz, xy+yx, zx+xz), + (zx-xz, xy+yx, -xx+yy-zz, yz+zy), + (xy-yx, zx+xz, yz+zy, -xx-yy+zz)) + # quaternion: eigenvector corresponding to most positive eigenvalue + l, V = numpy.linalg.eig(N) + q = V[:, numpy.argmax(l)] + q /= vector_norm(q) # unit quaternion + q = numpy.roll(q, -1) # move w component to end + # homogeneous transformation matrix + M = quaternion_matrix(q) + + # scale: ratio of rms deviations from centroid + if scaling: + v0 *= v0 + v1 *= v1 + M[:3, :3] *= math.sqrt(numpy.sum(v1) / numpy.sum(v0)) + + # translation + M[:3, 3] = t1 + T = numpy.identity(4) + T[:3, 3] = -t0 + M = numpy.dot(M, T) + return M + + +def euler_matrix(ai, aj, ak, axes='sxyz'): + """Return homogeneous rotation matrix from Euler angles and axis sequence. + + ai, aj, ak : Euler's roll, pitch and yaw angles + axes : One of 24 axis sequences as string or encoded tuple + + >>> R = euler_matrix(1, 2, 3, 'syxz') + >>> numpy.allclose(numpy.sum(R[0]), -1.34786452) + True + >>> R = euler_matrix(1, 2, 3, (0, 1, 0, 1)) + >>> numpy.allclose(numpy.sum(R[0]), -0.383436184) + True + >>> ai, aj, ak = (4.0*math.pi) * (numpy.random.random(3) - 0.5) + >>> for axes in _AXES2TUPLE.keys(): + ... R = euler_matrix(ai, aj, ak, axes) + >>> for axes in _TUPLE2AXES.keys(): + ... R = euler_matrix(ai, aj, ak, axes) + + """ + try: + firstaxis, parity, repetition, frame = _AXES2TUPLE[axes] + except (AttributeError, KeyError): + _ = _TUPLE2AXES[axes] + firstaxis, parity, repetition, frame = axes + + i = firstaxis + j = _NEXT_AXIS[i+parity] + k = _NEXT_AXIS[i-parity+1] + + if frame: + ai, ak = ak, ai + if parity: + ai, aj, ak = -ai, -aj, -ak + + si, sj, sk = math.sin(ai), math.sin(aj), math.sin(ak) + ci, cj, ck = math.cos(ai), math.cos(aj), math.cos(ak) + cc, cs = ci*ck, ci*sk + sc, ss = si*ck, si*sk + + M = numpy.identity(4) + if repetition: + M[i, i] = cj + M[i, j] = sj*si + M[i, k] = sj*ci + M[j, i] = sj*sk + M[j, j] = -cj*ss+cc + M[j, k] = -cj*cs-sc + M[k, i] = -sj*ck + M[k, j] = cj*sc+cs + M[k, k] = cj*cc-ss + else: + M[i, i] = cj*ck + M[i, j] = sj*sc-cs + M[i, k] = sj*cc+ss + M[j, i] = cj*sk + M[j, j] = sj*ss+cc + M[j, k] = sj*cs-sc + M[k, i] = -sj + M[k, j] = cj*si + M[k, k] = cj*ci + return M + + +def euler_from_matrix(matrix, axes='sxyz'): + """Return Euler angles from rotation matrix for specified axis sequence. + + axes : One of 24 axis sequences as string or encoded tuple + + Note that many Euler angle triplets can describe one matrix. + + >>> R0 = euler_matrix(1, 2, 3, 'syxz') + >>> al, be, ga = euler_from_matrix(R0, 'syxz') + >>> R1 = euler_matrix(al, be, ga, 'syxz') + >>> numpy.allclose(R0, R1) + True + >>> angles = (4.0*math.pi) * (numpy.random.random(3) - 0.5) + >>> for axes in _AXES2TUPLE.keys(): + ... R0 = euler_matrix(axes=axes, *angles) + ... R1 = euler_matrix(axes=axes, *euler_from_matrix(R0, axes)) + ... if not numpy.allclose(R0, R1): print axes, "failed" + + """ + try: + firstaxis, parity, repetition, frame = _AXES2TUPLE[axes.lower()] + except (AttributeError, KeyError): + _ = _TUPLE2AXES[axes] + firstaxis, parity, repetition, frame = axes + + i = firstaxis + j = _NEXT_AXIS[i+parity] + k = _NEXT_AXIS[i-parity+1] + + M = numpy.array(matrix, dtype=numpy.float64, copy=False)[:3, :3] + if repetition: + sy = math.sqrt(M[i, j]*M[i, j] + M[i, k]*M[i, k]) + if sy > _EPS: + ax = math.atan2( M[i, j], M[i, k]) + ay = math.atan2( sy, M[i, i]) + az = math.atan2( M[j, i], -M[k, i]) + else: + ax = math.atan2(-M[j, k], M[j, j]) + ay = math.atan2( sy, M[i, i]) + az = 0.0 + else: + cy = math.sqrt(M[i, i]*M[i, i] + M[j, i]*M[j, i]) + if cy > _EPS: + ax = math.atan2( M[k, j], M[k, k]) + ay = math.atan2(-M[k, i], cy) + az = math.atan2( M[j, i], M[i, i]) + else: + ax = math.atan2(-M[j, k], M[j, j]) + ay = math.atan2(-M[k, i], cy) + az = 0.0 + + if parity: + ax, ay, az = -ax, -ay, -az + if frame: + ax, az = az, ax + return ax, ay, az + + +def euler_from_quaternion(quaternion, axes='sxyz'): + """Return Euler angles from quaternion for specified axis sequence. + + >>> angles = euler_from_quaternion([0.06146124, 0, 0, 0.99810947]) + >>> numpy.allclose(angles, [0.123, 0, 0]) + True + + """ + return euler_from_matrix(quaternion_matrix(quaternion), axes) + + +def quaternion_from_euler(ai, aj, ak, axes='sxyz'): + """Return quaternion from Euler angles and axis sequence. + + ai, aj, ak : Euler's roll, pitch and yaw angles + axes : One of 24 axis sequences as string or encoded tuple + + >>> q = quaternion_from_euler(1, 2, 3, 'ryxz') + >>> numpy.allclose(q, [0.310622, -0.718287, 0.444435, 0.435953]) + True + + """ + try: + firstaxis, parity, repetition, frame = _AXES2TUPLE[axes.lower()] + except (AttributeError, KeyError): + _ = _TUPLE2AXES[axes] + firstaxis, parity, repetition, frame = axes + + i = firstaxis + j = _NEXT_AXIS[i+parity] + k = _NEXT_AXIS[i-parity+1] + + if frame: + ai, ak = ak, ai + if parity: + aj = -aj + + ai /= 2.0 + aj /= 2.0 + ak /= 2.0 + ci = math.cos(ai) + si = math.sin(ai) + cj = math.cos(aj) + sj = math.sin(aj) + ck = math.cos(ak) + sk = math.sin(ak) + cc = ci*ck + cs = ci*sk + sc = si*ck + ss = si*sk + + quaternion = numpy.empty((4, ), dtype=numpy.float64) + if repetition: + quaternion[i] = cj*(cs + sc) + quaternion[j] = sj*(cc + ss) + quaternion[k] = sj*(cs - sc) + quaternion[3] = cj*(cc - ss) + else: + quaternion[i] = cj*sc - sj*cs + quaternion[j] = cj*ss + sj*cc + quaternion[k] = cj*cs - sj*sc + quaternion[3] = cj*cc + sj*ss + if parity: + quaternion[j] *= -1 + + return quaternion + + +def quaternion_about_axis(angle, axis): + """Return quaternion for rotation about axis. + + >>> q = quaternion_about_axis(0.123, (1, 0, 0)) + >>> numpy.allclose(q, [0.06146124, 0, 0, 0.99810947]) + True + + """ + quaternion = numpy.zeros((4, ), dtype=numpy.float64) + quaternion[:3] = axis[:3] + qlen = vector_norm(quaternion) + if qlen > _EPS: + quaternion *= math.sin(angle/2.0) / qlen + quaternion[3] = math.cos(angle/2.0) + return quaternion + + +def quaternion_matrix(quaternion): + """Return homogeneous rotation matrix from quaternion. + + >>> R = quaternion_matrix([0.06146124, 0, 0, 0.99810947]) + >>> numpy.allclose(R, rotation_matrix(0.123, (1, 0, 0))) + True + + """ + q = numpy.array(quaternion[:4], dtype=numpy.float64, copy=True) + nq = numpy.dot(q, q) + if nq < _EPS: + return numpy.identity(4) + q *= math.sqrt(2.0 / nq) + q = numpy.outer(q, q) + return numpy.array(( + (1.0-q[1, 1]-q[2, 2], q[0, 1]-q[2, 3], q[0, 2]+q[1, 3], 0.0), + ( q[0, 1]+q[2, 3], 1.0-q[0, 0]-q[2, 2], q[1, 2]-q[0, 3], 0.0), + ( q[0, 2]-q[1, 3], q[1, 2]+q[0, 3], 1.0-q[0, 0]-q[1, 1], 0.0), + ( 0.0, 0.0, 0.0, 1.0) + ), dtype=numpy.float64) + + +def quaternion_from_matrix(matrix): + """Return quaternion from rotation matrix. + + >>> R = rotation_matrix(0.123, (1, 2, 3)) + >>> q = quaternion_from_matrix(R) + >>> numpy.allclose(q, [0.0164262, 0.0328524, 0.0492786, 0.9981095]) + True + + """ + q = numpy.empty((4, ), dtype=numpy.float64) + M = numpy.array(matrix, dtype=numpy.float64, copy=False)[:4, :4] + t = numpy.trace(M) + if t > M[3, 3]: + q[3] = t + q[2] = M[1, 0] - M[0, 1] + q[1] = M[0, 2] - M[2, 0] + q[0] = M[2, 1] - M[1, 2] + else: + i, j, k = 0, 1, 2 + if M[1, 1] > M[0, 0]: + i, j, k = 1, 2, 0 + if M[2, 2] > M[i, i]: + i, j, k = 2, 0, 1 + t = M[i, i] - (M[j, j] + M[k, k]) + M[3, 3] + q[i] = t + q[j] = M[i, j] + M[j, i] + q[k] = M[k, i] + M[i, k] + q[3] = M[k, j] - M[j, k] + q *= 0.5 / math.sqrt(t * M[3, 3]) + return q + + +def quaternion_multiply(quaternion1, quaternion0): + """Return multiplication of two quaternions. + + >>> q = quaternion_multiply([1, -2, 3, 4], [-5, 6, 7, 8]) + >>> numpy.allclose(q, [-44, -14, 48, 28]) + True + + """ + x0, y0, z0, w0 = quaternion0 + x1, y1, z1, w1 = quaternion1 + return numpy.array(( + x1*w0 + y1*z0 - z1*y0 + w1*x0, + -x1*z0 + y1*w0 + z1*x0 + w1*y0, + x1*y0 - y1*x0 + z1*w0 + w1*z0, + -x1*x0 - y1*y0 - z1*z0 + w1*w0), dtype=numpy.float64) + + +def quaternion_conjugate(quaternion): + """Return conjugate of quaternion. + + >>> q0 = random_quaternion() + >>> q1 = quaternion_conjugate(q0) + >>> q1[3] == q0[3] and all(q1[:3] == -q0[:3]) + True + + """ + return numpy.array((-quaternion[0], -quaternion[1], + -quaternion[2], quaternion[3]), dtype=numpy.float64) + + +def quaternion_inverse(quaternion): + """Return inverse of quaternion. + + >>> q0 = random_quaternion() + >>> q1 = quaternion_inverse(q0) + >>> numpy.allclose(quaternion_multiply(q0, q1), [0, 0, 0, 1]) + True + + """ + return quaternion_conjugate(quaternion) / numpy.dot(quaternion, quaternion) + + +def quaternion_slerp(quat0, quat1, fraction, spin=0, shortestpath=True): + """Return spherical linear interpolation between two quaternions. + + >>> q0 = random_quaternion() + >>> q1 = random_quaternion() + >>> q = quaternion_slerp(q0, q1, 0.0) + >>> numpy.allclose(q, q0) + True + >>> q = quaternion_slerp(q0, q1, 1.0, 1) + >>> numpy.allclose(q, q1) + True + >>> q = quaternion_slerp(q0, q1, 0.5) + >>> angle = math.acos(numpy.dot(q0, q)) + >>> numpy.allclose(2.0, math.acos(numpy.dot(q0, q1)) / angle) or \ + numpy.allclose(2.0, math.acos(-numpy.dot(q0, q1)) / angle) + True + + """ + q0 = unit_vector(quat0[:4]) + q1 = unit_vector(quat1[:4]) + if fraction == 0.0: + return q0 + elif fraction == 1.0: + return q1 + d = numpy.dot(q0, q1) + if abs(abs(d) - 1.0) < _EPS: + return q0 + if shortestpath and d < 0.0: + # invert rotation + d = -d + q1 *= -1.0 + angle = math.acos(d) + spin * math.pi + if abs(angle) < _EPS: + return q0 + isin = 1.0 / math.sin(angle) + q0 *= math.sin((1.0 - fraction) * angle) * isin + q1 *= math.sin(fraction * angle) * isin + q0 += q1 + return q0 + + +def random_quaternion(rand=None): + """Return uniform random unit quaternion. + + rand: array like or None + Three independent random variables that are uniformly distributed + between 0 and 1. + + >>> q = random_quaternion() + >>> numpy.allclose(1.0, vector_norm(q)) + True + >>> q = random_quaternion(numpy.random.random(3)) + >>> q.shape + (4,) + + """ + if rand is None: + rand = numpy.random.rand(3) + else: + assert len(rand) == 3 + r1 = numpy.sqrt(1.0 - rand[0]) + r2 = numpy.sqrt(rand[0]) + pi2 = math.pi * 2.0 + t1 = pi2 * rand[1] + t2 = pi2 * rand[2] + return numpy.array((numpy.sin(t1)*r1, + numpy.cos(t1)*r1, + numpy.sin(t2)*r2, + numpy.cos(t2)*r2), dtype=numpy.float64) + + +def random_rotation_matrix(rand=None): + """Return uniform random rotation matrix. + + rnd: array like + Three independent random variables that are uniformly distributed + between 0 and 1 for each returned quaternion. + + >>> R = random_rotation_matrix() + >>> numpy.allclose(numpy.dot(R.T, R), numpy.identity(4)) + True + + """ + return quaternion_matrix(random_quaternion(rand)) + + +class Arcball(object): + """Virtual Trackball Control. + + >>> ball = Arcball() + >>> ball = Arcball(initial=numpy.identity(4)) + >>> ball.place([320, 320], 320) + >>> ball.down([500, 250]) + >>> ball.drag([475, 275]) + >>> R = ball.matrix() + >>> numpy.allclose(numpy.sum(R), 3.90583455) + True + >>> ball = Arcball(initial=[0, 0, 0, 1]) + >>> ball.place([320, 320], 320) + >>> ball.setaxes([1,1,0], [-1, 1, 0]) + >>> ball.setconstrain(True) + >>> ball.down([400, 200]) + >>> ball.drag([200, 400]) + >>> R = ball.matrix() + >>> numpy.allclose(numpy.sum(R), 0.2055924) + True + >>> ball.next() + + """ + + def __init__(self, initial=None): + """Initialize virtual trackball control. + + initial : quaternion or rotation matrix + + """ + self._axis = None + self._axes = None + self._radius = 1.0 + self._center = [0.0, 0.0] + self._vdown = numpy.array([0, 0, 1], dtype=numpy.float64) + self._constrain = False + + if initial is None: + self._qdown = numpy.array([0, 0, 0, 1], dtype=numpy.float64) + else: + initial = numpy.array(initial, dtype=numpy.float64) + if initial.shape == (4, 4): + self._qdown = quaternion_from_matrix(initial) + elif initial.shape == (4, ): + initial /= vector_norm(initial) + self._qdown = initial + else: + raise ValueError("initial not a quaternion or matrix.") + + self._qnow = self._qpre = self._qdown + + def place(self, center, radius): + """Place Arcball, e.g. when window size changes. + + center : sequence[2] + Window coordinates of trackball center. + radius : float + Radius of trackball in window coordinates. + + """ + self._radius = float(radius) + self._center[0] = center[0] + self._center[1] = center[1] + + def setaxes(self, *axes): + """Set axes to constrain rotations.""" + if axes is None: + self._axes = None + else: + self._axes = [unit_vector(axis) for axis in axes] + + def setconstrain(self, constrain): + """Set state of constrain to axis mode.""" + self._constrain = constrain == True + + def getconstrain(self): + """Return state of constrain to axis mode.""" + return self._constrain + + def down(self, point): + """Set initial cursor window coordinates and pick constrain-axis.""" + self._vdown = arcball_map_to_sphere(point, self._center, self._radius) + self._qdown = self._qpre = self._qnow + + if self._constrain and self._axes is not None: + self._axis = arcball_nearest_axis(self._vdown, self._axes) + self._vdown = arcball_constrain_to_axis(self._vdown, self._axis) + else: + self._axis = None + + def drag(self, point): + """Update current cursor window coordinates.""" + vnow = arcball_map_to_sphere(point, self._center, self._radius) + + if self._axis is not None: + vnow = arcball_constrain_to_axis(vnow, self._axis) + + self._qpre = self._qnow + + t = numpy.cross(self._vdown, vnow) + if numpy.dot(t, t) < _EPS: + self._qnow = self._qdown + else: + q = [t[0], t[1], t[2], numpy.dot(self._vdown, vnow)] + self._qnow = quaternion_multiply(q, self._qdown) + + def next(self, acceleration=0.0): + """Continue rotation in direction of last drag.""" + q = quaternion_slerp(self._qpre, self._qnow, 2.0+acceleration, False) + self._qpre, self._qnow = self._qnow, q + + def matrix(self): + """Return homogeneous rotation matrix.""" + return quaternion_matrix(self._qnow) + + +def arcball_map_to_sphere(point, center, radius): + """Return unit sphere coordinates from window coordinates.""" + v = numpy.array(((point[0] - center[0]) / radius, + (center[1] - point[1]) / radius, + 0.0), dtype=numpy.float64) + n = v[0]*v[0] + v[1]*v[1] + if n > 1.0: + v /= math.sqrt(n) # position outside of sphere + else: + v[2] = math.sqrt(1.0 - n) + return v + + +def arcball_constrain_to_axis(point, axis): + """Return sphere point perpendicular to axis.""" + v = numpy.array(point, dtype=numpy.float64, copy=True) + a = numpy.array(axis, dtype=numpy.float64, copy=True) + v -= a * numpy.dot(a, v) # on plane + n = vector_norm(v) + if n > _EPS: + if v[2] < 0.0: + v *= -1.0 + v /= n + return v + if a[2] == 1.0: + return numpy.array([1, 0, 0], dtype=numpy.float64) + return unit_vector([-a[1], a[0], 0]) + + +def arcball_nearest_axis(point, axes): + """Return axis, which arc is nearest to point.""" + point = numpy.array(point, dtype=numpy.float64, copy=False) + nearest = None + mx = -1.0 + for axis in axes: + t = numpy.dot(arcball_constrain_to_axis(point, axis), point) + if t > mx: + nearest = axis + mx = t + return nearest + + +# epsilon for testing whether a number is close to zero +_EPS = numpy.finfo(float).eps * 4.0 + +# axis sequences for Euler angles +_NEXT_AXIS = [1, 2, 0, 1] + +# map axes strings to/from tuples of inner axis, parity, repetition, frame +_AXES2TUPLE = { + 'sxyz': (0, 0, 0, 0), 'sxyx': (0, 0, 1, 0), 'sxzy': (0, 1, 0, 0), + 'sxzx': (0, 1, 1, 0), 'syzx': (1, 0, 0, 0), 'syzy': (1, 0, 1, 0), + 'syxz': (1, 1, 0, 0), 'syxy': (1, 1, 1, 0), 'szxy': (2, 0, 0, 0), + 'szxz': (2, 0, 1, 0), 'szyx': (2, 1, 0, 0), 'szyz': (2, 1, 1, 0), + 'rzyx': (0, 0, 0, 1), 'rxyx': (0, 0, 1, 1), 'ryzx': (0, 1, 0, 1), + 'rxzx': (0, 1, 1, 1), 'rxzy': (1, 0, 0, 1), 'ryzy': (1, 0, 1, 1), + 'rzxy': (1, 1, 0, 1), 'ryxy': (1, 1, 1, 1), 'ryxz': (2, 0, 0, 1), + 'rzxz': (2, 0, 1, 1), 'rxyz': (2, 1, 0, 1), 'rzyz': (2, 1, 1, 1)} + +_TUPLE2AXES = dict((v, k) for k, v in _AXES2TUPLE.items()) + +# helper functions + +def vector_norm(data, axis=None, out=None): + """Return length, i.e. eucledian norm, of ndarray along axis. + + >>> v = numpy.random.random(3) + >>> n = vector_norm(v) + >>> numpy.allclose(n, numpy.linalg.norm(v)) + True + >>> v = numpy.random.rand(6, 5, 3) + >>> n = vector_norm(v, axis=-1) + >>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=2))) + True + >>> n = vector_norm(v, axis=1) + >>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=1))) + True + >>> v = numpy.random.rand(5, 4, 3) + >>> n = numpy.empty((5, 3), dtype=numpy.float64) + >>> vector_norm(v, axis=1, out=n) + >>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=1))) + True + >>> vector_norm([]) + 0.0 + >>> vector_norm([1.0]) + 1.0 + + """ + data = numpy.array(data, dtype=numpy.float64, copy=True) + if out is None: + if data.ndim == 1: + return math.sqrt(numpy.dot(data, data)) + data *= data + out = numpy.atleast_1d(numpy.sum(data, axis=axis)) + numpy.sqrt(out, out) + return out + else: + data *= data + numpy.sum(data, axis=axis, out=out) + numpy.sqrt(out, out) + + +def unit_vector(data, axis=None, out=None): + """Return ndarray normalized by length, i.e. eucledian norm, along axis. + + >>> v0 = numpy.random.random(3) + >>> v1 = unit_vector(v0) + >>> numpy.allclose(v1, v0 / numpy.linalg.norm(v0)) + True + >>> v0 = numpy.random.rand(5, 4, 3) + >>> v1 = unit_vector(v0, axis=-1) + >>> v2 = v0 / numpy.expand_dims(numpy.sqrt(numpy.sum(v0*v0, axis=2)), 2) + >>> numpy.allclose(v1, v2) + True + >>> v1 = unit_vector(v0, axis=1) + >>> v2 = v0 / numpy.expand_dims(numpy.sqrt(numpy.sum(v0*v0, axis=1)), 1) + >>> numpy.allclose(v1, v2) + True + >>> v1 = numpy.empty((5, 4, 3), dtype=numpy.float64) + >>> unit_vector(v0, axis=1, out=v1) + >>> numpy.allclose(v1, v2) + True + >>> list(unit_vector([])) + [] + >>> list(unit_vector([1.0])) + [1.0] + + """ + if out is None: + data = numpy.array(data, dtype=numpy.float64, copy=True) + if data.ndim == 1: + data /= math.sqrt(numpy.dot(data, data)) + return data + else: + if out is not data: + out[:] = numpy.array(data, copy=False) + data = out + length = numpy.atleast_1d(numpy.sum(data*data, axis)) + numpy.sqrt(length, length) + if axis is not None: + length = numpy.expand_dims(length, axis) + data /= length + if out is None: + return data + + +def random_vector(size): + """Return array of random doubles in the half-open interval [0.0, 1.0). + + >>> v = random_vector(10000) + >>> numpy.all(v >= 0.0) and numpy.all(v < 1.0) + True + >>> v0 = random_vector(10) + >>> v1 = random_vector(10) + >>> numpy.any(v0 == v1) + False + + """ + return numpy.random.random(size) + + +def inverse_matrix(matrix): + """Return inverse of square transformation matrix. + + >>> M0 = random_rotation_matrix() + >>> M1 = inverse_matrix(M0.T) + >>> numpy.allclose(M1, numpy.linalg.inv(M0.T)) + True + >>> for size in range(1, 7): + ... M0 = numpy.random.rand(size, size) + ... M1 = inverse_matrix(M0) + ... if not numpy.allclose(M1, numpy.linalg.inv(M0)): print size + + """ + return numpy.linalg.inv(matrix) + + +def concatenate_matrices(*matrices): + """Return concatenation of series of transformation matrices. + + >>> M = numpy.random.rand(16).reshape((4, 4)) - 0.5 + >>> numpy.allclose(M, concatenate_matrices(M)) + True + >>> numpy.allclose(numpy.dot(M, M.T), concatenate_matrices(M, M.T)) + True + + """ + M = numpy.identity(4) + for i in matrices: + M = numpy.dot(M, i) + return M + + +def is_same_transform(matrix0, matrix1): + """Return True if two matrices perform same transformation. + + >>> is_same_transform(numpy.identity(4), numpy.identity(4)) + True + >>> is_same_transform(numpy.identity(4), random_rotation_matrix()) + False + + """ + matrix0 = numpy.array(matrix0, dtype=numpy.float64, copy=True) + matrix0 /= matrix0[3, 3] + matrix1 = numpy.array(matrix1, dtype=numpy.float64, copy=True) + matrix1 /= matrix1[3, 3] + return numpy.allclose(matrix0, matrix1) + + +def _import_module(module_name, warn=True, prefix='_py_', ignore='_'): + """Try import all public attributes from module into global namespace. + + Existing attributes with name clashes are renamed with prefix. + Attributes starting with underscore are ignored by default. + + Return True on successful import. + + """ + try: + module = __import__(module_name) + except ImportError: + if warn: + warnings.warn("Failed to import module " + module_name) + else: + for attr in dir(module): + if ignore and attr.startswith(ignore): + continue + if prefix: + if attr in globals(): + globals()[prefix + attr] = globals()[attr] + elif warn: + warnings.warn("No Python implementation of " + attr) + globals()[attr] = getattr(module, attr) + return True |