diff options
Diffstat (limited to 'src/mesh/assimp-master/code/AssetLib/X3D/X3DImporter_Geometry3D.cpp')
-rw-r--r-- | src/mesh/assimp-master/code/AssetLib/X3D/X3DImporter_Geometry3D.cpp | 918 |
1 files changed, 918 insertions, 0 deletions
diff --git a/src/mesh/assimp-master/code/AssetLib/X3D/X3DImporter_Geometry3D.cpp b/src/mesh/assimp-master/code/AssetLib/X3D/X3DImporter_Geometry3D.cpp new file mode 100644 index 0000000..b9fc2a4 --- /dev/null +++ b/src/mesh/assimp-master/code/AssetLib/X3D/X3DImporter_Geometry3D.cpp @@ -0,0 +1,918 @@ +/* +Open Asset Import Library (assimp) +---------------------------------------------------------------------- + +Copyright (c) 2006-2019, assimp team + + +All rights reserved. + +Redistribution and use of this software in source and binary forms, +with or without modification, are permitted provided that the +following conditions are met: + +* Redistributions of source code must retain the above +copyright notice, this list of conditions and the +following disclaimer. + +* Redistributions in binary form must reproduce the above +copyright notice, this list of conditions and the +following disclaimer in the documentation and/or other +materials provided with the distribution. + +* Neither the name of the assimp team, nor the names of its +contributors may be used to endorse or promote products +derived from this software without specific prior +written permission of the assimp team. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +---------------------------------------------------------------------- +*/ +/// \file X3DImporter_Geometry3D.cpp +/// \brief Parsing data from nodes of "Geometry3D" set of X3D. +/// \date 2015-2016 +/// \author smal.root@gmail.com + +#ifndef ASSIMP_BUILD_NO_X3D_IMPORTER + +#include "X3DGeoHelper.h" +#include "X3DImporter.hpp" +#include "X3DImporter_Macro.hpp" +#include "X3DXmlHelper.h" + +// Header files, Assimp. +#include <assimp/StandardShapes.h> + +namespace Assimp { + +// <Box +// DEF="" ID +// USE="" IDREF +// size="2 2 2" SFVec3f [initializeOnly] +// solid="true" SFBool [initializeOnly] +// /> +// The Box node specifies a rectangular parallelepiped box centred at (0, 0, 0) in the local coordinate system and aligned with the local coordinate axes. +// By default, the box measures 2 units in each dimension, from -1 to +1. The size field specifies the extents of the box along the X-, Y-, and Z-axes +// respectively and each component value shall be greater than zero. +void X3DImporter::readBox(XmlNode &node) { + std::string def, use; + bool solid = true; + aiVector3D size(2, 2, 2); + X3DNodeElementBase *ne(nullptr); + + MACRO_ATTRREAD_CHECKUSEDEF_RET(node, def, use); + X3DXmlHelper::getVector3DAttribute(node, "size", size); + XmlParser::getBoolAttribute(node, "solid", solid); + + // if "USE" defined then find already defined element. + if (!use.empty()) { + ne = MACRO_USE_CHECKANDAPPLY(node, def, use, ENET_Box, ne); + } else { + // create and if needed - define new geometry object. + ne = new X3DNodeElementGeometry3D(X3DElemType::ENET_Box, mNodeElementCur); + if (!def.empty()) ne->ID = def; + + X3DGeoHelper::rect_parallel_epiped(size, ((X3DNodeElementGeometry3D *)ne)->Vertices); // get quad list + ((X3DNodeElementGeometry3D *)ne)->Solid = solid; + ((X3DNodeElementGeometry3D *)ne)->NumIndices = 4; + // check for X3DMetadataObject childs. + if (!isNodeEmpty(node)) + childrenReadMetadata(node, ne, "Box"); + else + mNodeElementCur->Children.push_back(ne); // add made object as child to current element + + NodeElement_List.push_back(ne); // add element to node element list because its a new object in graph + } // if(!use.empty()) else +} + +// <Cone +// DEF="" ID +// USE="" IDREF +// bottom="true" SFBool [initializeOnly] +// bottomRadius="1" SFloat [initializeOnly] +// height="2" SFloat [initializeOnly] +// side="true" SFBool [initializeOnly] +// solid="true" SFBool [initializeOnly] +// /> +void X3DImporter::readCone(XmlNode &node) { + std::string use, def; + bool bottom = true; + float bottomRadius = 1; + float height = 2; + bool side = true; + bool solid = true; + X3DNodeElementBase *ne(nullptr); + + MACRO_ATTRREAD_CHECKUSEDEF_RET(node, def, use); + XmlParser::getBoolAttribute(node, "solid", solid); + XmlParser::getBoolAttribute(node, "side", side); + XmlParser::getBoolAttribute(node, "bottom", bottom); + XmlParser::getFloatAttribute(node, "height", height); + XmlParser::getFloatAttribute(node, "bottomRadius", bottomRadius); + + // if "USE" defined then find already defined element. + if (!use.empty()) { + ne = MACRO_USE_CHECKANDAPPLY(node, def, use, ENET_Cone, ne); + } else { + const unsigned int tess = 30; ///TODO: IME tessellation factor through ai_property + + std::vector<aiVector3D> tvec; // temp array for vertices. + + // create and if needed - define new geometry object. + ne = new X3DNodeElementGeometry3D(X3DElemType::ENET_Cone, mNodeElementCur); + if (!def.empty()) ne->ID = def; + + // make cone or parts according to flags. + if (side) { + StandardShapes::MakeCone(height, 0, bottomRadius, tess, tvec, !bottom); + } else if (bottom) { + StandardShapes::MakeCircle(bottomRadius, tess, tvec); + height = -(height / 2); + for (std::vector<aiVector3D>::iterator it = tvec.begin(); it != tvec.end(); ++it) + it->y = height; // y - because circle made in oXZ. + } + + // copy data from temp array + for (std::vector<aiVector3D>::iterator it = tvec.begin(); it != tvec.end(); ++it) + ((X3DNodeElementGeometry3D *)ne)->Vertices.push_back(*it); + + ((X3DNodeElementGeometry3D *)ne)->Solid = solid; + ((X3DNodeElementGeometry3D *)ne)->NumIndices = 3; + // check for X3DMetadataObject childs. + if (!isNodeEmpty(node)) + childrenReadMetadata(node, ne, "Cone"); + else + mNodeElementCur->Children.push_back(ne); // add made object as child to current element + + NodeElement_List.push_back(ne); // add element to node element list because its a new object in graph + } // if(!use.empty()) else +} + +// <Cylinder +// DEF="" ID +// USE="" IDREF +// bottom="true" SFBool [initializeOnly] +// height="2" SFloat [initializeOnly] +// radius="1" SFloat [initializeOnly] +// side="true" SFBool [initializeOnly] +// solid="true" SFBool [initializeOnly] +// top="true" SFBool [initializeOnly] +// /> +void X3DImporter::readCylinder(XmlNode &node) { + std::string use, def; + bool bottom = true; + float height = 2; + float radius = 1; + bool side = true; + bool solid = true; + bool top = true; + X3DNodeElementBase *ne(nullptr); + + MACRO_ATTRREAD_CHECKUSEDEF_RET(node, def, use); + XmlParser::getFloatAttribute(node, "radius", radius); + XmlParser::getBoolAttribute(node, "solid", solid); + XmlParser::getBoolAttribute(node, "bottom", bottom); + XmlParser::getBoolAttribute(node, "top", top); + XmlParser::getBoolAttribute(node, "side", side); + XmlParser::getFloatAttribute(node, "height", height); + + // if "USE" defined then find already defined element. + if (!use.empty()) { + ne = MACRO_USE_CHECKANDAPPLY(node, def, use, ENET_Cylinder, ne); + } else { + const unsigned int tess = 30; ///TODO: IME tessellation factor through ai_property + + std::vector<aiVector3D> tside; // temp array for vertices of side. + std::vector<aiVector3D> tcir; // temp array for vertices of circle. + + // create and if needed - define new geometry object. + ne = new X3DNodeElementGeometry3D(X3DElemType::ENET_Cylinder, mNodeElementCur); + if (!def.empty()) ne->ID = def; + + // make cilynder or parts according to flags. + if (side) StandardShapes::MakeCone(height, radius, radius, tess, tside, true); + + height /= 2; // height defined for whole cylinder, when creating top and bottom circle we are using just half of height. + if (top || bottom) StandardShapes::MakeCircle(radius, tess, tcir); + // copy data from temp arrays + std::list<aiVector3D> &vlist = ((X3DNodeElementGeometry3D *)ne)->Vertices; // just short alias. + + for (std::vector<aiVector3D>::iterator it = tside.begin(); it != tside.end(); ++it) + vlist.push_back(*it); + + if (top) { + for (std::vector<aiVector3D>::iterator it = tcir.begin(); it != tcir.end(); ++it) { + (*it).y = height; // y - because circle made in oXZ. + vlist.push_back(*it); + } + } // if(top) + + if (bottom) { + for (std::vector<aiVector3D>::iterator it = tcir.begin(); it != tcir.end(); ++it) { + (*it).y = -height; // y - because circle made in oXZ. + vlist.push_back(*it); + } + } // if(top) + + ((X3DNodeElementGeometry3D *)ne)->Solid = solid; + ((X3DNodeElementGeometry3D *)ne)->NumIndices = 3; + // check for X3DMetadataObject childs. + if (!isNodeEmpty(node)) + childrenReadMetadata(node, ne, "Cylinder"); + else + mNodeElementCur->Children.push_back(ne); // add made object as child to current element + + NodeElement_List.push_back(ne); // add element to node element list because its a new object in graph + } // if(!use.empty()) else +} + +// <ElevationGrid +// DEF="" ID +// USE="" IDREF +// ccw="true" SFBool [initializeOnly] +// colorPerVertex="true" SFBool [initializeOnly] +// creaseAngle="0" SFloat [initializeOnly] +// height="" MFloat [initializeOnly] +// normalPerVertex="true" SFBool [initializeOnly] +// solid="true" SFBool [initializeOnly] +// xDimension="0" SFInt32 [initializeOnly] +// xSpacing="1.0" SFloat [initializeOnly] +// zDimension="0" SFInt32 [initializeOnly] +// zSpacing="1.0" SFloat [initializeOnly] +// > +// <!-- ColorNormalTexCoordContentModel --> +// ColorNormalTexCoordContentModel can contain Color (or ColorRGBA), Normal and TextureCoordinate, in any order. No more than one instance of any single +// node type is allowed. A ProtoInstance node (with the proper node type) can be substituted for any node in this content model. +// </ElevationGrid> +// The ElevationGrid node specifies a uniform rectangular grid of varying height in the Y=0 plane of the local coordinate system. The geometry is described +// by a scalar array of height values that specify the height of a surface above each point of the grid. The xDimension and zDimension fields indicate +// the number of elements of the grid height array in the X and Z directions. Both xDimension and zDimension shall be greater than or equal to zero. +// If either the xDimension or the zDimension is less than two, the ElevationGrid contains no quadrilaterals. +void X3DImporter::readElevationGrid(XmlNode &node) { + std::string use, def; + bool ccw = true; + bool colorPerVertex = true; + float creaseAngle = 0; + std::vector<float> height; + bool normalPerVertex = true; + bool solid = true; + int32_t xDimension = 0; + float xSpacing = 1; + int32_t zDimension = 0; + float zSpacing = 1; + X3DNodeElementBase *ne(nullptr); + + MACRO_ATTRREAD_CHECKUSEDEF_RET(node, def, use); + XmlParser::getBoolAttribute(node, "solid", solid); + XmlParser::getBoolAttribute(node, "ccw", ccw); + XmlParser::getBoolAttribute(node, "colorPerVertex", colorPerVertex); + XmlParser::getBoolAttribute(node, "normalPerVertex", normalPerVertex); + XmlParser::getFloatAttribute(node, "creaseAngle", creaseAngle); + X3DXmlHelper::getFloatArrayAttribute(node, "height", height); + XmlParser::getIntAttribute(node, "xDimension", xDimension); + XmlParser::getFloatAttribute(node, "xSpacing", xSpacing); + XmlParser::getIntAttribute(node, "zDimension", zDimension); + XmlParser::getFloatAttribute(node, "zSpacing", zSpacing); + + // if "USE" defined then find already defined element. + if (!use.empty()) { + ne = MACRO_USE_CHECKANDAPPLY(node, def, use, ENET_ElevationGrid, ne); + } else { + if ((xSpacing == 0.0f) || (zSpacing == 0.0f)) throw DeadlyImportError("Spacing in <ElevationGrid> must be grater than zero."); + if ((xDimension <= 0) || (zDimension <= 0)) throw DeadlyImportError("Dimension in <ElevationGrid> must be grater than zero."); + if ((size_t)(xDimension * zDimension) != height.size()) DeadlyImportError("Heights count must be equal to \"xDimension * zDimension\" in <ElevationGrid>"); + + // create and if needed - define new geometry object. + ne = new X3DNodeElementElevationGrid(X3DElemType::ENET_ElevationGrid, mNodeElementCur); + if (!def.empty()) ne->ID = def; + + X3DNodeElementElevationGrid &grid_alias = *((X3DNodeElementElevationGrid *)ne); // create alias for conveience + + { // create grid vertices list + std::vector<float>::const_iterator he_it = height.begin(); + + for (int32_t zi = 0; zi < zDimension; zi++) // rows + { + for (int32_t xi = 0; xi < xDimension; xi++) // columns + { + aiVector3D tvec(xSpacing * xi, *he_it, zSpacing * zi); + + grid_alias.Vertices.push_back(tvec); + ++he_it; + } + } + } // END: create grid vertices list + // + // create faces list. In "coordIdx" format + // + // check if we have quads + if ((xDimension < 2) || (zDimension < 2)) // only one element in dimension is set, create line set. + { + ((X3DNodeElementElevationGrid *)ne)->NumIndices = 2; // will be holded as line set. + for (size_t i = 0, i_e = (grid_alias.Vertices.size() - 1); i < i_e; i++) { + grid_alias.CoordIdx.push_back(static_cast<int32_t>(i)); + grid_alias.CoordIdx.push_back(static_cast<int32_t>(i + 1)); + grid_alias.CoordIdx.push_back(-1); + } + } else // two or more elements in every dimension is set. create quad set. + { + ((X3DNodeElementElevationGrid *)ne)->NumIndices = 4; + for (int32_t fzi = 0, fzi_e = (zDimension - 1); fzi < fzi_e; fzi++) // rows + { + for (int32_t fxi = 0, fxi_e = (xDimension - 1); fxi < fxi_e; fxi++) // columns + { + // points direction in face. + if (ccw) { + // CCW: + // 3 2 + // 0 1 + grid_alias.CoordIdx.push_back((fzi + 1) * xDimension + fxi); + grid_alias.CoordIdx.push_back((fzi + 1) * xDimension + (fxi + 1)); + grid_alias.CoordIdx.push_back(fzi * xDimension + (fxi + 1)); + grid_alias.CoordIdx.push_back(fzi * xDimension + fxi); + } else { + // CW: + // 0 1 + // 3 2 + grid_alias.CoordIdx.push_back(fzi * xDimension + fxi); + grid_alias.CoordIdx.push_back(fzi * xDimension + (fxi + 1)); + grid_alias.CoordIdx.push_back((fzi + 1) * xDimension + (fxi + 1)); + grid_alias.CoordIdx.push_back((fzi + 1) * xDimension + fxi); + } // if(ccw) else + + grid_alias.CoordIdx.push_back(-1); + } // for(int32_t fxi = 0, fxi_e = (xDimension - 1); fxi < fxi_e; fxi++) + } // for(int32_t fzi = 0, fzi_e = (zDimension - 1); fzi < fzi_e; fzi++) + } // if((xDimension < 2) || (zDimension < 2)) else + + grid_alias.ColorPerVertex = colorPerVertex; + grid_alias.NormalPerVertex = normalPerVertex; + grid_alias.CreaseAngle = creaseAngle; + grid_alias.Solid = solid; + // check for child nodes + if (!isNodeEmpty(node)) { + ParseHelper_Node_Enter(ne); + for (auto currentChildNode : node.children()) { + const std::string ¤tChildName = currentChildNode.name(); + // check for X3DComposedGeometryNodes + if (currentChildName == "Color") + readColor(currentChildNode); + else if (currentChildName == "ColorRGBA") + readColorRGBA(currentChildNode); + else if (currentChildName == "Normal") + readNormal(currentChildNode); + else if (currentChildName == "TextureCoordinate") + readTextureCoordinate(currentChildNode); + // check for X3DMetadataObject + else if (!checkForMetadataNode(currentChildNode)) + skipUnsupportedNode("ElevationGrid", currentChildNode); + } + ParseHelper_Node_Exit(); + } // if(!mReader->isEmptyElement()) + else { + mNodeElementCur->Children.push_back(ne); // add made object as child to current element + } // if(!mReader->isEmptyElement()) else + + NodeElement_List.push_back(ne); // add element to node element list because its a new object in graph + } // if(!use.empty()) else +} + +template <typename TVector> +static void GeometryHelper_Extrusion_CurveIsClosed(std::vector<TVector> &pCurve, const bool pDropTail, const bool pRemoveLastPoint, bool &pCurveIsClosed) { + size_t cur_sz = pCurve.size(); + + pCurveIsClosed = false; + // for curve with less than four points checking is have no sense, + if (cur_sz < 4) return; + + for (size_t s = 3, s_e = cur_sz; s < s_e; s++) { + // search for first point of duplicated part. + if (pCurve[0] == pCurve[s]) { + bool found = true; + + // check if tail(indexed by b2) is duplicate of head(indexed by b1). + for (size_t b1 = 1, b2 = (s + 1); b2 < cur_sz; b1++, b2++) { + if (pCurve[b1] != pCurve[b2]) { // points not match: clear flag and break loop. + found = false; + + break; + } + } // for(size_t b1 = 1, b2 = (s + 1); b2 < cur_sz; b1++, b2++) + + // if duplicate tail is found then drop or not it depending on flags. + if (found) { + pCurveIsClosed = true; + if (pDropTail) { + if (!pRemoveLastPoint) s++; // prepare value for iterator's arithmetics. + + pCurve.erase(pCurve.begin() + s, pCurve.end()); // remove tail + } + + break; + } // if(found) + } // if(pCurve[0] == pCurve[s]) + } // for(size_t s = 3, s_e = (cur_sz - 1); s < s_e; s++) +} + +static aiVector3D GeometryHelper_Extrusion_GetNextY(const size_t pSpine_PointIdx, const std::vector<aiVector3D> &pSpine, const bool pSpine_Closed) { + const size_t spine_idx_last = pSpine.size() - 1; + aiVector3D tvec; + + if ((pSpine_PointIdx == 0) || (pSpine_PointIdx == spine_idx_last)) // at first special cases + { + if (pSpine_Closed) { // If the spine curve is closed: The SCP for the first and last points is the same and is found using (spine[1] - spine[n - 2]) to compute the Y-axis. + // As we even for closed spine curve last and first point in pSpine are not the same: duplicates(spine[n - 1] which are equivalent to spine[0]) + // in tail are removed. + // So, last point in pSpine is a spine[n - 2] + tvec = pSpine[1] - pSpine[spine_idx_last]; + } else if (pSpine_PointIdx == 0) { // The Y-axis used for the first point is the vector from spine[0] to spine[1] + tvec = pSpine[1] - pSpine[0]; + } else { // The Y-axis used for the last point it is the vector from spine[n-2] to spine[n-1]. In our case(see above about dropping tail) spine[n - 1] is + // the spine[0]. + tvec = pSpine[spine_idx_last] - pSpine[spine_idx_last - 1]; + } + } // if((pSpine_PointIdx == 0) || (pSpine_PointIdx == spine_idx_last)) + else { // For all points other than the first or last: The Y-axis for spine[i] is found by normalizing the vector defined by (spine[i+1] - spine[i-1]). + tvec = pSpine[pSpine_PointIdx + 1] - pSpine[pSpine_PointIdx - 1]; + } // if((pSpine_PointIdx == 0) || (pSpine_PointIdx == spine_idx_last)) else + + return tvec.Normalize(); +} + +static aiVector3D GeometryHelper_Extrusion_GetNextZ(const size_t pSpine_PointIdx, const std::vector<aiVector3D> &pSpine, const bool pSpine_Closed, + const aiVector3D pVecZ_Prev) { + const aiVector3D zero_vec(0); + const size_t spine_idx_last = pSpine.size() - 1; + + aiVector3D tvec; + + // at first special cases + if (pSpine.size() < 3) // spine have not enough points for vector calculations. + { + tvec.Set(0, 0, 1); + } else if (pSpine_PointIdx == 0) // special case: first point + { + if (pSpine_Closed) // for calculating use previous point in curve s[n - 2]. In list it's a last point, because point s[n - 1] was removed as duplicate. + { + tvec = (pSpine[1] - pSpine[0]) ^ (pSpine[spine_idx_last] - pSpine[0]); + } else // for not closed curve first and next point(s[0] and s[1]) has the same vector Z. + { + bool found = false; + + // As said: "If the Z-axis of the first point is undefined (because the spine is not closed and the first two spine segments are collinear) + // then the Z-axis for the first spine point with a defined Z-axis is used." + // Walk through spine and find Z. + for (size_t next_point = 2; (next_point <= spine_idx_last) && !found; next_point++) { + // (pSpine[2] - pSpine[1]) ^ (pSpine[0] - pSpine[1]) + tvec = (pSpine[next_point] - pSpine[next_point - 1]) ^ (pSpine[next_point - 2] - pSpine[next_point - 1]); + found = !tvec.Equal(zero_vec); + } + + // if entire spine are collinear then use OZ axis. + if (!found) tvec.Set(0, 0, 1); + } // if(pSpine_Closed) else + } // else if(pSpine_PointIdx == 0) + else if (pSpine_PointIdx == spine_idx_last) // special case: last point + { + if (pSpine_Closed) { // do not forget that real last point s[n - 1] is removed as duplicated. And in this case we are calculating vector Z for point s[n - 2]. + tvec = (pSpine[0] - pSpine[pSpine_PointIdx]) ^ (pSpine[pSpine_PointIdx - 1] - pSpine[pSpine_PointIdx]); + // if taken spine vectors are collinear then use previous vector Z. + if (tvec.Equal(zero_vec)) tvec = pVecZ_Prev; + } else { // vector Z for last point of not closed curve is previous vector Z. + tvec = pVecZ_Prev; + } + } else // regular point + { + tvec = (pSpine[pSpine_PointIdx + 1] - pSpine[pSpine_PointIdx]) ^ (pSpine[pSpine_PointIdx - 1] - pSpine[pSpine_PointIdx]); + // if taken spine vectors are collinear then use previous vector Z. + if (tvec.Equal(zero_vec)) tvec = pVecZ_Prev; + } + + // After determining the Z-axis, its dot product with the Z-axis of the previous spine point is computed. If this value is negative, the Z-axis + // is flipped (multiplied by -1). + if ((tvec * pVecZ_Prev) < 0) tvec = -tvec; + + return tvec.Normalize(); +} + +// <Extrusion +// DEF="" ID +// USE="" IDREF +// beginCap="true" SFBool [initializeOnly] +// ccw="true" SFBool [initializeOnly] +// convex="true" SFBool [initializeOnly] +// creaseAngle="0.0" SFloat [initializeOnly] +// crossSection="1 1 1 -1 -1 -1 -1 1 1 1" MFVec2f [initializeOnly] +// endCap="true" SFBool [initializeOnly] +// orientation="0 0 1 0" MFRotation [initializeOnly] +// scale="1 1" MFVec2f [initializeOnly] +// solid="true" SFBool [initializeOnly] +// spine="0 0 0 0 1 0" MFVec3f [initializeOnly] +// /> +void X3DImporter::readExtrusion(XmlNode &node) { + std::string use, def; + bool beginCap = true; + bool ccw = true; + bool convex = true; + float creaseAngle = 0; + std::vector<aiVector2D> crossSection; + bool endCap = true; + std::vector<float> orientation; + std::vector<aiVector2D> scale; + bool solid = true; + std::vector<aiVector3D> spine; + X3DNodeElementBase *ne(nullptr); + + MACRO_ATTRREAD_CHECKUSEDEF_RET(node, def, use); + XmlParser::getBoolAttribute(node, "beginCap", beginCap); + XmlParser::getBoolAttribute(node, "ccw", ccw); + XmlParser::getBoolAttribute(node, "convex", convex); + XmlParser::getFloatAttribute(node, "creaseAngle", creaseAngle); + X3DXmlHelper::getVector2DArrayAttribute(node, "crossSection", crossSection); + XmlParser::getBoolAttribute(node, "endCap", endCap); + X3DXmlHelper::getFloatArrayAttribute(node, "orientation", orientation); + X3DXmlHelper::getVector2DArrayAttribute(node, "scale", scale); + XmlParser::getBoolAttribute(node, "solid", solid); + X3DXmlHelper::getVector3DArrayAttribute(node, "spine", spine); + + // if "USE" defined then find already defined element. + if (!use.empty()) { + ne = MACRO_USE_CHECKANDAPPLY(node, def, use, ENET_Extrusion, ne); + } else { + // + // check if default values must be assigned + // + if (spine.size() == 0) { + spine.resize(2); + spine[0].Set(0, 0, 0), spine[1].Set(0, 1, 0); + } else if (spine.size() == 1) { + throw DeadlyImportError("ParseNode_Geometry3D_Extrusion. Spine must have at least two points."); + } + + if (crossSection.size() == 0) { + crossSection.resize(5); + crossSection[0].Set(1, 1), crossSection[1].Set(1, -1), crossSection[2].Set(-1, -1), crossSection[3].Set(-1, 1), crossSection[4].Set(1, 1); + } + + { // orientation + size_t ori_size = orientation.size() / 4; + + if (ori_size < spine.size()) { + float add_ori[4]; // values that will be added + + if (ori_size == 1) // if "orientation" has one element(means one MFRotation with four components) then use it value for all spine points. + { + add_ori[0] = orientation[0], add_ori[1] = orientation[1], add_ori[2] = orientation[2], add_ori[3] = orientation[3]; + } else // else - use default values + { + add_ori[0] = 0, add_ori[1] = 0, add_ori[2] = 1, add_ori[3] = 0; + } + + orientation.reserve(spine.size() * 4); + for (size_t i = 0, i_e = (spine.size() - ori_size); i < i_e; i++) + orientation.push_back(add_ori[0]), orientation.push_back(add_ori[1]), orientation.push_back(add_ori[2]), orientation.push_back(add_ori[3]); + } + + if (orientation.size() % 4) throw DeadlyImportError("Attribute \"orientation\" in <Extrusion> must has multiple four quantity of numbers."); + } // END: orientation + + { // scale + if (scale.size() < spine.size()) { + aiVector2D add_sc; + + if (scale.size() == 1) // if "scale" has one element then use it value for all spine points. + add_sc = scale[0]; + else // else - use default values + add_sc.Set(1, 1); + + scale.reserve(spine.size()); + for (size_t i = 0, i_e = (spine.size() - scale.size()); i < i_e; i++) + scale.push_back(add_sc); + } + } // END: scale + // + // create and if needed - define new geometry object. + // + ne = new X3DNodeElementIndexedSet(X3DElemType::ENET_Extrusion, mNodeElementCur); + if (!def.empty()) ne->ID = def; + + X3DNodeElementIndexedSet &ext_alias = *((X3DNodeElementIndexedSet *)ne); // create alias for conveience + // assign part of input data + ext_alias.CCW = ccw; + ext_alias.Convex = convex; + ext_alias.CreaseAngle = creaseAngle; + ext_alias.Solid = solid; + + // + // How we done it at all? + // 1. At first we will calculate array of basises for every point in spine(look SCP in ISO-dic). Also "orientation" vector + // are applied vor every basis. + // 2. After that we can create array of point sets: which are scaled, transferred to basis of relative basis and at final translated to real position + // using relative spine point. + // 3. Next step is creating CoordIdx array(do not forget "-1" delimiter). While creating CoordIdx also created faces for begin and end caps, if + // needed. While createing CootdIdx is taking in account CCW flag. + // 4. The last step: create Vertices list. + // + bool spine_closed; // flag: true if spine curve is closed. + bool cross_closed; // flag: true if cross curve is closed. + std::vector<aiMatrix3x3> basis_arr; // array of basises. ROW_a - X, ROW_b - Y, ROW_c - Z. + std::vector<std::vector<aiVector3D>> pointset_arr; // array of point sets: cross curves. + + // detect closed curves + GeometryHelper_Extrusion_CurveIsClosed(crossSection, true, true, cross_closed); // true - drop tail, true - remove duplicate end. + GeometryHelper_Extrusion_CurveIsClosed(spine, true, true, spine_closed); // true - drop tail, true - remove duplicate end. + // If both cap are requested and spine curve is closed then we can make only one cap. Because second cap will be the same surface. + if (spine_closed) { + beginCap |= endCap; + endCap = false; + } + + { // 1. Calculate array of basises. + aiMatrix4x4 rotmat; + aiVector3D vecX(0), vecY(0), vecZ(0); + + basis_arr.resize(spine.size()); + for (size_t i = 0, i_e = spine.size(); i < i_e; i++) { + aiVector3D tvec; + + // get axises of basis. + vecY = GeometryHelper_Extrusion_GetNextY(i, spine, spine_closed); + vecZ = GeometryHelper_Extrusion_GetNextZ(i, spine, spine_closed, vecZ); + vecX = (vecY ^ vecZ).Normalize(); + // get rotation matrix and apply "orientation" to basis + aiMatrix4x4::Rotation(orientation[i * 4 + 3], aiVector3D(orientation[i * 4], orientation[i * 4 + 1], orientation[i * 4 + 2]), rotmat); + tvec = vecX, tvec *= rotmat, basis_arr[i].a1 = tvec.x, basis_arr[i].a2 = tvec.y, basis_arr[i].a3 = tvec.z; + tvec = vecY, tvec *= rotmat, basis_arr[i].b1 = tvec.x, basis_arr[i].b2 = tvec.y, basis_arr[i].b3 = tvec.z; + tvec = vecZ, tvec *= rotmat, basis_arr[i].c1 = tvec.x, basis_arr[i].c2 = tvec.y, basis_arr[i].c3 = tvec.z; + } // for(size_t i = 0, i_e = spine.size(); i < i_e; i++) + } // END: 1. Calculate array of basises + + { // 2. Create array of point sets. + aiMatrix4x4 scmat; + std::vector<aiVector3D> tcross(crossSection.size()); + + pointset_arr.resize(spine.size()); + for (size_t spi = 0, spi_e = spine.size(); spi < spi_e; spi++) { + aiVector3D tc23vec; + + tc23vec.Set(scale[spi].x, 0, scale[spi].y); + aiMatrix4x4::Scaling(tc23vec, scmat); + for (size_t cri = 0, cri_e = crossSection.size(); cri < cri_e; cri++) { + aiVector3D tvecX, tvecY, tvecZ; + + tc23vec.Set(crossSection[cri].x, 0, crossSection[cri].y); + // apply scaling to point + tcross[cri] = scmat * tc23vec; + // + // transfer point to new basis + // calculate coordinate in new basis + tvecX.Set(basis_arr[spi].a1, basis_arr[spi].a2, basis_arr[spi].a3), tvecX *= tcross[cri].x; + tvecY.Set(basis_arr[spi].b1, basis_arr[spi].b2, basis_arr[spi].b3), tvecY *= tcross[cri].y; + tvecZ.Set(basis_arr[spi].c1, basis_arr[spi].c2, basis_arr[spi].c3), tvecZ *= tcross[cri].z; + // apply new coordinates and translate it to spine point. + tcross[cri] = tvecX + tvecY + tvecZ + spine[spi]; + } // for(size_t cri = 0, cri_e = crossSection.size(); cri < cri_e; i++) + + pointset_arr[spi] = tcross; // store transferred point set + } // for(size_t spi = 0, spi_e = spine.size(); spi < spi_e; i++) + } // END: 2. Create array of point sets. + + { // 3. Create CoordIdx. + // add caps if needed + if (beginCap) { + // add cap as polygon. vertices of cap are places at begin, so just add numbers from zero. + for (size_t i = 0, i_e = crossSection.size(); i < i_e; i++) + ext_alias.CoordIndex.push_back(static_cast<int32_t>(i)); + + // add delimiter + ext_alias.CoordIndex.push_back(-1); + } // if(beginCap) + + if (endCap) { + // add cap as polygon. vertices of cap are places at end, as for beginCap use just sequence of numbers but with offset. + size_t beg = (pointset_arr.size() - 1) * crossSection.size(); + + for (size_t i = beg, i_e = (beg + crossSection.size()); i < i_e; i++) + ext_alias.CoordIndex.push_back(static_cast<int32_t>(i)); + + // add delimiter + ext_alias.CoordIndex.push_back(-1); + } // if(beginCap) + + // add quads + for (size_t spi = 0, spi_e = (spine.size() - 1); spi <= spi_e; spi++) { + const size_t cr_sz = crossSection.size(); + const size_t cr_last = crossSection.size() - 1; + + size_t right_col; // hold index basis for points of quad placed in right column; + + if (spi != spi_e) + right_col = spi + 1; + else if (spine_closed) // if spine curve is closed then one more quad is needed: between first and last points of curve. + right_col = 0; + else + break; // if spine curve is not closed then break the loop, because spi is out of range for that type of spine. + + for (size_t cri = 0; cri < cr_sz; cri++) { + if (cri != cr_last) { + MACRO_FACE_ADD_QUAD(ccw, ext_alias.CoordIndex, + static_cast<int32_t>(spi * cr_sz + cri), + static_cast<int32_t>(right_col * cr_sz + cri), + static_cast<int32_t>(right_col * cr_sz + cri + 1), + static_cast<int32_t>(spi * cr_sz + cri + 1)); + // add delimiter + ext_alias.CoordIndex.push_back(-1); + } else if (cross_closed) // if cross curve is closed then one more quad is needed: between first and last points of curve. + { + MACRO_FACE_ADD_QUAD(ccw, ext_alias.CoordIndex, + static_cast<int32_t>(spi * cr_sz + cri), + static_cast<int32_t>(right_col * cr_sz + cri), + static_cast<int32_t>(right_col * cr_sz + 0), + static_cast<int32_t>(spi * cr_sz + 0)); + // add delimiter + ext_alias.CoordIndex.push_back(-1); + } + } // for(size_t cri = 0; cri < cr_sz; cri++) + } // for(size_t spi = 0, spi_e = (spine.size() - 2); spi < spi_e; spi++) + } // END: 3. Create CoordIdx. + + { // 4. Create vertices list. + // just copy all vertices + for (size_t spi = 0, spi_e = spine.size(); spi < spi_e; spi++) { + for (size_t cri = 0, cri_e = crossSection.size(); cri < cri_e; cri++) { + ext_alias.Vertices.emplace_back(pointset_arr[spi][cri]); + } + } + } // END: 4. Create vertices list. + //PrintVectorSet("Ext. CoordIdx", ext_alias.CoordIndex); + //PrintVectorSet("Ext. Vertices", ext_alias.Vertices); + // check for child nodes + if (!isNodeEmpty(node)) + childrenReadMetadata(node, ne, "Extrusion"); + else + mNodeElementCur->Children.push_back(ne); // add made object as child to current element + + NodeElement_List.push_back(ne); // add element to node element list because its a new object in graph + } // if(!use.empty()) else +} + +// <IndexedFaceSet +// DEF="" ID +// USE="" IDREF +// ccw="true" SFBool [initializeOnly] +// colorIndex="" MFInt32 [initializeOnly] +// colorPerVertex="true" SFBool [initializeOnly] +// convex="true" SFBool [initializeOnly] +// coordIndex="" MFInt32 [initializeOnly] +// creaseAngle="0" SFFloat [initializeOnly] +// normalIndex="" MFInt32 [initializeOnly] +// normalPerVertex="true" SFBool [initializeOnly] +// solid="true" SFBool [initializeOnly] +// texCoordIndex="" MFInt32 [initializeOnly] +// > +// <!-- ComposedGeometryContentModel --> +// ComposedGeometryContentModel is the child-node content model corresponding to X3DComposedGeometryNodes. It can contain Color (or ColorRGBA), Coordinate, +// Normal and TextureCoordinate, in any order. No more than one instance of these nodes is allowed. Multiple VertexAttribute (FloatVertexAttribute, +// Matrix3VertexAttribute, Matrix4VertexAttribute) nodes can also be contained. +// A ProtoInstance node (with the proper node type) can be substituted for any node in this content model. +// </IndexedFaceSet> +void X3DImporter::readIndexedFaceSet(XmlNode &node) { + std::string use, def; + bool ccw = true; + std::vector<int32_t> colorIndex; + bool colorPerVertex = true; + bool convex = true; + std::vector<int32_t> coordIndex; + float creaseAngle = 0; + std::vector<int32_t> normalIndex; + bool normalPerVertex = true; + bool solid = true; + std::vector<int32_t> texCoordIndex; + X3DNodeElementBase *ne(nullptr); + + MACRO_ATTRREAD_CHECKUSEDEF_RET(node, def, use); + XmlParser::getBoolAttribute(node, "ccw", ccw); + X3DXmlHelper::getInt32ArrayAttribute(node, "colorIndex", colorIndex); + XmlParser::getBoolAttribute(node, "colorPerVertex", colorPerVertex); + XmlParser::getBoolAttribute(node, "convex", convex); + X3DXmlHelper::getInt32ArrayAttribute(node, "coordIndex", coordIndex); + XmlParser::getFloatAttribute(node, "creaseAngle", creaseAngle); + X3DXmlHelper::getInt32ArrayAttribute(node, "normalIndex", normalIndex); + XmlParser::getBoolAttribute(node, "normalPerVertex", normalPerVertex); + XmlParser::getBoolAttribute(node, "solid", solid); + X3DXmlHelper::getInt32ArrayAttribute(node, "texCoordIndex", texCoordIndex); + + // if "USE" defined then find already defined element. + if (!use.empty()) { + ne = MACRO_USE_CHECKANDAPPLY(node, def, use, ENET_IndexedFaceSet, ne); + } else { + // check data + if (coordIndex.size() == 0) throw DeadlyImportError("IndexedFaceSet must contain not empty \"coordIndex\" attribute."); + + // create and if needed - define new geometry object. + ne = new X3DNodeElementIndexedSet(X3DElemType::ENET_IndexedFaceSet, mNodeElementCur); + if (!def.empty()) ne->ID = def; + + X3DNodeElementIndexedSet &ne_alias = *((X3DNodeElementIndexedSet *)ne); + + ne_alias.CCW = ccw; + ne_alias.ColorIndex = colorIndex; + ne_alias.ColorPerVertex = colorPerVertex; + ne_alias.Convex = convex; + ne_alias.CoordIndex = coordIndex; + ne_alias.CreaseAngle = creaseAngle; + ne_alias.NormalIndex = normalIndex; + ne_alias.NormalPerVertex = normalPerVertex; + ne_alias.Solid = solid; + ne_alias.TexCoordIndex = texCoordIndex; + // check for child nodes + if (!isNodeEmpty(node)) { + ParseHelper_Node_Enter(ne); + for (auto currentChildNode : node.children()) { + const std::string ¤tChildName = currentChildNode.name(); + // check for X3DComposedGeometryNodes + if (currentChildName == "Color") + readColor(currentChildNode); + else if (currentChildName == "ColorRGBA") + readColorRGBA(currentChildNode); + else if (currentChildName == "Coordinate") + readCoordinate(currentChildNode); + else if (currentChildName == "Normal") + readNormal(currentChildNode); + else if (currentChildName == "TextureCoordinate") + readTextureCoordinate(currentChildNode); + // check for X3DMetadataObject + else if (!checkForMetadataNode(currentChildNode)) + skipUnsupportedNode("IndexedFaceSet", currentChildNode); + } + ParseHelper_Node_Exit(); + } // if(!isNodeEmpty(node)) + else { + mNodeElementCur->Children.push_back(ne); // add made object as child to current element + } + + NodeElement_List.push_back(ne); // add element to node element list because its a new object in graph + } // if(!use.empty()) else +} + +// <Sphere +// DEF="" ID +// USE="" IDREF +// radius="1" SFloat [initializeOnly] +// solid="true" SFBool [initializeOnly] +// /> +void X3DImporter::readSphere(XmlNode &node) { + std::string use, def; + ai_real radius = 1; + bool solid = true; + X3DNodeElementBase *ne(nullptr); + + MACRO_ATTRREAD_CHECKUSEDEF_RET(node, def, use); + XmlParser::getRealAttribute(node, "radius", radius); + XmlParser::getBoolAttribute(node, "solid", solid); + + // if "USE" defined then find already defined element. + if (!use.empty()) { + ne = MACRO_USE_CHECKANDAPPLY(node, def, use, ENET_Sphere, ne); + } else { + const unsigned int tess = 3; ///TODO: IME tessellation factor through ai_property + + std::vector<aiVector3D> tlist; + + // create and if needed - define new geometry object. + ne = new X3DNodeElementGeometry3D(X3DElemType::ENET_Sphere, mNodeElementCur); + if (!def.empty()) ne->ID = def; + + StandardShapes::MakeSphere(tess, tlist); + // copy data from temp array and apply scale + for (std::vector<aiVector3D>::iterator it = tlist.begin(); it != tlist.end(); ++it) { + aiVector3D v = *it; + ((X3DNodeElementGeometry3D *)ne)->Vertices.emplace_back(v * radius); + } + + ((X3DNodeElementGeometry3D *)ne)->Solid = solid; + ((X3DNodeElementGeometry3D *)ne)->NumIndices = 3; + // check for X3DMetadataObject childs. + if (!isNodeEmpty(node)) + childrenReadMetadata(node, ne, "Sphere"); + else + mNodeElementCur->Children.push_back(ne); // add made object as child to current element + + NodeElement_List.push_back(ne); // add element to node element list because its a new object in graph + } // if(!use.empty()) else +} + +} // namespace Assimp + +#endif // !ASSIMP_BUILD_NO_X3D_IMPORTER |