diff options
Diffstat (limited to 'libs/ode-0.16.1/ode/src/fastltsolve_impl.h')
-rw-r--r-- | libs/ode-0.16.1/ode/src/fastltsolve_impl.h | 1440 |
1 files changed, 1440 insertions, 0 deletions
diff --git a/libs/ode-0.16.1/ode/src/fastltsolve_impl.h b/libs/ode-0.16.1/ode/src/fastltsolve_impl.h new file mode 100644 index 0000000..ca30d9c --- /dev/null +++ b/libs/ode-0.16.1/ode/src/fastltsolve_impl.h @@ -0,0 +1,1440 @@ + + +/************************************************************************* + * * + * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. * + * All rights reserved. Email: russ@q12.org Web: www.q12.org * + * * + * This library is free software; you can redistribute it and/or * + * modify it under the terms of EITHER: * + * (1) The GNU Lesser General Public License as published by the Free * + * Software Foundation; either version 2.1 of the License, or (at * + * your option) any later version. The text of the GNU Lesser * + * General Public License is included with this library in the * + * file LICENSE.TXT. * + * (2) The BSD-style license that is included with this library in * + * the file LICENSE-BSD.TXT. * + * * + * This library is distributed in the hope that it will be useful, * + * but WITHOUT ANY WARRANTY; without even the implied warranty of * + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files * + * LICENSE.TXT and LICENSE-BSD.TXT for more details. * + * * + *************************************************************************/ + +/* + * Code style improvements and optimizations by Oleh Derevenko ????-2019 + * L1Transposed cooperative solving code of ThreadedEquationSolverLDLT copyright (c) 2017-2019 Oleh Derevenko, odar@eleks.com (change all "a" to "e") + */ + + +#ifndef _ODE_FASTLTSOLVE_IMPL_H_ +#define _ODE_FASTLTSOLVE_IMPL_H_ + + +/* solve L^T * x=b, with b containing 1 right hand side. + * L is an n*n lower triangular matrix with ones on the diagonal. + * L is stored by rows and its leading dimension is rowSkip. + * b is an n*1 matrix that contains the right hand side. + * b is overwritten with x. + * this processes blocks of 4. + */ + +template<unsigned int b_stride> +void solveL1Transposed(const dReal *L, dReal *B, unsigned rowCount, unsigned rowSkip) +{ + dIASSERT(rowCount != 0); + + /* special handling for L and B because we're solving L1 *transpose* */ + const dReal *lastLElement = L + (sizeint)(rowCount - 1) * (rowSkip + 1); + dReal *lastBElement = B + (sizeint)(rowCount - 1) * b_stride; + + /* compute rows at end that are not a multiple of block size */ + const unsigned loopX1RowCount = rowCount % 4; + + unsigned blockStartRow = loopX1RowCount; + bool subsequentPass = false; + + /* compute rightmost bottom X(i) block */ + if (loopX1RowCount != 0) + { + subsequentPass = true; + + const dReal *ptrLElement = lastLElement; + dReal *ptrBElement = lastBElement; + + dReal Y11 = ptrBElement[0 * b_stride]/* - Z11*/; + // ptrBElement[0 * b_stride] = Y11; -- unchanged + + if (loopX1RowCount >= 2) + { + dReal p2 = ptrLElement[-1]; + dReal Y21 = ptrBElement[-1 * (int)b_stride]/* - Z21 */- p2 * Y11; + ptrBElement[-1 * (int)b_stride] = Y21; + + if (loopX1RowCount > 2) + { + dReal p3 = ptrLElement[-2]; + dReal p3_1 = (ptrLElement - rowSkip)[-2]; + dReal Y31 = ptrBElement[-2 * (int)b_stride]/* - Z31 */- p3 * Y11 - p3_1 * Y21; + ptrBElement[-2 * (int)b_stride] = Y31; + } + } + } + + /* compute all 4 x 1 blocks of X */ + for (; !subsequentPass || blockStartRow < rowCount; subsequentPass = true, blockStartRow += 4) + { + /* compute all 4 x 1 block of X, from rows i..i+4-1 */ + + /* declare variables - Z matrix, p and q vectors, etc */ + const dReal *ptrLElement; + dReal *ptrBElement; + + dReal Z41, Z31, Z21, Z11; + + if (subsequentPass) + { + ptrLElement = lastLElement - blockStartRow; + ptrBElement = lastBElement; + + /* set the Z matrix to 0 */ + Z41 = 0; Z31 = 0; Z21 = 0; Z11 = 0; + + unsigned rowCounter = blockStartRow; + + if (rowCounter % 2 != 0) + { + dReal q1, p4, p3, p2, p1; + + /* load p and q values */ + q1 = ptrBElement[0 * (int)b_stride]; + p4 = ptrLElement[-3]; + p3 = ptrLElement[-2]; + p2 = ptrLElement[-1]; + p1 = ptrLElement[0]; + ptrLElement -= rowSkip; + + /* compute outer product and add it to the Z matrix */ + Z41 += p4 * q1; + Z31 += p3 * q1; + Z21 += p2 * q1; + Z11 += p1 * q1; + + ptrBElement -= 1 * b_stride; + rowCounter -= 1; + } + + if (rowCounter % 4 != 0) + { + dReal q1, p4, p3, p2, p1; + + /* load p and q values */ + q1 = ptrBElement[0 * (int)b_stride]; + p4 = ptrLElement[-3]; + p3 = ptrLElement[-2]; + p2 = ptrLElement[-1]; + p1 = ptrLElement[0]; + ptrLElement -= rowSkip; + + /* compute outer product and add it to the Z matrix */ + Z41 += p4 * q1; + Z31 += p3 * q1; + Z21 += p2 * q1; + Z11 += p1 * q1; + + /* load p and q values */ + q1 = ptrBElement[-1 * (int)b_stride]; + p4 = ptrLElement[-3]; + p3 = ptrLElement[-2]; + p2 = ptrLElement[-1]; + p1 = ptrLElement[0]; + ptrLElement -= rowSkip; + + /* compute outer product and add it to the Z matrix */ + Z41 += p4 * q1; + Z31 += p3 * q1; + Z21 += p2 * q1; + Z11 += p1 * q1; + + ptrBElement -= 2 * b_stride; + rowCounter -= 2; + } + + /* the inner loop that computes outer products and adds them to Z */ + for (bool exitLoop = rowCounter == 0; !exitLoop; exitLoop = false) + { + dReal q1, p4, p3, p2, p1; + + /* load p and q values */ + q1 = ptrBElement[0 * (int)b_stride]; + p4 = ptrLElement[-3]; + p3 = ptrLElement[-2]; + p2 = ptrLElement[-1]; + p1 = ptrLElement[0]; + ptrLElement -= rowSkip; + + /* compute outer product and add it to the Z matrix */ + Z41 += p4 * q1; + Z31 += p3 * q1; + Z21 += p2 * q1; + Z11 += p1 * q1; + + /* load p and q values */ + q1 = ptrBElement[-1 * (int)b_stride]; + p4 = ptrLElement[-3]; + p3 = ptrLElement[-2]; + p2 = ptrLElement[-1]; + p1 = ptrLElement[0]; + ptrLElement -= rowSkip; + + /* compute outer product and add it to the Z matrix */ + Z41 += p4 * q1; + Z31 += p3 * q1; + Z21 += p2 * q1; + Z11 += p1 * q1; + + /* load p and q values */ + q1 = ptrBElement[-2 * (int)b_stride]; + p4 = ptrLElement[-3]; + p3 = ptrLElement[-2]; + p2 = ptrLElement[-1]; + p1 = ptrLElement[0]; + ptrLElement -= rowSkip; + + /* compute outer product and add it to the Z matrix */ + Z41 += p4 * q1; + Z31 += p3 * q1; + Z21 += p2 * q1; + Z11 += p1 * q1; + + /* load p and q values */ + q1 = ptrBElement[-3 * (int)b_stride]; + p4 = ptrLElement[-3]; + p3 = ptrLElement[-2]; + p2 = ptrLElement[-1]; + p1 = ptrLElement[0]; + ptrLElement -= rowSkip; + + /* compute outer product and add it to the Z matrix */ + Z41 += p4 * q1; + Z31 += p3 * q1; + Z21 += p2 * q1; + Z11 += p1 * q1; + + if (rowCounter > 12) + { + rowCounter -= 12; + + ptrBElement -= 12 * b_stride; + + /* load p and q values */ + q1 = ptrBElement[8 * b_stride]; + p4 = ptrLElement[-3]; + p3 = ptrLElement[-2]; + p2 = ptrLElement[-1]; + p1 = ptrLElement[0]; + ptrLElement -= rowSkip; + + /* compute outer product and add it to the Z matrix */ + Z41 += p4 * q1; + Z31 += p3 * q1; + Z21 += p2 * q1; + Z11 += p1 * q1; + + /* load p and q values */ + q1 = ptrBElement[7 * b_stride]; + p4 = ptrLElement[-3]; + p3 = ptrLElement[-2]; + p2 = ptrLElement[-1]; + p1 = ptrLElement[0]; + ptrLElement -= rowSkip; + + /* compute outer product and add it to the Z matrix */ + Z41 += p4 * q1; + Z31 += p3 * q1; + Z21 += p2 * q1; + Z11 += p1 * q1; + + /* load p and q values */ + q1 = ptrBElement[6 * b_stride]; + p4 = ptrLElement[-3]; + p3 = ptrLElement[-2]; + p2 = ptrLElement[-1]; + p1 = ptrLElement[0]; + ptrLElement -= rowSkip; + + /* compute outer product and add it to the Z matrix */ + Z41 += p4 * q1; + Z31 += p3 * q1; + Z21 += p2 * q1; + Z11 += p1 * q1; + + /* load p and q values */ + q1 = ptrBElement[5 * b_stride]; + p4 = ptrLElement[-3]; + p3 = ptrLElement[-2]; + p2 = ptrLElement[-1]; + p1 = ptrLElement[0]; + ptrLElement -= rowSkip; + + /* compute outer product and add it to the Z matrix */ + Z41 += p4 * q1; + Z31 += p3 * q1; + Z21 += p2 * q1; + Z11 += p1 * q1; + + /* load p and q values */ + q1 = ptrBElement[4 * b_stride]; + p4 = ptrLElement[-3]; + p3 = ptrLElement[-2]; + p2 = ptrLElement[-1]; + p1 = ptrLElement[0]; + ptrLElement -= rowSkip; + + /* compute outer product and add it to the Z matrix */ + Z41 += p4 * q1; + Z31 += p3 * q1; + Z21 += p2 * q1; + Z11 += p1 * q1; + + /* load p and q values */ + q1 = ptrBElement[3 * b_stride]; + p4 = ptrLElement[-3]; + p3 = ptrLElement[-2]; + p2 = ptrLElement[-1]; + p1 = ptrLElement[0]; + ptrLElement -= rowSkip; + + /* compute outer product and add it to the Z matrix */ + Z41 += p4 * q1; + Z31 += p3 * q1; + Z21 += p2 * q1; + Z11 += p1 * q1; + + /* load p and q values */ + q1 = ptrBElement[2 * b_stride]; + p4 = ptrLElement[-3]; + p3 = ptrLElement[-2]; + p2 = ptrLElement[-1]; + p1 = ptrLElement[0]; + ptrLElement -= rowSkip; + + /* compute outer product and add it to the Z matrix */ + Z41 += p4 * q1; + Z31 += p3 * q1; + Z21 += p2 * q1; + Z11 += p1 * q1; + + /* load p and q values */ + q1 = ptrBElement[1 * b_stride]; + p4 = ptrLElement[-3]; + p3 = ptrLElement[-2]; + p2 = ptrLElement[-1]; + p1 = ptrLElement[0]; + ptrLElement -= rowSkip; + + /* compute outer product and add it to the Z matrix */ + Z41 += p4 * q1; + Z31 += p3 * q1; + Z21 += p2 * q1; + Z11 += p1 * q1; + } + else + { + ptrBElement -= 4 * b_stride; + + if ((rowCounter -= 4) == 0) + { + break; + } + } + /* end of inner loop */ + } + } + else + { + ptrLElement = lastLElement/* - blockStartRow*/; dIASSERT(blockStartRow == 0); + ptrBElement = lastBElement; + + /* set the Z matrix to 0 */ + Z41 = 0; Z31 = 0; Z21 = 0; Z11 = 0; + } + + /* finish computing the X(i) block */ + dReal Y11, Y21, Y31, Y41; + { + Y11 = ptrBElement[0 * b_stride] - Z11; + ptrBElement[0 * b_stride] = Y11; + } + { + dReal p2 = ptrLElement[-1]; + Y21 = ptrBElement[-1 * (int)b_stride] - Z21 - p2 * Y11; + ptrBElement[-1 * (int)b_stride] = Y21; + } + { + dReal p3 = ptrLElement[-2]; + dReal p3_1 = (ptrLElement - rowSkip)[-2]; + Y31 = ptrBElement[-2 * (int)b_stride] - Z31 - p3 * Y11 - p3_1 * Y21; + ptrBElement[-2 * (int)b_stride] = Y31; + } + { + dReal p4 = ptrLElement[-3]; + dReal p4_1 = (ptrLElement - rowSkip)[-3]; + dReal p4_2 = (ptrLElement - rowSkip * 2)[-3]; + Y41 = ptrBElement[-3 * (int)b_stride] - Z41 - p4 * Y11 - p4_1 * Y21 - p4_2 * Y31; + ptrBElement[-3 * (int)b_stride] = Y41; + } + /* end of outer loop */ + } +} + + + +template<unsigned int block_step> +/*static */ +sizeint ThreadedEquationSolverLDLT::estimateCooperativelySolvingL1TransposedMemoryRequirement(unsigned rowCount, SolvingL1TransposedMemoryEstimates &ref_solvingMemoryEstimates) +{ + unsigned blockCount = deriveSolvingL1TransposedBlockCount(rowCount, block_step); + sizeint descriptorSizeRequired = dEFFICIENT_SIZE(sizeof(cellindexint) * blockCount); + sizeint contextSizeRequired = dEFFICIENT_SIZE(sizeof(SolveL1TransposedCellContext) * (CCI__MAX + 1) * blockCount); + ref_solvingMemoryEstimates.assignData(descriptorSizeRequired, contextSizeRequired); + + sizeint totalSizeRequired = descriptorSizeRequired + contextSizeRequired; + return totalSizeRequired; +} + +template<unsigned int block_step> +/*static */ +void ThreadedEquationSolverLDLT::initializeCooperativelySolveL1TransposedMemoryStructures(unsigned rowCount, + atomicord32 &out_blockCompletionProgress, cellindexint *blockProgressDescriptors, SolveL1TransposedCellContext *dUNUSED(cellContexts)) +{ + unsigned blockCount = deriveSolvingL1TransposedBlockCount(rowCount, block_step); + + out_blockCompletionProgress = 0; + memset(blockProgressDescriptors, 0, blockCount * sizeof(*blockProgressDescriptors)); +} + +template<unsigned int block_step, unsigned int b_stride> +/*static */ +void ThreadedEquationSolverLDLT::participateSolvingL1Transposed(const dReal *L, dReal *B, unsigned rowCount, unsigned rowSkip, + volatile atomicord32 &refBlockCompletionProgress/*=0*/, volatile cellindexint *blockProgressDescriptors/*=[blockCount]*/, + SolveL1TransposedCellContext *cellContexts/*=[CCI__MAX x blockCount] + [blockCount]*/, unsigned ownThreadIndex) +{ + const unsigned lookaheadRange = 32; + const unsigned blockCount = deriveSolvingL1TransposedBlockCount(rowCount, block_step); + /* compute rows at end that are not a multiple of block size */ + const unsigned loopX1RowCount = rowCount % block_step; + + /* special handling for L and B because we're solving L1 *transpose* */ + const dReal *lastLElement = L + (rowCount - 1) * ((sizeint)rowSkip + 1); + dReal *lastBElement = B + (rowCount - 1) * (sizeint)b_stride; + + /* elements adjusted as if the last block was full block_step elements */ + unsigned x1AdjustmentElements = (block_step - loopX1RowCount) % block_step; + const dReal *columnAdjustedLastLElement = lastLElement + x1AdjustmentElements; + const dReal *fullyAdjustedLastLElement = columnAdjustedLastLElement + (sizeint)rowSkip * x1AdjustmentElements; + dReal *adjustedLastBElement = lastBElement + b_stride * x1AdjustmentElements; + + BlockProcessingState blockProcessingState = BPS_NO_BLOCKS_PROCESSED; + + unsigned completedBlocks = refBlockCompletionProgress; + unsigned currentBlock = completedBlocks; + dIASSERT(completedBlocks <= blockCount); + + for (bool exitLoop = completedBlocks == blockCount; !exitLoop; exitLoop = false) + { + bool goForLockedBlockPrimaryCalculation = false, goForLockedBlockDuplicateCalculation = false; + bool goAssigningTheResult = false, stayWithinTheBlock = false; + + dReal Z[block_step]; + dReal Y[block_step]; + + dReal *ptrBElement; + + CellContextInstance previousContextInstance; + unsigned completedRowBlock; + bool partialBlock; + + for (cellindexint testDescriptor = blockProgressDescriptors[currentBlock]; ; ) + { + if (testDescriptor == INVALID_CELLDESCRIPTOR) + { + // Invalid descriptor is the indication that the row has been fully calculated + // Test if this was the last row and break out if so. + if (currentBlock + 1 == blockCount) + { + exitLoop = true; + break; + } + + // Treat detected row advancement as a row processed + // blockProcessingState = BPS_SOME_BLOCKS_PROCESSED; <-- performs better without it + break; + } + + CooperativeAtomics::AtomicReadReorderBarrier(); + // It is necessary to read up to date completedBblocks value after the descriptor retrieval + // as otherwise the logic below breaks + completedBlocks = refBlockCompletionProgress; + + if (!GET_CELLDESCRIPTOR_ISLOCKED(testDescriptor)) + { + completedRowBlock = GET_CELLDESCRIPTOR_COLUMNINDEX(testDescriptor); + dIASSERT(completedRowBlock < currentBlock || (completedRowBlock == currentBlock && currentBlock == 0)); // Otherwise, why would the calculation have had stopped if the final column is reachable??? + dIASSERT(completedRowBlock <= completedBlocks); // Since the descriptor is not locked + + if (completedRowBlock == completedBlocks && currentBlock != completedBlocks) + { + dIASSERT(completedBlocks < currentBlock); + break; + } + + if (CooperativeAtomics::AtomicCompareExchangeCellindexint(&blockProgressDescriptors[currentBlock], testDescriptor, MARK_CELLDESCRIPTOR_LOCKED(testDescriptor))) + { + if (completedRowBlock != 0) + { + CellContextInstance contextInstance = GET_CELLDESCRIPTOR_CONTEXTINSTANCE(testDescriptor); + previousContextInstance = contextInstance; + + const SolveL1TransposedCellContext &sourceContext = buildBlockContextRef(cellContexts, currentBlock, contextInstance); + sourceContext.loadPrecalculatedZs(Z); + } + else + { + previousContextInstance = CCI__MIN; + SolveL1TransposedCellContext::initializePrecalculatedZs(Z); + } + + goForLockedBlockPrimaryCalculation = true; + break; + } + + if (blockProcessingState != BPS_COMPETING_FOR_A_BLOCK) + { + break; + } + + testDescriptor = blockProgressDescriptors[currentBlock]; + } + else + { + if (blockProcessingState != BPS_COMPETING_FOR_A_BLOCK) + { + break; + } + + cellindexint verificativeDescriptor; + bool verificationFailure = false; + + completedRowBlock = GET_CELLDESCRIPTOR_COLUMNINDEX(testDescriptor); + dIASSERT(completedRowBlock != currentBlock || currentBlock == 0); // There is no reason for computations to stop at the very end other than being the initial value at the very first block + + if (completedRowBlock != 0) + { + CellContextInstance contextInstance = GET_CELLDESCRIPTOR_CONTEXTINSTANCE(testDescriptor); + const SolveL1TransposedCellContext &sourceContext = buildBlockContextRef(cellContexts, currentBlock, contextInstance); + sourceContext.loadPrecalculatedZs(Z); + } + else + { + SolveL1TransposedCellContext::initializePrecalculatedZs(Z); + } + + if (completedRowBlock != 0 && completedRowBlock <= currentBlock) + { + // Make sure the descriptor is re-read after the precalculates + CooperativeAtomics::AtomicReadReorderBarrier(); + } + + if (completedRowBlock <= currentBlock) + { + verificativeDescriptor = blockProgressDescriptors[currentBlock]; + verificationFailure = verificativeDescriptor != testDescriptor; + } + + if (!verificationFailure) + { + dIASSERT(completedRowBlock <= currentBlock + 1); + + goForLockedBlockDuplicateCalculation = true; + break; + } + + testDescriptor = verificativeDescriptor; + } + } + + if (exitLoop) + { + break; + } + + if (goForLockedBlockPrimaryCalculation) + { + blockProcessingState = BPS_SOME_BLOCKS_PROCESSED; + + // Declare and assign the variables at the top to not interfere with any branching -- the compiler is going to eliminate them anyway. + bool handleComputationTakenOver = false, columnEndReached = false; + + const dReal *ptrLElement; + unsigned finalRowBlock; + + /* check if this is not the partial block of fewer rows */ + if (currentBlock != 0 || loopX1RowCount == 0) + { + partialBlock = false; + + ptrLElement = completedRowBlock != 0 + ? fullyAdjustedLastLElement - currentBlock * block_step - (sizeint)(completedRowBlock * block_step) * rowSkip + : columnAdjustedLastLElement - currentBlock * block_step; + ptrBElement = completedRowBlock != 0 + ? adjustedLastBElement - (sizeint)(completedRowBlock * block_step) * b_stride + : lastBElement; + + finalRowBlock = dMACRO_MIN(currentBlock, completedBlocks); + dIASSERT(finalRowBlock != completedRowBlock || finalRowBlock == 0); + + unsigned rowCounter = finalRowBlock - completedRowBlock; + bool exitLoop = rowCounter == 0; + + if (exitLoop) + { + columnEndReached = true; + } + else if (completedRowBlock == 0 && currentBlock != 0 && loopX1RowCount != 0) + { + if ((loopX1RowCount & 1) != 0) + { + dReal q1, p4, p3, p2, p1; + + /* load p and q values */ + q1 = ptrBElement[0 * (int)b_stride]; + p4 = ptrLElement[-3]; + p3 = ptrLElement[-2]; + p2 = ptrLElement[-1]; + p1 = ptrLElement[0]; + ptrLElement -= rowSkip; + + /* compute outer product and add it to the Z matrix */ + Z[3] += p4 * q1; + Z[2] += p3 * q1; + Z[1] += p2 * q1; + Z[0] += p1 * q1; + + ptrBElement -= 1 * b_stride; + } + + if ((loopX1RowCount & 2) != 0) + { + dReal q1, p4, p3, p2, p1; + + /* load p and q values */ + q1 = ptrBElement[0 * (int)b_stride]; + p4 = ptrLElement[-3]; + p3 = ptrLElement[-2]; + p2 = ptrLElement[-1]; + p1 = ptrLElement[0]; + ptrLElement -= rowSkip; + + /* compute outer product and add it to the Z matrix */ + Z[3] += p4 * q1; + Z[2] += p3 * q1; + Z[1] += p2 * q1; + Z[0] += p1 * q1; + + /* load p and q values */ + q1 = ptrBElement[-1 * (int)b_stride]; + p4 = ptrLElement[-3]; + p3 = ptrLElement[-2]; + p2 = ptrLElement[-1]; + p1 = ptrLElement[0]; + ptrLElement -= rowSkip; + + /* compute outer product and add it to the Z matrix */ + Z[3] += p4 * q1; + Z[2] += p3 * q1; + Z[1] += p2 * q1; + Z[0] += p1 * q1; + + ptrBElement -= 2 * b_stride; + } + dSASSERT(block_step == 4); + + if (--rowCounter == 0) + { + do + { + if (finalRowBlock == currentBlock) + { + columnEndReached = true; + exitLoop = true; + break; + } + + // Take a look if any more columns have been completed... + completedBlocks = refBlockCompletionProgress; + dIASSERT(completedBlocks >= finalRowBlock); + + if (completedBlocks == finalRowBlock) + { + exitLoop = true; + break; + } + + // ...continue if so. + unsigned rowCompletedSoFar = finalRowBlock; + finalRowBlock = dMACRO_MIN(currentBlock, completedBlocks); + rowCounter = finalRowBlock - rowCompletedSoFar; + } + while (false); + } + } + + for (; !exitLoop; exitLoop = false) + { + dReal q1, p4, p3, p2, p1; + + /* load p and q values */ + q1 = ptrBElement[0 * (int)b_stride]; + p4 = ptrLElement[-3]; + p3 = ptrLElement[-2]; + p2 = ptrLElement[-1]; + p1 = ptrLElement[0]; + ptrLElement -= rowSkip; + + /* compute outer product and add it to the Z matrix */ + Z[3] += p4 * q1; + Z[2] += p3 * q1; + Z[1] += p2 * q1; + Z[0] += p1 * q1; + + /* load p and q values */ + q1 = ptrBElement[-1 * (int)b_stride]; + p4 = ptrLElement[-3]; + p3 = ptrLElement[-2]; + p2 = ptrLElement[-1]; + p1 = ptrLElement[0]; + ptrLElement -= rowSkip; + + /* compute outer product and add it to the Z matrix */ + Z[3] += p4 * q1; + Z[2] += p3 * q1; + Z[1] += p2 * q1; + Z[0] += p1 * q1; + + /* load p and q values */ + q1 = ptrBElement[-2 * (int)b_stride]; + p4 = ptrLElement[-3]; + p3 = ptrLElement[-2]; + p2 = ptrLElement[-1]; + p1 = ptrLElement[0]; + ptrLElement -= rowSkip; + + /* compute outer product and add it to the Z matrix */ + Z[3] += p4 * q1; + Z[2] += p3 * q1; + Z[1] += p2 * q1; + Z[0] += p1 * q1; + + /* load p and q values */ + q1 = ptrBElement[-3 * (int)b_stride]; + p4 = ptrLElement[-3]; + p3 = ptrLElement[-2]; + p2 = ptrLElement[-1]; + p1 = ptrLElement[0]; + ptrLElement -= rowSkip; + + /* compute outer product and add it to the Z matrix */ + Z[3] += p4 * q1; + Z[2] += p3 * q1; + Z[1] += p2 * q1; + Z[0] += p1 * q1; + dSASSERT(block_step == 4); + + if (rowCounter > 3) + { + rowCounter -= 3; + + ptrBElement -= 3 * block_step * b_stride; + + /* load p and q values */ + q1 = ptrBElement[8 * b_stride]; + p4 = ptrLElement[-3]; + p3 = ptrLElement[-2]; + p2 = ptrLElement[-1]; + p1 = ptrLElement[0]; + ptrLElement -= rowSkip; + + /* compute outer product and add it to the Z matrix */ + Z[3] += p4 * q1; + Z[2] += p3 * q1; + Z[1] += p2 * q1; + Z[0] += p1 * q1; + + /* load p and q values */ + q1 = ptrBElement[7 * b_stride]; + p4 = ptrLElement[-3]; + p3 = ptrLElement[-2]; + p2 = ptrLElement[-1]; + p1 = ptrLElement[0]; + ptrLElement -= rowSkip; + + /* compute outer product and add it to the Z matrix */ + Z[3] += p4 * q1; + Z[2] += p3 * q1; + Z[1] += p2 * q1; + Z[0] += p1 * q1; + + /* load p and q values */ + q1 = ptrBElement[6 * b_stride]; + p4 = ptrLElement[-3]; + p3 = ptrLElement[-2]; + p2 = ptrLElement[-1]; + p1 = ptrLElement[0]; + ptrLElement -= rowSkip; + + /* compute outer product and add it to the Z matrix */ + Z[3] += p4 * q1; + Z[2] += p3 * q1; + Z[1] += p2 * q1; + Z[0] += p1 * q1; + + /* load p and q values */ + q1 = ptrBElement[5 * b_stride]; + p4 = ptrLElement[-3]; + p3 = ptrLElement[-2]; + p2 = ptrLElement[-1]; + p1 = ptrLElement[0]; + ptrLElement -= rowSkip; + + /* compute outer product and add it to the Z matrix */ + Z[3] += p4 * q1; + Z[2] += p3 * q1; + Z[1] += p2 * q1; + Z[0] += p1 * q1; + + /* load p and q values */ + q1 = ptrBElement[4 * b_stride]; + p4 = ptrLElement[-3]; + p3 = ptrLElement[-2]; + p2 = ptrLElement[-1]; + p1 = ptrLElement[0]; + ptrLElement -= rowSkip; + + /* compute outer product and add it to the Z matrix */ + Z[3] += p4 * q1; + Z[2] += p3 * q1; + Z[1] += p2 * q1; + Z[0] += p1 * q1; + + /* load p and q values */ + q1 = ptrBElement[3 * b_stride]; + p4 = ptrLElement[-3]; + p3 = ptrLElement[-2]; + p2 = ptrLElement[-1]; + p1 = ptrLElement[0]; + ptrLElement -= rowSkip; + + /* compute outer product and add it to the Z matrix */ + Z[3] += p4 * q1; + Z[2] += p3 * q1; + Z[1] += p2 * q1; + Z[0] += p1 * q1; + + /* load p and q values */ + q1 = ptrBElement[2 * b_stride]; + p4 = ptrLElement[-3]; + p3 = ptrLElement[-2]; + p2 = ptrLElement[-1]; + p1 = ptrLElement[0]; + ptrLElement -= rowSkip; + + /* compute outer product and add it to the Z matrix */ + Z[3] += p4 * q1; + Z[2] += p3 * q1; + Z[1] += p2 * q1; + Z[0] += p1 * q1; + + /* load p and q values */ + q1 = ptrBElement[1 * b_stride]; + p4 = ptrLElement[-3]; + p3 = ptrLElement[-2]; + p2 = ptrLElement[-1]; + p1 = ptrLElement[0]; + ptrLElement -= rowSkip; + + /* compute outer product and add it to the Z matrix */ + Z[3] += p4 * q1; + Z[2] += p3 * q1; + Z[1] += p2 * q1; + Z[0] += p1 * q1; + dSASSERT(block_step == 4); + } + else + { + ptrBElement -= block_step * b_stride; + + if (--rowCounter == 0) + { + if (finalRowBlock == currentBlock) + { + columnEndReached = true; + break; + } + + // Take a look if any more columns have been completed... + completedBlocks = refBlockCompletionProgress; + dIASSERT(completedBlocks >= finalRowBlock); + + if (completedBlocks == finalRowBlock) + { + break; + } + + // ...continue if so. + unsigned rowCompletedSoFar = finalRowBlock; + finalRowBlock = dMACRO_MIN(currentBlock, completedBlocks); + rowCounter = finalRowBlock - rowCompletedSoFar; + } + } + /* end of inner loop */ + } + } + else /* compute rightmost bottom X(i) block */ + { + partialBlock = true; + + ptrLElement = lastLElement; + ptrBElement = lastBElement; + dIASSERT(completedRowBlock == 0); + + columnEndReached = true; + } + + if (columnEndReached) + { + // Check whether there is still a need to proceed or if the computation has been taken over by another thread + cellindexint oldDescriptor = MAKE_CELLDESCRIPTOR(completedRowBlock, previousContextInstance, true); + + if (blockProgressDescriptors[currentBlock] == oldDescriptor) + { + if (partialBlock) + { + Y[0] = ptrBElement[0 * b_stride]/* - Z[0]*/; + + if (loopX1RowCount >= 2) + { + dReal p2 = ptrLElement[-1]; + Y[1] = ptrBElement[-1 * (int)b_stride]/* - Z[1] */- p2 * Y[0]; + + if (loopX1RowCount > 2) + { + dReal p3 = ptrLElement[-2]; + dReal p3_1 = (ptrLElement - rowSkip)[-2]; + Y[2] = ptrBElement[-2 * (int)b_stride]/* - Z[2] */- p3 * Y[0] - p3_1 * Y[1]; + } + } + + dSASSERT(block_step == 4); + } + else + { + Y[0] = ptrBElement[0 * b_stride] - Z[0]; + + dReal p2 = ptrLElement[-1]; + Y[1] = ptrBElement[-1 * (int)b_stride] - Z[1] - p2 * Y[0]; + + dReal p3 = ptrLElement[-2]; + dReal p3_1 = (ptrLElement - rowSkip)[-2]; + Y[2] = ptrBElement[-2 * (int)b_stride] - Z[2] - p3 * Y[0] - p3_1 * Y[1]; + + dReal p4 = ptrLElement[-3]; + dReal p4_1 = (ptrLElement - rowSkip)[-3]; + dReal p4_2 = (ptrLElement - rowSkip * 2)[-3]; + Y[3] = ptrBElement[-3 * (int)b_stride] - Z[3] - p4 * Y[0] - p4_1 * Y[1] - p4_2 * Y[2]; + + dSASSERT(block_step == 4); + } + + // Use atomic memory barrier to make sure memory reads of ptrBElement[] and blockProgressDescriptors[] are not swapped + CooperativeAtomics::AtomicReadReorderBarrier(); + + // The descriptor has not been altered yet - this means the ptrBElement[] values used above were not modified yet + // and the computation result is valid. + if (blockProgressDescriptors[currentBlock] == oldDescriptor) + { + // Assign the results to the result context (possibly in parallel with other threads + // that could and ought to be assigning exactly the same values) + SolveL1TransposedCellContext &resultContext = buildResultContextRef(cellContexts, currentBlock, blockCount); + resultContext.storePrecalculatedZs(Y); + + // Assign the result assignment progress descriptor + cellindexint newDescriptor = MAKE_CELLDESCRIPTOR(currentBlock + 1, CCI__MIN, true); + CooperativeAtomics::AtomicCompareExchangeCellindexint(&blockProgressDescriptors[currentBlock], oldDescriptor, newDescriptor); // the result is to be ignored + + // Whether succeeded or not, the result is valid, so go on trying to assign it to the matrix + goAssigningTheResult = true; + } + else + { + // Otherwise, go on competing for copying the results + handleComputationTakenOver = true; + } + } + else + { + handleComputationTakenOver = true; + } + } + else + { + // If the final column has not been reached yet, store current values to the context. + // Select the other context instance as the previous one might be read by other threads. + CellContextInstance nextContextInstance = buildNextContextInstance(previousContextInstance); + SolveL1TransposedCellContext &destinationContext = buildBlockContextRef(cellContexts, currentBlock, nextContextInstance); + destinationContext.storePrecalculatedZs(Z); + + // Unlock the row until more columns can be used + cellindexint oldDescriptor = MAKE_CELLDESCRIPTOR(completedRowBlock, previousContextInstance, true); + cellindexint newDescriptor = MAKE_CELLDESCRIPTOR(finalRowBlock, nextContextInstance, false); + // The descriptor might have been updated by a competing thread + if (!CooperativeAtomics::AtomicCompareExchangeCellindexint(&blockProgressDescriptors[currentBlock], oldDescriptor, newDescriptor)) + { + // Adjust the ptrBElement to point to the result area... + ptrBElement = adjustedLastBElement - (sizeint)(currentBlock * block_step) * b_stride; + dIASSERT(currentBlock != 0 || adjustedLastBElement == lastBElement); + // ...and go on handling the case + handleComputationTakenOver = true; + } + } + + if (handleComputationTakenOver) + { + cellindexint existingDescriptor = blockProgressDescriptors[currentBlock]; + // This can only happen if the row was (has become) the uppermost not fully completed one + // and the competing thread is at final stage of calculation (i.e., it has reached the currentBlock column). + if (existingDescriptor != INVALID_CELLDESCRIPTOR) + { + // If not fully completed this must be the final stage of the result assignment into the matrix + dIASSERT(existingDescriptor == MAKE_CELLDESCRIPTOR(currentBlock + 1, CCI__MIN, true)); + + // Go on competing copying the result as anyway the block is the topmost not completed one + // and since there was competition for it, there is no other work that can be done right now. + const SolveL1TransposedCellContext &resultContext = buildResultContextRef(cellContexts, currentBlock, blockCount); + resultContext.loadPrecalculatedZs(Y); + + goAssigningTheResult = true; + } + else + { + // everything is over -- just go handling next blocks + } + } + } + else if (goForLockedBlockDuplicateCalculation) + { + blockProcessingState = BPS_SOME_BLOCKS_PROCESSED; + + bool skipToHandlingSubsequentRows = false, skiptoCopyingResult = false; + + /* declare variables */ + const dReal *ptrLElement; + + if (completedRowBlock < currentBlock) + { + partialBlock = false; + + ptrLElement = completedRowBlock != 0 + ? fullyAdjustedLastLElement - currentBlock * block_step - (sizeint)(completedRowBlock * block_step) * rowSkip + : columnAdjustedLastLElement - currentBlock * block_step; + ptrBElement = completedRowBlock != 0 + ? adjustedLastBElement - (sizeint)(completedRowBlock * block_step) * b_stride + : lastBElement; + + unsigned finalRowBlock = currentBlock/*std::min(currentBlock, completedBlocks)*/; + dIASSERT(currentBlock == completedBlocks); // Why would we be competing for a row otherwise? + + bool exitInnerLoop = false; + unsigned lastCompletedRow = completedRowBlock; + unsigned rowCounter = finalRowBlock - completedRowBlock; + + if (completedRowBlock == 0/* && currentBlock != 0 */&& loopX1RowCount != 0) + { + if ((loopX1RowCount & 1) != 0) + { + dReal q1, p4, p3, p2, p1; + + /* load p and q values */ + q1 = ptrBElement[0 * (int)b_stride]; + p4 = ptrLElement[-3]; + p3 = ptrLElement[-2]; + p2 = ptrLElement[-1]; + p1 = ptrLElement[0]; + ptrLElement -= rowSkip; + + /* compute outer product and add it to the Z matrix */ + Z[3] += p4 * q1; + Z[2] += p3 * q1; + Z[1] += p2 * q1; + Z[0] += p1 * q1; + + ptrBElement -= 1 * b_stride; + } + + if ((loopX1RowCount & 2) != 0) + { + dReal q1, p4, p3, p2, p1; + + /* load p and q values */ + q1 = ptrBElement[0 * (int)b_stride]; + p4 = ptrLElement[-3]; + p3 = ptrLElement[-2]; + p2 = ptrLElement[-1]; + p1 = ptrLElement[0]; + ptrLElement -= rowSkip; + + /* compute outer product and add it to the Z matrix */ + Z[3] += p4 * q1; + Z[2] += p3 * q1; + Z[1] += p2 * q1; + Z[0] += p1 * q1; + + /* load p and q values */ + q1 = ptrBElement[-1 * (int)b_stride]; + p4 = ptrLElement[-3]; + p3 = ptrLElement[-2]; + p2 = ptrLElement[-1]; + p1 = ptrLElement[0]; + ptrLElement -= rowSkip; + + /* compute outer product and add it to the Z matrix */ + Z[3] += p4 * q1; + Z[2] += p3 * q1; + Z[1] += p2 * q1; + Z[0] += p1 * q1; + + ptrBElement -= 2 * b_stride; + } + dSASSERT(block_step == 4); + + if (--rowCounter == 0) + { + exitInnerLoop = true; + } + } + + for (; !exitInnerLoop; exitInnerLoop = --rowCounter == 0) + { + dReal q1, p4, p3, p2, p1; + + /* load p and q values */ + q1 = ptrBElement[0 * (int)b_stride]; + p4 = ptrLElement[-3]; + p3 = ptrLElement[-2]; + p2 = ptrLElement[-1]; + p1 = ptrLElement[0]; + ptrLElement -= rowSkip; + + /* compute outer product and add it to the Z matrix */ + Z[3] += p4 * q1; + Z[2] += p3 * q1; + Z[1] += p2 * q1; + Z[0] += p1 * q1; + + /* load p and q values */ + q1 = ptrBElement[-1 * (int)b_stride]; + p4 = ptrLElement[-3]; + p3 = ptrLElement[-2]; + p2 = ptrLElement[-1]; + p1 = ptrLElement[0]; + ptrLElement -= rowSkip; + + /* compute outer product and add it to the Z matrix */ + Z[3] += p4 * q1; + Z[2] += p3 * q1; + Z[1] += p2 * q1; + Z[0] += p1 * q1; + + /* load p and q values */ + q1 = ptrBElement[-2 * (int)b_stride]; + p4 = ptrLElement[-3]; + p3 = ptrLElement[-2]; + p2 = ptrLElement[-1]; + p1 = ptrLElement[0]; + ptrLElement -= rowSkip; + + /* compute outer product and add it to the Z matrix */ + Z[3] += p4 * q1; + Z[2] += p3 * q1; + Z[1] += p2 * q1; + Z[0] += p1 * q1; + + /* load p and q values */ + q1 = ptrBElement[-3 * (int)b_stride]; + p4 = ptrLElement[-3]; + p3 = ptrLElement[-2]; + p2 = ptrLElement[-1]; + p1 = ptrLElement[0]; + ptrLElement -= rowSkip; + + /* compute outer product and add it to the Z matrix */ + Z[3] += p4 * q1; + Z[2] += p3 * q1; + Z[1] += p2 * q1; + Z[0] += p1 * q1; + dSASSERT(block_step == 4); + + // Check if the primary solver thread has not made any progress + cellindexint descriptorVerification = blockProgressDescriptors[currentBlock]; + unsigned newCompletedRow = GET_CELLDESCRIPTOR_COLUMNINDEX(descriptorVerification); + + if (newCompletedRow != lastCompletedRow) + { + // Check, this is the first change the current thread detects. + // There is absolutely no reason in code for the computation to stop/resume twice + // while the current thread is competing. + dIASSERT(lastCompletedRow == completedRowBlock); + + if (descriptorVerification == INVALID_CELLDESCRIPTOR) + { + skipToHandlingSubsequentRows = true; + break; + } + + if (newCompletedRow == currentBlock + 1) + { + skiptoCopyingResult = true; + break; + } + + // Check if the current thread is behind + if (newCompletedRow > finalRowBlock - rowCounter) + { + // If so, go starting over one more time + blockProcessingState = BPS_COMPETING_FOR_A_BLOCK; + stayWithinTheBlock = true; + skipToHandlingSubsequentRows = true; + break; + } + + // If current thread is ahead, just save new completed column for further comparisons and go on calculating + lastCompletedRow = newCompletedRow; + } + + /* advance pointers */ + ptrBElement -= block_step * b_stride; + /* end of inner loop */ + } + } + else if (completedRowBlock > currentBlock) + { + dIASSERT(completedRowBlock == currentBlock + 1); + + partialBlock = currentBlock == 0 && loopX1RowCount != 0; + + skiptoCopyingResult = true; + } + else + { + dIASSERT(currentBlock == 0); // Execution can get here within the very first block only + + partialBlock = /*currentBlock == 0 && */loopX1RowCount != 0; + + /* just assign the pointers appropriately and go on computing the results */ + ptrLElement = lastLElement; + ptrBElement = lastBElement; + } + + if (!skipToHandlingSubsequentRows) + { + if (!skiptoCopyingResult) + { + if (partialBlock) + { + Y[0] = ptrBElement[0 * b_stride]/* - Z[0]*/; + + if (loopX1RowCount >= 2) + { + dReal p2 = ptrLElement[-1]; + Y[1] = ptrBElement[-1 * (int)b_stride]/* - Z[1] */- p2 * Y[0]; + + if (loopX1RowCount > 2) + { + dReal p3 = ptrLElement[-2]; + dReal p3_1 = (ptrLElement - rowSkip)[-2]; + Y[2] = ptrBElement[-2 * (int)b_stride]/* - Z[2] */- p3 * Y[0] - p3_1 * Y[1]; + } + } + + dSASSERT(block_step == 4); + } + else + { + Y[0] = ptrBElement[0 * b_stride] - Z[0]; + + dReal p2 = ptrLElement[-1]; + Y[1] = ptrBElement[-1 * (int)b_stride] - Z[1] - p2 * Y[0]; + + dReal p3 = ptrLElement[-2]; + dReal p3_1 = (ptrLElement - rowSkip)[-2]; + Y[2] = ptrBElement[-2 * (int)b_stride] - Z[2] - p3 * Y[0] - p3_1 * Y[1]; + + dReal p4 = ptrLElement[-3]; + dReal p4_1 = (ptrLElement - rowSkip)[-3]; + dReal p4_2 = (ptrLElement - rowSkip * 2)[-3]; + Y[3] = ptrBElement[-3 * (int)b_stride] - Z[3] - p4 * Y[0] - p4_1 * Y[1] - p4_2 * Y[2]; + + dSASSERT(block_step == 4); + } + + // Use atomic memory barrier to make sure memory reads of ptrBElement[] and blockProgressDescriptors[] are not swapped + CooperativeAtomics::AtomicReadReorderBarrier(); + + cellindexint existingDescriptor = blockProgressDescriptors[currentBlock]; + + if (existingDescriptor == INVALID_CELLDESCRIPTOR) + { + // Everything is over -- proceed to subsequent rows + skipToHandlingSubsequentRows = true; + } + else if (existingDescriptor == MAKE_CELLDESCRIPTOR(currentBlock + 1, CCI__MIN, true)) + { + // The values computed above may not be valid. Copy the values already in the result context. + skiptoCopyingResult = true; + } + else + { + // The descriptor has not been altered yet - this means the ptrBElement[] values used above were not modified yet + // and the computation result is valid. + cellindexint newDescriptor = MAKE_CELLDESCRIPTOR(currentBlock + 1, CCI__MIN, true); // put the computation at the top so that the evaluation result from the expression above is reused + + // Assign the results to the result context (possibly in parallel with other threads + // that could and ought to be assigning exactly the same values) + SolveL1TransposedCellContext &resultContext = buildResultContextRef(cellContexts, currentBlock, blockCount); + resultContext.storePrecalculatedZs(Y); + + // Assign the result assignment progress descriptor + CooperativeAtomics::AtomicCompareExchangeCellindexint(&blockProgressDescriptors[currentBlock], existingDescriptor, newDescriptor); // the result is to be ignored + + // Whether succeeded or not, the result is valid, so go on trying to assign it to the matrix + } + } + + if (!skipToHandlingSubsequentRows) + { + if (skiptoCopyingResult) + { + // Extract the result values stored in the result context + const SolveL1TransposedCellContext &resultContext = buildResultContextRef(cellContexts, currentBlock, blockCount); + resultContext.loadPrecalculatedZs(Y); + + ptrBElement = currentBlock != 0 ? adjustedLastBElement - (sizeint)(currentBlock * block_step) * b_stride : lastBElement; + } + + goAssigningTheResult = true; + } + } + } + + if (goAssigningTheResult) + { + cellindexint existingDescriptor = blockProgressDescriptors[currentBlock]; + // Check if the assignment has not been completed yet + if (existingDescriptor != INVALID_CELLDESCRIPTOR) + { + // Assign the computation results to B vector + if (partialBlock) + { + // ptrBElement[0 * b_stride] = Y[0]; -- unchanged + + if (loopX1RowCount >= 2) + { + ptrBElement[-1 * (int)b_stride] = Y[1]; + + if (loopX1RowCount > 2) + { + ptrBElement[-2 * (int)b_stride] = Y[2]; + } + } + dSASSERT(block_step == 4); + } + else + { + ptrBElement[0 * b_stride] = Y[0]; + ptrBElement[-1 * (int)b_stride] = Y[1]; + ptrBElement[-2 * (int)b_stride] = Y[2]; + ptrBElement[-3 * (int)b_stride] = Y[3]; + dSASSERT(block_step == 4); + } + + ThrsafeIncrementIntUpToLimit(&refBlockCompletionProgress, currentBlock + 1); + dIASSERT(refBlockCompletionProgress >= currentBlock + 1); + + // And assign the completed status no matter what + CooperativeAtomics::AtomicStoreCellindexint(&blockProgressDescriptors[currentBlock], INVALID_CELLDESCRIPTOR); + } + else + { + // everything is over -- just go handling next blocks + } + } + + if (!stayWithinTheBlock) + { + completedBlocks = refBlockCompletionProgress; + + if (completedBlocks == blockCount) + { + break; + } + + currentBlock += 1; + + bool lookaheadBoundaryReached = false; + + if (currentBlock == blockCount || completedBlocks == 0) + { + lookaheadBoundaryReached = true; + } + else if (currentBlock >= completedBlocks + lookaheadRange) + { + lookaheadBoundaryReached = blockProcessingState > BPS_NO_BLOCKS_PROCESSED; + } + else if (currentBlock < completedBlocks) + { + // Treat detected row advancement as a row processed + // blockProcessingState = BPS_SOME_BLOCKS_PROCESSED; <-- performs better without it + + currentBlock = completedBlocks; + } + + if (lookaheadBoundaryReached) + { + dIASSERT(blockProcessingState != BPS_COMPETING_FOR_A_BLOCK); // Why did not we compete??? + + // If no row has been processed in the previous pass, compete for the next row to avoid cycling uselessly + if (blockProcessingState <= BPS_NO_BLOCKS_PROCESSED) + { + // Abandon job if too few blocks remain + if (blockCount - completedBlocks <= ownThreadIndex) + { + break; + } + + blockProcessingState = BPS_COMPETING_FOR_A_BLOCK; + } + else + { + // If there was some progress, just continue to the next pass + blockProcessingState = BPS_NO_BLOCKS_PROCESSED; + } + + currentBlock = completedBlocks; + } + } + } +} + + +#endif |