summaryrefslogtreecommitdiff
path: root/libs/cairo-1.16.0/src/cairo-spline.c
diff options
context:
space:
mode:
Diffstat (limited to 'libs/cairo-1.16.0/src/cairo-spline.c')
-rw-r--r--libs/cairo-1.16.0/src/cairo-spline.c424
1 files changed, 0 insertions, 424 deletions
diff --git a/libs/cairo-1.16.0/src/cairo-spline.c b/libs/cairo-1.16.0/src/cairo-spline.c
deleted file mode 100644
index 44634fa..0000000
--- a/libs/cairo-1.16.0/src/cairo-spline.c
+++ /dev/null
@@ -1,424 +0,0 @@
-/* cairo - a vector graphics library with display and print output
- *
- * Copyright © 2002 University of Southern California
- *
- * This library is free software; you can redistribute it and/or
- * modify it either under the terms of the GNU Lesser General Public
- * License version 2.1 as published by the Free Software Foundation
- * (the "LGPL") or, at your option, under the terms of the Mozilla
- * Public License Version 1.1 (the "MPL"). If you do not alter this
- * notice, a recipient may use your version of this file under either
- * the MPL or the LGPL.
- *
- * You should have received a copy of the LGPL along with this library
- * in the file COPYING-LGPL-2.1; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
- * You should have received a copy of the MPL along with this library
- * in the file COPYING-MPL-1.1
- *
- * The contents of this file are subject to the Mozilla Public License
- * Version 1.1 (the "License"); you may not use this file except in
- * compliance with the License. You may obtain a copy of the License at
- * http://www.mozilla.org/MPL/
- *
- * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
- * OF ANY KIND, either express or implied. See the LGPL or the MPL for
- * the specific language governing rights and limitations.
- *
- * The Original Code is the cairo graphics library.
- *
- * The Initial Developer of the Original Code is University of Southern
- * California.
- *
- * Contributor(s):
- * Carl D. Worth <cworth@cworth.org>
- */
-
-#include "cairoint.h"
-
-#include "cairo-box-inline.h"
-#include "cairo-slope-private.h"
-
-cairo_bool_t
-_cairo_spline_intersects (const cairo_point_t *a,
- const cairo_point_t *b,
- const cairo_point_t *c,
- const cairo_point_t *d,
- const cairo_box_t *box)
-{
- cairo_box_t bounds;
-
- if (_cairo_box_contains_point (box, a) ||
- _cairo_box_contains_point (box, b) ||
- _cairo_box_contains_point (box, c) ||
- _cairo_box_contains_point (box, d))
- {
- return TRUE;
- }
-
- bounds.p2 = bounds.p1 = *a;
- _cairo_box_add_point (&bounds, b);
- _cairo_box_add_point (&bounds, c);
- _cairo_box_add_point (&bounds, d);
-
- if (bounds.p2.x <= box->p1.x || bounds.p1.x >= box->p2.x ||
- bounds.p2.y <= box->p1.y || bounds.p1.y >= box->p2.y)
- {
- return FALSE;
- }
-
-#if 0 /* worth refining? */
- bounds.p2 = bounds.p1 = *a;
- _cairo_box_add_curve_to (&bounds, b, c, d);
- if (bounds.p2.x <= box->p1.x || bounds.p1.x >= box->p2.x ||
- bounds.p2.y <= box->p1.y || bounds.p1.y >= box->p2.y)
- {
- return FALSE;
- }
-#endif
-
- return TRUE;
-}
-
-cairo_bool_t
-_cairo_spline_init (cairo_spline_t *spline,
- cairo_spline_add_point_func_t add_point_func,
- void *closure,
- const cairo_point_t *a, const cairo_point_t *b,
- const cairo_point_t *c, const cairo_point_t *d)
-{
- /* If both tangents are zero, this is just a straight line */
- if (a->x == b->x && a->y == b->y && c->x == d->x && c->y == d->y)
- return FALSE;
-
- spline->add_point_func = add_point_func;
- spline->closure = closure;
-
- spline->knots.a = *a;
- spline->knots.b = *b;
- spline->knots.c = *c;
- spline->knots.d = *d;
-
- if (a->x != b->x || a->y != b->y)
- _cairo_slope_init (&spline->initial_slope, &spline->knots.a, &spline->knots.b);
- else if (a->x != c->x || a->y != c->y)
- _cairo_slope_init (&spline->initial_slope, &spline->knots.a, &spline->knots.c);
- else if (a->x != d->x || a->y != d->y)
- _cairo_slope_init (&spline->initial_slope, &spline->knots.a, &spline->knots.d);
- else
- return FALSE;
-
- if (c->x != d->x || c->y != d->y)
- _cairo_slope_init (&spline->final_slope, &spline->knots.c, &spline->knots.d);
- else if (b->x != d->x || b->y != d->y)
- _cairo_slope_init (&spline->final_slope, &spline->knots.b, &spline->knots.d);
- else
- return FALSE; /* just treat this as a straight-line from a -> d */
-
- /* XXX if the initial, final and vector are all equal, this is just a line */
-
- return TRUE;
-}
-
-static cairo_status_t
-_cairo_spline_add_point (cairo_spline_t *spline,
- const cairo_point_t *point,
- const cairo_point_t *knot)
-{
- cairo_point_t *prev;
- cairo_slope_t slope;
-
- prev = &spline->last_point;
- if (prev->x == point->x && prev->y == point->y)
- return CAIRO_STATUS_SUCCESS;
-
- _cairo_slope_init (&slope, point, knot);
-
- spline->last_point = *point;
- return spline->add_point_func (spline->closure, point, &slope);
-}
-
-static void
-_lerp_half (const cairo_point_t *a, const cairo_point_t *b, cairo_point_t *result)
-{
- result->x = a->x + ((b->x - a->x) >> 1);
- result->y = a->y + ((b->y - a->y) >> 1);
-}
-
-static void
-_de_casteljau (cairo_spline_knots_t *s1, cairo_spline_knots_t *s2)
-{
- cairo_point_t ab, bc, cd;
- cairo_point_t abbc, bccd;
- cairo_point_t final;
-
- _lerp_half (&s1->a, &s1->b, &ab);
- _lerp_half (&s1->b, &s1->c, &bc);
- _lerp_half (&s1->c, &s1->d, &cd);
- _lerp_half (&ab, &bc, &abbc);
- _lerp_half (&bc, &cd, &bccd);
- _lerp_half (&abbc, &bccd, &final);
-
- s2->a = final;
- s2->b = bccd;
- s2->c = cd;
- s2->d = s1->d;
-
- s1->b = ab;
- s1->c = abbc;
- s1->d = final;
-}
-
-/* Return an upper bound on the error (squared) that could result from
- * approximating a spline as a line segment connecting the two endpoints. */
-static double
-_cairo_spline_error_squared (const cairo_spline_knots_t *knots)
-{
- double bdx, bdy, berr;
- double cdx, cdy, cerr;
-
- /* We are going to compute the distance (squared) between each of the the b
- * and c control points and the segment a-b. The maximum of these two
- * distances will be our approximation error. */
-
- bdx = _cairo_fixed_to_double (knots->b.x - knots->a.x);
- bdy = _cairo_fixed_to_double (knots->b.y - knots->a.y);
-
- cdx = _cairo_fixed_to_double (knots->c.x - knots->a.x);
- cdy = _cairo_fixed_to_double (knots->c.y - knots->a.y);
-
- if (knots->a.x != knots->d.x || knots->a.y != knots->d.y) {
- /* Intersection point (px):
- * px = p1 + u(p2 - p1)
- * (p - px) ∙ (p2 - p1) = 0
- * Thus:
- * u = ((p - p1) ∙ (p2 - p1)) / ∥p2 - p1∥²;
- */
-
- double dx, dy, u, v;
-
- dx = _cairo_fixed_to_double (knots->d.x - knots->a.x);
- dy = _cairo_fixed_to_double (knots->d.y - knots->a.y);
- v = dx * dx + dy * dy;
-
- u = bdx * dx + bdy * dy;
- if (u <= 0) {
- /* bdx -= 0;
- * bdy -= 0;
- */
- } else if (u >= v) {
- bdx -= dx;
- bdy -= dy;
- } else {
- bdx -= u/v * dx;
- bdy -= u/v * dy;
- }
-
- u = cdx * dx + cdy * dy;
- if (u <= 0) {
- /* cdx -= 0;
- * cdy -= 0;
- */
- } else if (u >= v) {
- cdx -= dx;
- cdy -= dy;
- } else {
- cdx -= u/v * dx;
- cdy -= u/v * dy;
- }
- }
-
- berr = bdx * bdx + bdy * bdy;
- cerr = cdx * cdx + cdy * cdy;
- if (berr > cerr)
- return berr;
- else
- return cerr;
-}
-
-static cairo_status_t
-_cairo_spline_decompose_into (cairo_spline_knots_t *s1,
- double tolerance_squared,
- cairo_spline_t *result)
-{
- cairo_spline_knots_t s2;
- cairo_status_t status;
-
- if (_cairo_spline_error_squared (s1) < tolerance_squared)
- return _cairo_spline_add_point (result, &s1->a, &s1->b);
-
- _de_casteljau (s1, &s2);
-
- status = _cairo_spline_decompose_into (s1, tolerance_squared, result);
- if (unlikely (status))
- return status;
-
- return _cairo_spline_decompose_into (&s2, tolerance_squared, result);
-}
-
-cairo_status_t
-_cairo_spline_decompose (cairo_spline_t *spline, double tolerance)
-{
- cairo_spline_knots_t s1;
- cairo_status_t status;
-
- s1 = spline->knots;
- spline->last_point = s1.a;
- status = _cairo_spline_decompose_into (&s1, tolerance * tolerance, spline);
- if (unlikely (status))
- return status;
-
- return spline->add_point_func (spline->closure,
- &spline->knots.d, &spline->final_slope);
-}
-
-/* Note: this function is only good for computing bounds in device space. */
-cairo_status_t
-_cairo_spline_bound (cairo_spline_add_point_func_t add_point_func,
- void *closure,
- const cairo_point_t *p0, const cairo_point_t *p1,
- const cairo_point_t *p2, const cairo_point_t *p3)
-{
- double x0, x1, x2, x3;
- double y0, y1, y2, y3;
- double a, b, c;
- double t[4];
- int t_num = 0, i;
- cairo_status_t status;
-
- x0 = _cairo_fixed_to_double (p0->x);
- y0 = _cairo_fixed_to_double (p0->y);
- x1 = _cairo_fixed_to_double (p1->x);
- y1 = _cairo_fixed_to_double (p1->y);
- x2 = _cairo_fixed_to_double (p2->x);
- y2 = _cairo_fixed_to_double (p2->y);
- x3 = _cairo_fixed_to_double (p3->x);
- y3 = _cairo_fixed_to_double (p3->y);
-
- /* The spline can be written as a polynomial of the four points:
- *
- * (1-t)³p0 + 3t(1-t)²p1 + 3t²(1-t)p2 + t³p3
- *
- * for 0≤t≤1. Now, the X and Y components of the spline follow the
- * same polynomial but with x and y replaced for p. To find the
- * bounds of the spline, we just need to find the X and Y bounds.
- * To find the bound, we take the derivative and equal it to zero,
- * and solve to find the t's that give the extreme points.
- *
- * Here is the derivative of the curve, sorted on t:
- *
- * 3t²(-p0+3p1-3p2+p3) + 2t(3p0-6p1+3p2) -3p0+3p1
- *
- * Let:
- *
- * a = -p0+3p1-3p2+p3
- * b = p0-2p1+p2
- * c = -p0+p1
- *
- * Gives:
- *
- * a.t² + 2b.t + c = 0
- *
- * With:
- *
- * delta = b*b - a*c
- *
- * the extreme points are at -c/2b if a is zero, at (-b±√delta)/a if
- * delta is positive, and at -b/a if delta is zero.
- */
-
-#define ADD(t0) \
- { \
- double _t0 = (t0); \
- if (0 < _t0 && _t0 < 1) \
- t[t_num++] = _t0; \
- }
-
-#define FIND_EXTREMES(a,b,c) \
- { \
- if (a == 0) { \
- if (b != 0) \
- ADD (-c / (2*b)); \
- } else { \
- double b2 = b * b; \
- double delta = b2 - a * c; \
- if (delta > 0) { \
- cairo_bool_t feasible; \
- double _2ab = 2 * a * b; \
- /* We are only interested in solutions t that satisfy 0<t<1 \
- * here. We do some checks to avoid sqrt if the solutions \
- * are not in that range. The checks can be derived from: \
- * \
- * 0 < (-b±√delta)/a < 1 \
- */ \
- if (_2ab >= 0) \
- feasible = delta > b2 && delta < a*a + b2 + _2ab; \
- else if (-b / a >= 1) \
- feasible = delta < b2 && delta > a*a + b2 + _2ab; \
- else \
- feasible = delta < b2 || delta < a*a + b2 + _2ab; \
- \
- if (unlikely (feasible)) { \
- double sqrt_delta = sqrt (delta); \
- ADD ((-b - sqrt_delta) / a); \
- ADD ((-b + sqrt_delta) / a); \
- } \
- } else if (delta == 0) { \
- ADD (-b / a); \
- } \
- } \
- }
-
- /* Find X extremes */
- a = -x0 + 3*x1 - 3*x2 + x3;
- b = x0 - 2*x1 + x2;
- c = -x0 + x1;
- FIND_EXTREMES (a, b, c);
-
- /* Find Y extremes */
- a = -y0 + 3*y1 - 3*y2 + y3;
- b = y0 - 2*y1 + y2;
- c = -y0 + y1;
- FIND_EXTREMES (a, b, c);
-
- status = add_point_func (closure, p0, NULL);
- if (unlikely (status))
- return status;
-
- for (i = 0; i < t_num; i++) {
- cairo_point_t p;
- double x, y;
- double t_1_0, t_0_1;
- double t_2_0, t_0_2;
- double t_3_0, t_2_1_3, t_1_2_3, t_0_3;
-
- t_1_0 = t[i]; /* t */
- t_0_1 = 1 - t_1_0; /* (1 - t) */
-
- t_2_0 = t_1_0 * t_1_0; /* t * t */
- t_0_2 = t_0_1 * t_0_1; /* (1 - t) * (1 - t) */
-
- t_3_0 = t_2_0 * t_1_0; /* t * t * t */
- t_2_1_3 = t_2_0 * t_0_1 * 3; /* t * t * (1 - t) * 3 */
- t_1_2_3 = t_1_0 * t_0_2 * 3; /* t * (1 - t) * (1 - t) * 3 */
- t_0_3 = t_0_1 * t_0_2; /* (1 - t) * (1 - t) * (1 - t) */
-
- /* Bezier polynomial */
- x = x0 * t_0_3
- + x1 * t_1_2_3
- + x2 * t_2_1_3
- + x3 * t_3_0;
- y = y0 * t_0_3
- + y1 * t_1_2_3
- + y2 * t_2_1_3
- + y3 * t_3_0;
-
- p.x = _cairo_fixed_from_double (x);
- p.y = _cairo_fixed_from_double (y);
- status = add_point_func (closure, &p, NULL);
- if (unlikely (status))
- return status;
- }
-
- return add_point_func (closure, p3, NULL);
-}