summaryrefslogtreecommitdiff
path: root/libs/ode-0.16.1/OPCODE/Ice/IcePoint.h
diff options
context:
space:
mode:
Diffstat (limited to 'libs/ode-0.16.1/OPCODE/Ice/IcePoint.h')
-rw-r--r--libs/ode-0.16.1/OPCODE/Ice/IcePoint.h530
1 files changed, 530 insertions, 0 deletions
diff --git a/libs/ode-0.16.1/OPCODE/Ice/IcePoint.h b/libs/ode-0.16.1/OPCODE/Ice/IcePoint.h
new file mode 100644
index 0000000..7c8a931
--- /dev/null
+++ b/libs/ode-0.16.1/OPCODE/Ice/IcePoint.h
@@ -0,0 +1,530 @@
+///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+/**
+ * Contains code for 3D vectors.
+ * \file IcePoint.h
+ * \author Pierre Terdiman
+ * \date April, 4, 2000
+ */
+///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+
+///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+// Include Guard
+#ifndef __ICEPOINT_H__
+#define __ICEPOINT_H__
+
+ // Forward declarations
+ class HPoint;
+ class Plane;
+ class Matrix3x3;
+ class Matrix4x4;
+
+ #define CROSS2D(a, b) (a.x*b.y - b.x*a.y)
+
+ const float EPSILON2 = 1.0e-20f;
+
+ class ICEMATHS_API Point
+ {
+ public:
+
+ //! Empty constructor
+ inline_ Point() {}
+ //! Constructor from a single float
+// inline_ Point(float val) : x(val), y(val), z(val) {}
+// Removed since it introduced the nasty "Point T = *Matrix4x4.GetTrans();" bug.......
+ //! Constructor from floats
+ template<typename toffsetfloat>
+ inline_ Point(toffsetfloat xx, toffsetfloat yy, toffsetfloat zz) : x((float)xx), y((float)yy), z((float)zz) {}
+ //! Constructor from array
+ inline_ Point(const float f[3]) : x(f[X]), y(f[Y]), z(f[Z]) {}
+ //! Copy constructor
+ inline_ Point(const Point& p) : x(p.x), y(p.y), z(p.z) {}
+ //! Destructor
+ inline_ ~Point() {}
+
+ //! Clears the vector
+ inline_ Point& Zero() { x = y = z = 0.0f; return *this; }
+
+ //! + infinity
+ inline_ Point& SetPlusInfinity() { x = y = z = MAX_FLOAT; return *this; }
+ //! - infinity
+ inline_ Point& SetMinusInfinity() { x = y = z = MIN_FLOAT; return *this; }
+
+ //! Sets positive unit random vector
+ Point& PositiveUnitRandomVector();
+ //! Sets unit random vector
+ Point& UnitRandomVector();
+
+ //! Assignment from values
+ template<typename toffsetfloat>
+ inline_ Point& Set(toffsetfloat xx, toffsetfloat yy, toffsetfloat zz) { x = (float)xx; y = (float)yy; z = (float)zz; return *this; }
+ //! Assignment from array
+ inline_ Point& Set(const float f[3]) { x = f[X]; y = f[Y]; z = f[Z]; return *this; }
+ //! Assignment from another point
+ inline_ Point& Set(const Point& src) { x = src.x; y = src.y; z = src.z; return *this; }
+
+ //! Adds a vector
+ inline_ Point& Add(const Point& p) { x += p.x; y += p.y; z += p.z; return *this; }
+ //! Adds a vector
+ inline_ Point& Add(float xx, float yy, float zz) { x += xx; y += yy; z += zz; return *this; }
+ //! Adds a vector
+ inline_ Point& Add(const float f[3]) { x += f[X]; y += f[Y]; z += f[Z]; return *this; }
+ //! Adds vectors
+ inline_ Point& Add(const Point& p, const Point& q) { x = p.x+q.x; y = p.y+q.y; z = p.z+q.z; return *this; }
+
+ //! Subtracts a vector
+ inline_ Point& Sub(const Point& p) { x -= p.x; y -= p.y; z -= p.z; return *this; }
+ //! Subtracts a vector
+ inline_ Point& Sub(float xx, float yy, float zz) { x -= xx; y -= yy; z -= zz; return *this; }
+ //! Subtracts a vector
+ inline_ Point& Sub(const float f[3]) { x -= f[X]; y -= f[Y]; z -= f[Z]; return *this; }
+ //! Subtracts vectors
+ inline_ Point& Sub(const Point& p, const Point& q) { x = p.x-q.x; y = p.y-q.y; z = p.z-q.z; return *this; }
+
+ //! this = -this
+ inline_ Point& Neg() { x = -x; y = -y; z = -z; return *this; }
+ //! this = -a
+ inline_ Point& Neg(const Point& a) { x = -a.x; y = -a.y; z = -a.z; return *this; }
+
+ //! Multiplies by a scalar
+ inline_ Point& Mult(float s) { x *= s; y *= s; z *= s; return *this; }
+
+ //! this = a * scalar
+ inline_ Point& Mult(const Point& a, float scalar)
+ {
+ x = a.x * scalar;
+ y = a.y * scalar;
+ z = a.z * scalar;
+ return *this;
+ }
+
+ //! this = a + b * scalar
+ inline_ Point& Mac(const Point& a, const Point& b, float scalar)
+ {
+ x = a.x + b.x * scalar;
+ y = a.y + b.y * scalar;
+ z = a.z + b.z * scalar;
+ return *this;
+ }
+
+ //! this = this + a * scalar
+ inline_ Point& Mac(const Point& a, float scalar)
+ {
+ x += a.x * scalar;
+ y += a.y * scalar;
+ z += a.z * scalar;
+ return *this;
+ }
+
+ //! this = a - b * scalar
+ inline_ Point& Msc(const Point& a, const Point& b, float scalar)
+ {
+ x = a.x - b.x * scalar;
+ y = a.y - b.y * scalar;
+ z = a.z - b.z * scalar;
+ return *this;
+ }
+
+ //! this = this - a * scalar
+ inline_ Point& Msc(const Point& a, float scalar)
+ {
+ x -= a.x * scalar;
+ y -= a.y * scalar;
+ z -= a.z * scalar;
+ return *this;
+ }
+
+ //! this = a + b * scalarb + c * scalarc
+ inline_ Point& Mac2(const Point& a, const Point& b, float scalarb, const Point& c, float scalarc)
+ {
+ x = a.x + b.x * scalarb + c.x * scalarc;
+ y = a.y + b.y * scalarb + c.y * scalarc;
+ z = a.z + b.z * scalarb + c.z * scalarc;
+ return *this;
+ }
+
+ //! this = a - b * scalarb - c * scalarc
+ inline_ Point& Msc2(const Point& a, const Point& b, float scalarb, const Point& c, float scalarc)
+ {
+ x = a.x - b.x * scalarb - c.x * scalarc;
+ y = a.y - b.y * scalarb - c.y * scalarc;
+ z = a.z - b.z * scalarb - c.z * scalarc;
+ return *this;
+ }
+
+ //! this = mat * a
+ inline_ Point& Mult(const Matrix3x3& mat, const Point& a);
+
+ //! this = mat1 * a1 + mat2 * a2
+ inline_ Point& Mult2(const Matrix3x3& mat1, const Point& a1, const Matrix3x3& mat2, const Point& a2);
+
+ //! this = this + mat * a
+ inline_ Point& Mac(const Matrix3x3& mat, const Point& a);
+
+ //! this = transpose(mat) * a
+ inline_ Point& TransMult(const Matrix3x3& mat, const Point& a);
+
+ //! Linear interpolate between two vectors: this = a + t * (b - a)
+ inline_ Point& Lerp(const Point& a, const Point& b, float t)
+ {
+ x = a.x + t * (b.x - a.x);
+ y = a.y + t * (b.y - a.y);
+ z = a.z + t * (b.z - a.z);
+ return *this;
+ }
+
+ //! Hermite interpolate between p1 and p2. p0 and p3 are used for finding gradient at p1 and p2.
+ //! this = p0 * (2t^2 - t^3 - t)/2
+ //! + p1 * (3t^3 - 5t^2 + 2)/2
+ //! + p2 * (4t^2 - 3t^3 + t)/2
+ //! + p3 * (t^3 - t^2)/2
+ inline_ Point& Herp(const Point& p0, const Point& p1, const Point& p2, const Point& p3, float t)
+ {
+ float t2 = t * t;
+ float t3 = t2 * t;
+ float kp0 = (2.0f * t2 - t3 - t) * 0.5f;
+ float kp1 = (3.0f * t3 - 5.0f * t2 + 2.0f) * 0.5f;
+ float kp2 = (4.0f * t2 - 3.0f * t3 + t) * 0.5f;
+ float kp3 = (t3 - t2) * 0.5f;
+ x = p0.x * kp0 + p1.x * kp1 + p2.x * kp2 + p3.x * kp3;
+ y = p0.y * kp0 + p1.y * kp1 + p2.y * kp2 + p3.y * kp3;
+ z = p0.z * kp0 + p1.z * kp1 + p2.z * kp2 + p3.z * kp3;
+ return *this;
+ }
+
+ //! this = rotpos * r + linpos
+ inline_ Point& Transform(const Point& r, const Matrix3x3& rotpos, const Point& linpos);
+
+ //! this = trans(rotpos) * (r - linpos)
+ inline_ Point& InvTransform(const Point& r, const Matrix3x3& rotpos, const Point& linpos);
+
+ //! Returns MIN(x, y, z);
+ inline_ float Min() const { return MIN(x, MIN(y, z)); }
+ //! Returns MAX(x, y, z);
+ inline_ float Max() const { return MAX(x, MAX(y, z)); }
+ //! Sets each element to be componentwise minimum
+ inline_ Point& Min(const Point& p) { x = MIN(x, p.x); y = MIN(y, p.y); z = MIN(z, p.z); return *this; }
+ //! Sets each element to be componentwise maximum
+ inline_ Point& Max(const Point& p) { x = MAX(x, p.x); y = MAX(y, p.y); z = MAX(z, p.z); return *this; }
+
+ //! Clamps each element
+ inline_ Point& Clamp(float min, float max)
+ {
+ if(x<min) x=min; if(x>max) x=max;
+ if(y<min) y=min; if(y>max) y=max;
+ if(z<min) z=min; if(z>max) z=max;
+ return *this;
+ }
+
+ //! Computes square magnitude
+ inline_ float SquareMagnitude() const { return x*x + y*y + z*z; }
+ //! Computes magnitude
+ inline_ float Magnitude() const { return sqrtf(x*x + y*y + z*z); }
+ //! Computes volume
+ inline_ float Volume() const { return x * y * z; }
+
+ //! Checks the point is near zero
+ inline_ bool ApproxZero() const { return SquareMagnitude() < EPSILON2; }
+
+ //! Tests for exact zero vector
+ inline_ BOOL IsZero() const
+ {
+ if(IR(x) || IR(y) || IR(z)) return FALSE;
+ return TRUE;
+ }
+
+ //! Checks point validity
+ inline_ BOOL IsValid() const
+ {
+ if(!IsValidFloat(x)) return FALSE;
+ if(!IsValidFloat(y)) return FALSE;
+ if(!IsValidFloat(z)) return FALSE;
+ return TRUE;
+ }
+
+ //! Slighty moves the point
+ void Tweak(udword coord_mask, udword tweak_mask)
+ {
+ if(coord_mask&1) { udword Dummy = IR(x); Dummy^=tweak_mask; x = FR(Dummy); }
+ if(coord_mask&2) { udword Dummy = IR(y); Dummy^=tweak_mask; y = FR(Dummy); }
+ if(coord_mask&4) { udword Dummy = IR(z); Dummy^=tweak_mask; z = FR(Dummy); }
+ }
+
+ #define TWEAKMASK 0x3fffff
+ #define TWEAKNOTMASK ~TWEAKMASK
+ //! Slighty moves the point out
+ inline_ void TweakBigger()
+ {
+ udword Dummy = (IR(x)&TWEAKNOTMASK); if(!IS_NEGATIVE_FLOAT(x)) Dummy+=TWEAKMASK+1; x = FR(Dummy);
+ Dummy = (IR(y)&TWEAKNOTMASK); if(!IS_NEGATIVE_FLOAT(y)) Dummy+=TWEAKMASK+1; y = FR(Dummy);
+ Dummy = (IR(z)&TWEAKNOTMASK); if(!IS_NEGATIVE_FLOAT(z)) Dummy+=TWEAKMASK+1; z = FR(Dummy);
+ }
+
+ //! Slighty moves the point in
+ inline_ void TweakSmaller()
+ {
+ udword Dummy = (IR(x)&TWEAKNOTMASK); if(IS_NEGATIVE_FLOAT(x)) Dummy+=TWEAKMASK+1; x = FR(Dummy);
+ Dummy = (IR(y)&TWEAKNOTMASK); if(IS_NEGATIVE_FLOAT(y)) Dummy+=TWEAKMASK+1; y = FR(Dummy);
+ Dummy = (IR(z)&TWEAKNOTMASK); if(IS_NEGATIVE_FLOAT(z)) Dummy+=TWEAKMASK+1; z = FR(Dummy);
+ }
+
+ //! Normalizes the vector
+ inline_ Point& Normalize()
+ {
+ float M = x*x + y*y + z*z;
+ if(M)
+ {
+ M = 1.0f / sqrtf(M);
+ x *= M;
+ y *= M;
+ z *= M;
+ }
+ return *this;
+ }
+
+ //! Sets vector length
+ inline_ Point& SetLength(float length)
+ {
+ float NewLength = length / Magnitude();
+ x *= NewLength;
+ y *= NewLength;
+ z *= NewLength;
+ return *this;
+ }
+
+ //! Clamps vector length
+ inline_ Point& ClampLength(float limit_length)
+ {
+ if(limit_length>=0.0f) // Magnitude must be positive
+ {
+ float CurrentSquareLength = SquareMagnitude();
+
+ if(CurrentSquareLength > limit_length * limit_length)
+ {
+ float Coeff = limit_length / sqrtf(CurrentSquareLength);
+ x *= Coeff;
+ y *= Coeff;
+ z *= Coeff;
+ }
+ }
+ return *this;
+ }
+
+ //! Computes distance to another point
+ inline_ float Distance(const Point& b) const
+ {
+ return sqrtf((x - b.x)*(x - b.x) + (y - b.y)*(y - b.y) + (z - b.z)*(z - b.z));
+ }
+
+ //! Computes square distance to another point
+ inline_ float SquareDistance(const Point& b) const
+ {
+ return ((x - b.x)*(x - b.x) + (y - b.y)*(y - b.y) + (z - b.z)*(z - b.z));
+ }
+
+ //! Dot product dp = this|a
+ inline_ float Dot(const Point& p) const { return p.x * x + p.y * y + p.z * z; }
+
+ //! Cross product this = a x b
+ inline_ Point& Cross(const Point& a, const Point& b)
+ {
+ x = a.y * b.z - a.z * b.y;
+ y = a.z * b.x - a.x * b.z;
+ z = a.x * b.y - a.y * b.x;
+ return *this;
+ }
+
+ //! Vector code ( bitmask = sign(z) | sign(y) | sign(x) )
+ inline_ udword VectorCode() const
+ {
+ return (IR(x)>>31) | ((IR(y)&SIGN_BITMASK)>>30) | ((IR(z)&SIGN_BITMASK)>>29);
+ }
+
+ //! Returns largest axis
+ inline_ PointComponent LargestAxis() const
+ {
+ const float* Vals = &x;
+ PointComponent m = X;
+ if(Vals[Y] > Vals[m]) m = Y;
+ if(Vals[Z] > Vals[m]) m = Z;
+ return m;
+ }
+
+ //! Returns closest axis
+ inline_ PointComponent ClosestAxis() const
+ {
+ const float* Vals = &x;
+ PointComponent m = X;
+ if(AIR(Vals[Y]) > AIR(Vals[m])) m = Y;
+ if(AIR(Vals[Z]) > AIR(Vals[m])) m = Z;
+ return m;
+ }
+
+ //! Returns smallest axis
+ inline_ PointComponent SmallestAxis() const
+ {
+ const float* Vals = &x;
+ PointComponent m = X;
+ if(Vals[Y] < Vals[m]) m = Y;
+ if(Vals[Z] < Vals[m]) m = Z;
+ return m;
+ }
+
+ //! Refracts the point
+ Point& Refract(const Point& eye, const Point& n, float refractindex, Point& refracted);
+
+ //! Projects the point onto a plane
+ Point& ProjectToPlane(const Plane& p);
+
+ //! Projects the point onto the screen
+ void ProjectToScreen(float halfrenderwidth, float halfrenderheight, const Matrix4x4& mat, HPoint& projected) const;
+
+ //! Unfolds the point onto a plane according to edge(a,b)
+ Point& Unfold(Plane& p, Point& a, Point& b);
+
+ //! Hash function from Ville Miettinen
+ inline_ udword GetHashValue() const
+ {
+ const udword* h = (const udword*)(this);
+ udword f = (h[0]+h[1]*11-(h[2]*17)) & 0x7fffffff; // avoid problems with +-0
+ return (f>>22)^(f>>12)^(f);
+ }
+
+ //! Stuff magic values in the point, marking it as explicitely not used.
+ void SetNotUsed();
+ //! Checks the point is marked as not used
+ BOOL IsNotUsed() const;
+
+ // Arithmetic operators
+
+ //! Unary operator for Point Negate = - Point
+ inline_ Point operator-() const { return Point(-x, -y, -z); }
+
+ //! Operator for Point Plus = Point + Point.
+ inline_ Point operator+(const Point& p) const { return Point(x + p.x, y + p.y, z + p.z); }
+ //! Operator for Point Minus = Point - Point.
+ inline_ Point operator-(const Point& p) const { return Point(x - p.x, y - p.y, z - p.z); }
+
+ //! Operator for Point Mul = Point * Point.
+ inline_ Point operator*(const Point& p) const { return Point(x * p.x, y * p.y, z * p.z); }
+ //! Operator for Point Scale = Point * float.
+ inline_ Point operator*(float s) const { return Point(x * s, y * s, z * s ); }
+ //! Operator for Point Scale = float * Point.
+ inline_ friend Point operator*(float s, const Point& p) { return Point(s * p.x, s * p.y, s * p.z); }
+
+ //! Operator for Point Div = Point / Point.
+ inline_ Point operator/(const Point& p) const { return Point(x / p.x, y / p.y, z / p.z); }
+ //! Operator for Point Scale = Point / float.
+ inline_ Point operator/(float s) const { s = 1.0f / s; return Point(x * s, y * s, z * s); }
+ //! Operator for Point Scale = float / Point.
+ inline_ friend Point operator/(float s, const Point& p) { return Point(s / p.x, s / p.y, s / p.z); }
+
+ //! Operator for float DotProd = Point | Point.
+ inline_ float operator|(const Point& p) const { return x*p.x + y*p.y + z*p.z; }
+ //! Operator for Point VecProd = Point ^ Point.
+ inline_ Point operator^(const Point& p) const
+ {
+ return Point(
+ y * p.z - z * p.y,
+ z * p.x - x * p.z,
+ x * p.y - y * p.x );
+ }
+
+ //! Operator for Point += Point.
+ inline_ Point& operator+=(const Point& p) { x += p.x; y += p.y; z += p.z; return *this; }
+ //! Operator for Point += float.
+ inline_ Point& operator+=(float s) { x += s; y += s; z += s; return *this; }
+
+ //! Operator for Point -= Point.
+ inline_ Point& operator-=(const Point& p) { x -= p.x; y -= p.y; z -= p.z; return *this; }
+ //! Operator for Point -= float.
+ inline_ Point& operator-=(float s) { x -= s; y -= s; z -= s; return *this; }
+
+ //! Operator for Point *= Point.
+ inline_ Point& operator*=(const Point& p) { x *= p.x; y *= p.y; z *= p.z; return *this; }
+ //! Operator for Point *= float.
+ inline_ Point& operator*=(float s) { x *= s; y *= s; z *= s; return *this; }
+
+ //! Operator for Point /= Point.
+ inline_ Point& operator/=(const Point& p) { x /= p.x; y /= p.y; z /= p.z; return *this; }
+ //! Operator for Point /= float.
+ inline_ Point& operator/=(float s) { s = 1.0f/s; x *= s; y *= s; z *= s; return *this; }
+
+ // Logical operators
+
+ //! Operator for "if(Point==Point)"
+ inline_ bool operator==(const Point& p) const { return ( (IR(x)==IR(p.x))&&(IR(y)==IR(p.y))&&(IR(z)==IR(p.z))); }
+ //! Operator for "if(Point!=Point)"
+ inline_ bool operator!=(const Point& p) const { return ( (IR(x)!=IR(p.x))||(IR(y)!=IR(p.y))||(IR(z)!=IR(p.z))); }
+
+ // Arithmetic operators
+
+ //! Operator for Point Mul = Point * Matrix3x3.
+ inline_ Point operator*(const Matrix3x3& mat) const
+ {
+ class ShadowMatrix3x3{ public: float m[3][3]; }; // To allow inlining
+ const ShadowMatrix3x3* Mat = (const ShadowMatrix3x3*)&mat;
+
+ return Point(
+ x * Mat->m[0][0] + y * Mat->m[1][0] + z * Mat->m[2][0],
+ x * Mat->m[0][1] + y * Mat->m[1][1] + z * Mat->m[2][1],
+ x * Mat->m[0][2] + y * Mat->m[1][2] + z * Mat->m[2][2] );
+ }
+
+ //! Operator for Point Mul = Point * Matrix4x4.
+ inline_ Point operator*(const Matrix4x4& mat) const
+ {
+ class ShadowMatrix4x4{ public: float m[4][4]; }; // To allow inlining
+ const ShadowMatrix4x4* Mat = (const ShadowMatrix4x4*)&mat;
+
+ return Point(
+ x * Mat->m[0][0] + y * Mat->m[1][0] + z * Mat->m[2][0] + Mat->m[3][0],
+ x * Mat->m[0][1] + y * Mat->m[1][1] + z * Mat->m[2][1] + Mat->m[3][1],
+ x * Mat->m[0][2] + y * Mat->m[1][2] + z * Mat->m[2][2] + Mat->m[3][2]);
+ }
+
+ //! Operator for Point *= Matrix3x3.
+ inline_ Point& operator*=(const Matrix3x3& mat)
+ {
+ class ShadowMatrix3x3{ public: float m[3][3]; }; // To allow inlining
+ const ShadowMatrix3x3* Mat = (const ShadowMatrix3x3*)&mat;
+
+ float xp = x * Mat->m[0][0] + y * Mat->m[1][0] + z * Mat->m[2][0];
+ float yp = x * Mat->m[0][1] + y * Mat->m[1][1] + z * Mat->m[2][1];
+ float zp = x * Mat->m[0][2] + y * Mat->m[1][2] + z * Mat->m[2][2];
+
+ x = xp; y = yp; z = zp;
+
+ return *this;
+ }
+
+ //! Operator for Point *= Matrix4x4.
+ inline_ Point& operator*=(const Matrix4x4& mat)
+ {
+ class ShadowMatrix4x4{ public: float m[4][4]; }; // To allow inlining
+ const ShadowMatrix4x4* Mat = (const ShadowMatrix4x4*)&mat;
+
+ float xp = x * Mat->m[0][0] + y * Mat->m[1][0] + z * Mat->m[2][0] + Mat->m[3][0];
+ float yp = x * Mat->m[0][1] + y * Mat->m[1][1] + z * Mat->m[2][1] + Mat->m[3][1];
+ float zp = x * Mat->m[0][2] + y * Mat->m[1][2] + z * Mat->m[2][2] + Mat->m[3][2];
+
+ x = xp; y = yp; z = zp;
+
+ return *this;
+ }
+
+ // Cast operators
+
+ //! Cast a Point to a HPoint. w is set to zero.
+ operator HPoint() const;
+
+ inline_ operator const float*() const { return &x; }
+ inline_ operator float*() { return &x; }
+
+ public:
+ float x, y, z;
+ };
+
+ FUNCTION ICEMATHS_API void Normalize1(Point& a);
+ FUNCTION ICEMATHS_API void Normalize2(Point& a);
+
+#endif //__ICEPOINT_H__