summaryrefslogtreecommitdiff
path: root/src/mesh/assimp-master/code/Common/SpatialSort.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/mesh/assimp-master/code/Common/SpatialSort.cpp')
-rw-r--r--src/mesh/assimp-master/code/Common/SpatialSort.cpp344
1 files changed, 344 insertions, 0 deletions
diff --git a/src/mesh/assimp-master/code/Common/SpatialSort.cpp b/src/mesh/assimp-master/code/Common/SpatialSort.cpp
new file mode 100644
index 0000000..6103002
--- /dev/null
+++ b/src/mesh/assimp-master/code/Common/SpatialSort.cpp
@@ -0,0 +1,344 @@
+/*
+---------------------------------------------------------------------------
+Open Asset Import Library (assimp)
+---------------------------------------------------------------------------
+
+Copyright (c) 2006-2022, assimp team
+
+All rights reserved.
+
+Redistribution and use of this software in source and binary forms,
+with or without modification, are permitted provided that the following
+conditions are met:
+
+* Redistributions of source code must retain the above
+ copyright notice, this list of conditions and the
+ following disclaimer.
+
+* Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the
+ following disclaimer in the documentation and/or other
+ materials provided with the distribution.
+
+* Neither the name of the assimp team, nor the names of its
+ contributors may be used to endorse or promote products
+ derived from this software without specific prior
+ written permission of the assimp team.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+---------------------------------------------------------------------------
+*/
+
+/** @file Implementation of the helper class to quickly find vertices close to a given position */
+
+#include <assimp/SpatialSort.h>
+#include <assimp/ai_assert.h>
+
+using namespace Assimp;
+
+// CHAR_BIT seems to be defined under MVSC, but not under GCC. Pray that the correct value is 8.
+#ifndef CHAR_BIT
+#define CHAR_BIT 8
+#endif
+
+const aiVector3D PlaneInit(0.8523f, 0.34321f, 0.5736f);
+
+// ------------------------------------------------------------------------------------------------
+// Constructs a spatially sorted representation from the given position array.
+// define the reference plane. We choose some arbitrary vector away from all basic axes
+// in the hope that no model spreads all its vertices along this plane.
+SpatialSort::SpatialSort(const aiVector3D *pPositions, unsigned int pNumPositions, unsigned int pElementOffset) :
+ mPlaneNormal(PlaneInit),
+ mFinalized(false) {
+ mPlaneNormal.Normalize();
+ Fill(pPositions, pNumPositions, pElementOffset);
+}
+
+// ------------------------------------------------------------------------------------------------
+SpatialSort::SpatialSort() :
+ mPlaneNormal(PlaneInit),
+ mFinalized(false) {
+ mPlaneNormal.Normalize();
+}
+
+// ------------------------------------------------------------------------------------------------
+// Destructor
+SpatialSort::~SpatialSort() {
+ // empty
+}
+
+// ------------------------------------------------------------------------------------------------
+void SpatialSort::Fill(const aiVector3D *pPositions, unsigned int pNumPositions,
+ unsigned int pElementOffset,
+ bool pFinalize /*= true */) {
+ mPositions.clear();
+ mFinalized = false;
+ Append(pPositions, pNumPositions, pElementOffset, pFinalize);
+ mFinalized = pFinalize;
+}
+
+// ------------------------------------------------------------------------------------------------
+ai_real SpatialSort::CalculateDistance(const aiVector3D &pPosition) const {
+ return (pPosition - mCentroid) * mPlaneNormal;
+}
+
+// ------------------------------------------------------------------------------------------------
+void SpatialSort::Finalize() {
+ const ai_real scale = 1.0f / mPositions.size();
+ for (unsigned int i = 0; i < mPositions.size(); i++) {
+ mCentroid += scale * mPositions[i].mPosition;
+ }
+ for (unsigned int i = 0; i < mPositions.size(); i++) {
+ mPositions[i].mDistance = CalculateDistance(mPositions[i].mPosition);
+ }
+ std::sort(mPositions.begin(), mPositions.end());
+ mFinalized = true;
+}
+
+// ------------------------------------------------------------------------------------------------
+void SpatialSort::Append(const aiVector3D *pPositions, unsigned int pNumPositions,
+ unsigned int pElementOffset,
+ bool pFinalize /*= true */) {
+ ai_assert(!mFinalized && "You cannot add positions to the SpatialSort object after it has been finalized.");
+ // store references to all given positions along with their distance to the reference plane
+ const size_t initial = mPositions.size();
+ mPositions.reserve(initial + pNumPositions);
+ for (unsigned int a = 0; a < pNumPositions; a++) {
+ const char *tempPointer = reinterpret_cast<const char *>(pPositions);
+ const aiVector3D *vec = reinterpret_cast<const aiVector3D *>(tempPointer + a * pElementOffset);
+ mPositions.push_back(Entry(static_cast<unsigned int>(a + initial), *vec));
+ }
+
+ if (pFinalize) {
+ // now sort the array ascending by distance.
+ Finalize();
+ }
+}
+
+// ------------------------------------------------------------------------------------------------
+// Returns an iterator for all positions close to the given position.
+void SpatialSort::FindPositions(const aiVector3D &pPosition,
+ ai_real pRadius, std::vector<unsigned int> &poResults) const {
+ ai_assert(mFinalized && "The SpatialSort object must be finalized before FindPositions can be called.");
+ const ai_real dist = CalculateDistance(pPosition);
+ const ai_real minDist = dist - pRadius, maxDist = dist + pRadius;
+
+ // clear the array
+ poResults.clear();
+
+ // quick check for positions outside the range
+ if (mPositions.size() == 0)
+ return;
+ if (maxDist < mPositions.front().mDistance)
+ return;
+ if (minDist > mPositions.back().mDistance)
+ return;
+
+ // do a binary search for the minimal distance to start the iteration there
+ unsigned int index = (unsigned int)mPositions.size() / 2;
+ unsigned int binaryStepSize = (unsigned int)mPositions.size() / 4;
+ while (binaryStepSize > 1) {
+ if (mPositions[index].mDistance < minDist)
+ index += binaryStepSize;
+ else
+ index -= binaryStepSize;
+
+ binaryStepSize /= 2;
+ }
+
+ // depending on the direction of the last step we need to single step a bit back or forth
+ // to find the actual beginning element of the range
+ while (index > 0 && mPositions[index].mDistance > minDist)
+ index--;
+ while (index < (mPositions.size() - 1) && mPositions[index].mDistance < minDist)
+ index++;
+
+ // Mow start iterating from there until the first position lays outside of the distance range.
+ // Add all positions inside the distance range within the given radius to the result array
+ std::vector<Entry>::const_iterator it = mPositions.begin() + index;
+ const ai_real pSquared = pRadius * pRadius;
+ while (it->mDistance < maxDist) {
+ if ((it->mPosition - pPosition).SquareLength() < pSquared)
+ poResults.push_back(it->mIndex);
+ ++it;
+ if (it == mPositions.end())
+ break;
+ }
+
+ // that's it
+}
+
+namespace {
+
+// Binary, signed-integer representation of a single-precision floating-point value.
+// IEEE 754 says: "If two floating-point numbers in the same format are ordered then they are
+// ordered the same way when their bits are reinterpreted as sign-magnitude integers."
+// This allows us to convert all floating-point numbers to signed integers of arbitrary size
+// and then use them to work with ULPs (Units in the Last Place, for high-precision
+// computations) or to compare them (integer comparisons are faster than floating-point
+// comparisons on many platforms).
+typedef ai_int BinFloat;
+
+// --------------------------------------------------------------------------------------------
+// Converts the bit pattern of a floating-point number to its signed integer representation.
+BinFloat ToBinary(const ai_real &pValue) {
+
+ // If this assertion fails, signed int is not big enough to store a float on your platform.
+ // Please correct the declaration of BinFloat a few lines above - but do it in a portable,
+ // #ifdef'd manner!
+ static_assert(sizeof(BinFloat) >= sizeof(ai_real), "sizeof(BinFloat) >= sizeof(ai_real)");
+
+#if defined(_MSC_VER)
+ // If this assertion fails, Visual C++ has finally moved to ILP64. This means that this
+ // code has just become legacy code! Find out the current value of _MSC_VER and modify
+ // the #if above so it evaluates false on the current and all upcoming VC versions (or
+ // on the current platform, if LP64 or LLP64 are still used on other platforms).
+ static_assert(sizeof(BinFloat) == sizeof(ai_real), "sizeof(BinFloat) == sizeof(ai_real)");
+
+ // This works best on Visual C++, but other compilers have their problems with it.
+ const BinFloat binValue = reinterpret_cast<BinFloat const &>(pValue);
+ //::memcpy(&binValue, &pValue, sizeof(pValue));
+ //return binValue;
+#else
+ // On many compilers, reinterpreting a float address as an integer causes aliasing
+ // problems. This is an ugly but more or less safe way of doing it.
+ union {
+ ai_real asFloat;
+ BinFloat asBin;
+ } conversion;
+ conversion.asBin = 0; // zero empty space in case sizeof(BinFloat) > sizeof(float)
+ conversion.asFloat = pValue;
+ const BinFloat binValue = conversion.asBin;
+#endif
+
+ // floating-point numbers are of sign-magnitude format, so find out what signed number
+ // representation we must convert negative values to.
+ // See http://en.wikipedia.org/wiki/Signed_number_representations.
+ const BinFloat mask = BinFloat(1) << (CHAR_BIT * sizeof(BinFloat) - 1);
+
+ // Two's complement?
+ const bool DefaultValue = ((-42 == (~42 + 1)) && (binValue & mask));
+ const bool OneComplement = ((-42 == ~42) && (binValue & mask));
+
+ if (DefaultValue)
+ return mask - binValue;
+ // One's complement?
+ else if (OneComplement)
+ return BinFloat(-0) - binValue;
+ // Sign-magnitude? -0 = 1000... binary
+ return binValue;
+}
+
+} // namespace
+
+// ------------------------------------------------------------------------------------------------
+// Fills an array with indices of all positions identical to the given position. In opposite to
+// FindPositions(), not an epsilon is used but a (very low) tolerance of four floating-point units.
+void SpatialSort::FindIdenticalPositions(const aiVector3D &pPosition, std::vector<unsigned int> &poResults) const {
+ ai_assert(mFinalized && "The SpatialSort object must be finalized before FindIdenticalPositions can be called.");
+ // Epsilons have a huge disadvantage: they are of constant precision, while floating-point
+ // values are of log2 precision. If you apply e=0.01 to 100, the epsilon is rather small, but
+ // if you apply it to 0.001, it is enormous.
+
+ // The best way to overcome this is the unit in the last place (ULP). A precision of 2 ULPs
+ // tells us that a float does not differ more than 2 bits from the "real" value. ULPs are of
+ // logarithmic precision - around 1, they are 1*(2^24) and around 10000, they are 0.00125.
+
+ // For standard C math, we can assume a precision of 0.5 ULPs according to IEEE 754. The
+ // incoming vertex positions might have already been transformed, probably using rather
+ // inaccurate SSE instructions, so we assume a tolerance of 4 ULPs to safely identify
+ // identical vertex positions.
+ static const int toleranceInULPs = 4;
+ // An interesting point is that the inaccuracy grows linear with the number of operations:
+ // multiplying to numbers, each inaccurate to four ULPs, results in an inaccuracy of four ULPs
+ // plus 0.5 ULPs for the multiplication.
+ // To compute the distance to the plane, a dot product is needed - that is a multiplication and
+ // an addition on each number.
+ static const int distanceToleranceInULPs = toleranceInULPs + 1;
+ // The squared distance between two 3D vectors is computed the same way, but with an additional
+ // subtraction.
+ static const int distance3DToleranceInULPs = distanceToleranceInULPs + 1;
+
+ // Convert the plane distance to its signed integer representation so the ULPs tolerance can be
+ // applied. For some reason, VC won't optimize two calls of the bit pattern conversion.
+ const BinFloat minDistBinary = ToBinary(CalculateDistance(pPosition)) - distanceToleranceInULPs;
+ const BinFloat maxDistBinary = minDistBinary + 2 * distanceToleranceInULPs;
+
+ // clear the array in this strange fashion because a simple clear() would also deallocate
+ // the array which we want to avoid
+ poResults.resize(0);
+
+ // do a binary search for the minimal distance to start the iteration there
+ unsigned int index = (unsigned int)mPositions.size() / 2;
+ unsigned int binaryStepSize = (unsigned int)mPositions.size() / 4;
+ while (binaryStepSize > 1) {
+ // Ugly, but conditional jumps are faster with integers than with floats
+ if (minDistBinary > ToBinary(mPositions[index].mDistance))
+ index += binaryStepSize;
+ else
+ index -= binaryStepSize;
+
+ binaryStepSize /= 2;
+ }
+
+ // depending on the direction of the last step we need to single step a bit back or forth
+ // to find the actual beginning element of the range
+ while (index > 0 && minDistBinary < ToBinary(mPositions[index].mDistance))
+ index--;
+ while (index < (mPositions.size() - 1) && minDistBinary > ToBinary(mPositions[index].mDistance))
+ index++;
+
+ // Now start iterating from there until the first position lays outside of the distance range.
+ // Add all positions inside the distance range within the tolerance to the result array
+ std::vector<Entry>::const_iterator it = mPositions.begin() + index;
+ while (ToBinary(it->mDistance) < maxDistBinary) {
+ if (distance3DToleranceInULPs >= ToBinary((it->mPosition - pPosition).SquareLength()))
+ poResults.push_back(it->mIndex);
+ ++it;
+ if (it == mPositions.end())
+ break;
+ }
+
+ // that's it
+}
+
+// ------------------------------------------------------------------------------------------------
+unsigned int SpatialSort::GenerateMappingTable(std::vector<unsigned int> &fill, ai_real pRadius) const {
+ ai_assert(mFinalized && "The SpatialSort object must be finalized before GenerateMappingTable can be called.");
+ fill.resize(mPositions.size(), UINT_MAX);
+ ai_real dist, maxDist;
+
+ unsigned int t = 0;
+ const ai_real pSquared = pRadius * pRadius;
+ for (size_t i = 0; i < mPositions.size();) {
+ dist = (mPositions[i].mPosition - mCentroid) * mPlaneNormal;
+ maxDist = dist + pRadius;
+
+ fill[mPositions[i].mIndex] = t;
+ const aiVector3D &oldpos = mPositions[i].mPosition;
+ for (++i; i < fill.size() && mPositions[i].mDistance < maxDist && (mPositions[i].mPosition - oldpos).SquareLength() < pSquared; ++i) {
+ fill[mPositions[i].mIndex] = t;
+ }
+ ++t;
+ }
+
+#ifdef ASSIMP_BUILD_DEBUG
+
+ // debug invariant: mPositions[i].mIndex values must range from 0 to mPositions.size()-1
+ for (size_t i = 0; i < fill.size(); ++i) {
+ ai_assert(fill[i] < mPositions.size());
+ }
+
+#endif
+ return t;
+}