diff options
Diffstat (limited to 'libs/pixman-0.40.0/pixman/pixman-radial-gradient.c')
-rw-r--r-- | libs/pixman-0.40.0/pixman/pixman-radial-gradient.c | 509 |
1 files changed, 0 insertions, 509 deletions
diff --git a/libs/pixman-0.40.0/pixman/pixman-radial-gradient.c b/libs/pixman-0.40.0/pixman/pixman-radial-gradient.c deleted file mode 100644 index e8e99c9..0000000 --- a/libs/pixman-0.40.0/pixman/pixman-radial-gradient.c +++ /dev/null @@ -1,509 +0,0 @@ -/* -*- Mode: c; c-basic-offset: 4; tab-width: 8; indent-tabs-mode: t; -*- */ -/* - * - * Copyright © 2000 Keith Packard, member of The XFree86 Project, Inc. - * Copyright © 2000 SuSE, Inc. - * 2005 Lars Knoll & Zack Rusin, Trolltech - * Copyright © 2007 Red Hat, Inc. - * - * - * Permission to use, copy, modify, distribute, and sell this software and its - * documentation for any purpose is hereby granted without fee, provided that - * the above copyright notice appear in all copies and that both that - * copyright notice and this permission notice appear in supporting - * documentation, and that the name of Keith Packard not be used in - * advertising or publicity pertaining to distribution of the software without - * specific, written prior permission. Keith Packard makes no - * representations about the suitability of this software for any purpose. It - * is provided "as is" without express or implied warranty. - * - * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS - * SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND - * FITNESS, IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY - * SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES - * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN - * AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING - * OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS - * SOFTWARE. - */ - -#ifdef HAVE_CONFIG_H -#include <config.h> -#endif -#include <stdlib.h> -#include <math.h> -#include "pixman-private.h" - -static inline pixman_fixed_32_32_t -dot (pixman_fixed_48_16_t x1, - pixman_fixed_48_16_t y1, - pixman_fixed_48_16_t z1, - pixman_fixed_48_16_t x2, - pixman_fixed_48_16_t y2, - pixman_fixed_48_16_t z2) -{ - /* - * Exact computation, assuming that the input values can - * be represented as pixman_fixed_16_16_t - */ - return x1 * x2 + y1 * y2 + z1 * z2; -} - -static inline double -fdot (double x1, - double y1, - double z1, - double x2, - double y2, - double z2) -{ - /* - * Error can be unbound in some special cases. - * Using clever dot product algorithms (for example compensated - * dot product) would improve this but make the code much less - * obvious - */ - return x1 * x2 + y1 * y2 + z1 * z2; -} - -static void -radial_write_color (double a, - double b, - double c, - double inva, - double dr, - double mindr, - pixman_gradient_walker_t *walker, - pixman_repeat_t repeat, - int Bpp, - pixman_gradient_walker_write_t write_pixel, - uint32_t *buffer) -{ - /* - * In this function error propagation can lead to bad results: - * - discr can have an unbound error (if b*b-a*c is very small), - * potentially making it the opposite sign of what it should have been - * (thus clearing a pixel that would have been colored or vice-versa) - * or propagating the error to sqrtdiscr; - * if discr has the wrong sign or b is very small, this can lead to bad - * results - * - * - the algorithm used to compute the solutions of the quadratic - * equation is not numerically stable (but saves one division compared - * to the numerically stable one); - * this can be a problem if a*c is much smaller than b*b - * - * - the above problems are worse if a is small (as inva becomes bigger) - */ - double discr; - - if (a == 0) - { - double t; - - if (b == 0) - { - memset (buffer, 0, Bpp); - return; - } - - t = pixman_fixed_1 / 2 * c / b; - if (repeat == PIXMAN_REPEAT_NONE) - { - if (0 <= t && t <= pixman_fixed_1) - { - write_pixel (walker, t, buffer); - return; - } - } - else - { - if (t * dr >= mindr) - { - write_pixel (walker, t, buffer); - return; - } - } - - memset (buffer, 0, Bpp); - return; - } - - discr = fdot (b, a, 0, b, -c, 0); - if (discr >= 0) - { - double sqrtdiscr, t0, t1; - - sqrtdiscr = sqrt (discr); - t0 = (b + sqrtdiscr) * inva; - t1 = (b - sqrtdiscr) * inva; - - /* - * The root that must be used is the biggest one that belongs - * to the valid range ([0,1] for PIXMAN_REPEAT_NONE, any - * solution that results in a positive radius otherwise). - * - * If a > 0, t0 is the biggest solution, so if it is valid, it - * is the correct result. - * - * If a < 0, only one of the solutions can be valid, so the - * order in which they are tested is not important. - */ - if (repeat == PIXMAN_REPEAT_NONE) - { - if (0 <= t0 && t0 <= pixman_fixed_1) - { - write_pixel (walker, t0, buffer); - return; - } - else if (0 <= t1 && t1 <= pixman_fixed_1) - { - write_pixel (walker, t1, buffer); - return; - } - } - else - { - if (t0 * dr >= mindr) - { - write_pixel (walker, t0, buffer); - return; - } - else if (t1 * dr >= mindr) - { - write_pixel (walker, t1, buffer); - return; - } - } - } - - memset (buffer, 0, Bpp); - return; -} - -static uint32_t * -radial_get_scanline (pixman_iter_t *iter, - const uint32_t *mask, - int Bpp, - pixman_gradient_walker_write_t write_pixel) -{ - /* - * Implementation of radial gradients following the PDF specification. - * See section 8.7.4.5.4 Type 3 (Radial) Shadings of the PDF Reference - * Manual (PDF 32000-1:2008 at the time of this writing). - * - * In the radial gradient problem we are given two circles (c₁,r₁) and - * (c₂,r₂) that define the gradient itself. - * - * Mathematically the gradient can be defined as the family of circles - * - * ((1-t)·c₁ + t·(c₂), (1-t)·r₁ + t·r₂) - * - * excluding those circles whose radius would be < 0. When a point - * belongs to more than one circle, the one with a bigger t is the only - * one that contributes to its color. When a point does not belong - * to any of the circles, it is transparent black, i.e. RGBA (0, 0, 0, 0). - * Further limitations on the range of values for t are imposed when - * the gradient is not repeated, namely t must belong to [0,1]. - * - * The graphical result is the same as drawing the valid (radius > 0) - * circles with increasing t in [-inf, +inf] (or in [0,1] if the gradient - * is not repeated) using SOURCE operator composition. - * - * It looks like a cone pointing towards the viewer if the ending circle - * is smaller than the starting one, a cone pointing inside the page if - * the starting circle is the smaller one and like a cylinder if they - * have the same radius. - * - * What we actually do is, given the point whose color we are interested - * in, compute the t values for that point, solving for t in: - * - * length((1-t)·c₁ + t·(c₂) - p) = (1-t)·r₁ + t·r₂ - * - * Let's rewrite it in a simpler way, by defining some auxiliary - * variables: - * - * cd = c₂ - c₁ - * pd = p - c₁ - * dr = r₂ - r₁ - * length(t·cd - pd) = r₁ + t·dr - * - * which actually means - * - * hypot(t·cdx - pdx, t·cdy - pdy) = r₁ + t·dr - * - * or - * - * ⎷((t·cdx - pdx)² + (t·cdy - pdy)²) = r₁ + t·dr. - * - * If we impose (as stated earlier) that r₁ + t·dr >= 0, it becomes: - * - * (t·cdx - pdx)² + (t·cdy - pdy)² = (r₁ + t·dr)² - * - * where we can actually expand the squares and solve for t: - * - * t²cdx² - 2t·cdx·pdx + pdx² + t²cdy² - 2t·cdy·pdy + pdy² = - * = r₁² + 2·r₁·t·dr + t²·dr² - * - * (cdx² + cdy² - dr²)t² - 2(cdx·pdx + cdy·pdy + r₁·dr)t + - * (pdx² + pdy² - r₁²) = 0 - * - * A = cdx² + cdy² - dr² - * B = pdx·cdx + pdy·cdy + r₁·dr - * C = pdx² + pdy² - r₁² - * At² - 2Bt + C = 0 - * - * The solutions (unless the equation degenerates because of A = 0) are: - * - * t = (B ± ⎷(B² - A·C)) / A - * - * The solution we are going to prefer is the bigger one, unless the - * radius associated to it is negative (or it falls outside the valid t - * range). - * - * Additional observations (useful for optimizations): - * A does not depend on p - * - * A < 0 <=> one of the two circles completely contains the other one - * <=> for every p, the radiuses associated with the two t solutions - * have opposite sign - */ - pixman_image_t *image = iter->image; - int x = iter->x; - int y = iter->y; - int width = iter->width; - uint32_t *buffer = iter->buffer; - - gradient_t *gradient = (gradient_t *)image; - radial_gradient_t *radial = (radial_gradient_t *)image; - uint32_t *end = buffer + width * (Bpp / 4); - pixman_gradient_walker_t walker; - pixman_vector_t v, unit; - - /* reference point is the center of the pixel */ - v.vector[0] = pixman_int_to_fixed (x) + pixman_fixed_1 / 2; - v.vector[1] = pixman_int_to_fixed (y) + pixman_fixed_1 / 2; - v.vector[2] = pixman_fixed_1; - - _pixman_gradient_walker_init (&walker, gradient, image->common.repeat); - - if (image->common.transform) - { - if (!pixman_transform_point_3d (image->common.transform, &v)) - return iter->buffer; - - unit.vector[0] = image->common.transform->matrix[0][0]; - unit.vector[1] = image->common.transform->matrix[1][0]; - unit.vector[2] = image->common.transform->matrix[2][0]; - } - else - { - unit.vector[0] = pixman_fixed_1; - unit.vector[1] = 0; - unit.vector[2] = 0; - } - - if (unit.vector[2] == 0 && v.vector[2] == pixman_fixed_1) - { - /* - * Given: - * - * t = (B ± ⎷(B² - A·C)) / A - * - * where - * - * A = cdx² + cdy² - dr² - * B = pdx·cdx + pdy·cdy + r₁·dr - * C = pdx² + pdy² - r₁² - * det = B² - A·C - * - * Since we have an affine transformation, we know that (pdx, pdy) - * increase linearly with each pixel, - * - * pdx = pdx₀ + n·ux, - * pdy = pdy₀ + n·uy, - * - * we can then express B, C and det through multiple differentiation. - */ - pixman_fixed_32_32_t b, db, c, dc, ddc; - - /* warning: this computation may overflow */ - v.vector[0] -= radial->c1.x; - v.vector[1] -= radial->c1.y; - - /* - * B and C are computed and updated exactly. - * If fdot was used instead of dot, in the worst case it would - * lose 11 bits of precision in each of the multiplication and - * summing up would zero out all the bit that were preserved, - * thus making the result 0 instead of the correct one. - * This would mean a worst case of unbound relative error or - * about 2^10 absolute error - */ - b = dot (v.vector[0], v.vector[1], radial->c1.radius, - radial->delta.x, radial->delta.y, radial->delta.radius); - db = dot (unit.vector[0], unit.vector[1], 0, - radial->delta.x, radial->delta.y, 0); - - c = dot (v.vector[0], v.vector[1], - -((pixman_fixed_48_16_t) radial->c1.radius), - v.vector[0], v.vector[1], radial->c1.radius); - dc = dot (2 * (pixman_fixed_48_16_t) v.vector[0] + unit.vector[0], - 2 * (pixman_fixed_48_16_t) v.vector[1] + unit.vector[1], - 0, - unit.vector[0], unit.vector[1], 0); - ddc = 2 * dot (unit.vector[0], unit.vector[1], 0, - unit.vector[0], unit.vector[1], 0); - - while (buffer < end) - { - if (!mask || *mask++) - { - radial_write_color (radial->a, b, c, - radial->inva, - radial->delta.radius, - radial->mindr, - &walker, - image->common.repeat, - Bpp, - write_pixel, - buffer); - } - - b += db; - c += dc; - dc += ddc; - buffer += (Bpp / 4); - } - } - else - { - /* projective */ - /* Warning: - * error propagation guarantees are much looser than in the affine case - */ - while (buffer < end) - { - if (!mask || *mask++) - { - if (v.vector[2] != 0) - { - double pdx, pdy, invv2, b, c; - - invv2 = 1. * pixman_fixed_1 / v.vector[2]; - - pdx = v.vector[0] * invv2 - radial->c1.x; - /* / pixman_fixed_1 */ - - pdy = v.vector[1] * invv2 - radial->c1.y; - /* / pixman_fixed_1 */ - - b = fdot (pdx, pdy, radial->c1.radius, - radial->delta.x, radial->delta.y, - radial->delta.radius); - /* / pixman_fixed_1 / pixman_fixed_1 */ - - c = fdot (pdx, pdy, -radial->c1.radius, - pdx, pdy, radial->c1.radius); - /* / pixman_fixed_1 / pixman_fixed_1 */ - - radial_write_color (radial->a, b, c, - radial->inva, - radial->delta.radius, - radial->mindr, - &walker, - image->common.repeat, - Bpp, - write_pixel, - buffer); - } - else - { - memset (buffer, 0, Bpp); - } - } - - buffer += (Bpp / 4); - - v.vector[0] += unit.vector[0]; - v.vector[1] += unit.vector[1]; - v.vector[2] += unit.vector[2]; - } - } - - iter->y++; - return iter->buffer; -} - -static uint32_t * -radial_get_scanline_narrow (pixman_iter_t *iter, const uint32_t *mask) -{ - return radial_get_scanline (iter, mask, 4, - _pixman_gradient_walker_write_narrow); -} - -static uint32_t * -radial_get_scanline_wide (pixman_iter_t *iter, const uint32_t *mask) -{ - return radial_get_scanline (iter, NULL, 16, - _pixman_gradient_walker_write_wide); -} - -void -_pixman_radial_gradient_iter_init (pixman_image_t *image, pixman_iter_t *iter) -{ - if (iter->iter_flags & ITER_NARROW) - iter->get_scanline = radial_get_scanline_narrow; - else - iter->get_scanline = radial_get_scanline_wide; -} - -PIXMAN_EXPORT pixman_image_t * -pixman_image_create_radial_gradient (const pixman_point_fixed_t * inner, - const pixman_point_fixed_t * outer, - pixman_fixed_t inner_radius, - pixman_fixed_t outer_radius, - const pixman_gradient_stop_t *stops, - int n_stops) -{ - pixman_image_t *image; - radial_gradient_t *radial; - - image = _pixman_image_allocate (); - - if (!image) - return NULL; - - radial = &image->radial; - - if (!_pixman_init_gradient (&radial->common, stops, n_stops)) - { - free (image); - return NULL; - } - - image->type = RADIAL; - - radial->c1.x = inner->x; - radial->c1.y = inner->y; - radial->c1.radius = inner_radius; - radial->c2.x = outer->x; - radial->c2.y = outer->y; - radial->c2.radius = outer_radius; - - /* warning: this computations may overflow */ - radial->delta.x = radial->c2.x - radial->c1.x; - radial->delta.y = radial->c2.y - radial->c1.y; - radial->delta.radius = radial->c2.radius - radial->c1.radius; - - /* computed exactly, then cast to double -> every bit of the double - representation is correct (53 bits) */ - radial->a = dot (radial->delta.x, radial->delta.y, -radial->delta.radius, - radial->delta.x, radial->delta.y, radial->delta.radius); - if (radial->a != 0) - radial->inva = 1. * pixman_fixed_1 / radial->a; - - radial->mindr = -1. * pixman_fixed_1 * radial->c1.radius; - - return image; -} |