summaryrefslogtreecommitdiff
path: root/src/mesh/assimp-master/port/PyAssimp
diff options
context:
space:
mode:
Diffstat (limited to 'src/mesh/assimp-master/port/PyAssimp')
-rw-r--r--src/mesh/assimp-master/port/PyAssimp/3d_viewer_screenshot.pngbin51610 -> 0 bytes
-rw-r--r--src/mesh/assimp-master/port/PyAssimp/README.md86
-rw-r--r--src/mesh/assimp-master/port/PyAssimp/README.rst93
-rw-r--r--src/mesh/assimp-master/port/PyAssimp/gen/materialgen.py96
-rw-r--r--src/mesh/assimp-master/port/PyAssimp/gen/structsgen.py290
-rw-r--r--src/mesh/assimp-master/port/PyAssimp/pyassimp/__init__.py1
-rw-r--r--src/mesh/assimp-master/port/PyAssimp/pyassimp/core.py556
-rw-r--r--src/mesh/assimp-master/port/PyAssimp/pyassimp/errors.py11
-rw-r--r--src/mesh/assimp-master/port/PyAssimp/pyassimp/formats.py41
-rw-r--r--src/mesh/assimp-master/port/PyAssimp/pyassimp/helper.py283
-rw-r--r--src/mesh/assimp-master/port/PyAssimp/pyassimp/material.py89
-rw-r--r--src/mesh/assimp-master/port/PyAssimp/pyassimp/postprocess.py530
-rw-r--r--src/mesh/assimp-master/port/PyAssimp/pyassimp/structs.py1135
-rwxr-xr-xsrc/mesh/assimp-master/port/PyAssimp/scripts/3d_viewer.py1318
-rwxr-xr-xsrc/mesh/assimp-master/port/PyAssimp/scripts/3d_viewer_py3.py1316
-rw-r--r--src/mesh/assimp-master/port/PyAssimp/scripts/README.md13
-rwxr-xr-xsrc/mesh/assimp-master/port/PyAssimp/scripts/fixed_pipeline_3d_viewer.py372
-rwxr-xr-xsrc/mesh/assimp-master/port/PyAssimp/scripts/quicktest.py53
-rwxr-xr-xsrc/mesh/assimp-master/port/PyAssimp/scripts/sample.py89
-rw-r--r--src/mesh/assimp-master/port/PyAssimp/scripts/transformations.py1705
-rw-r--r--src/mesh/assimp-master/port/PyAssimp/setup.py26
21 files changed, 0 insertions, 8103 deletions
diff --git a/src/mesh/assimp-master/port/PyAssimp/3d_viewer_screenshot.png b/src/mesh/assimp-master/port/PyAssimp/3d_viewer_screenshot.png
deleted file mode 100644
index 2031faf..0000000
--- a/src/mesh/assimp-master/port/PyAssimp/3d_viewer_screenshot.png
+++ /dev/null
Binary files differ
diff --git a/src/mesh/assimp-master/port/PyAssimp/README.md b/src/mesh/assimp-master/port/PyAssimp/README.md
deleted file mode 100644
index c9944f7..0000000
--- a/src/mesh/assimp-master/port/PyAssimp/README.md
+++ /dev/null
@@ -1,86 +0,0 @@
-PyAssimp Readme
-===============
-
-A simple Python wrapper for Assimp using `ctypes` to access the library.
-Requires Python >= 2.6.
-
-Python 3 support is mostly here, but not well tested.
-
-Note that pyassimp is not complete. Many ASSIMP features are missing.
-
-USAGE
------
-
-### Complete example: 3D viewer
-
-`pyassimp` comes with a simple 3D viewer that shows how to load and display a 3D
-model using a shader-based OpenGL pipeline.
-
-![Screenshot](3d_viewer_screenshot.png)
-
-To use it, from within `/port/PyAssimp`:
-
-```console
-$ cd scripts
-$ python ./3D-viewer <path to your model>
-```
-
-You can use this code as starting point in your applications.
-
-### Writing your own code
-
-To get started with `pyassimp`, examine the simpler `sample.py` script in `scripts/`,
-which illustrates the basic usage. All Assimp data structures are wrapped using
-`ctypes`. All the data+length fields in Assimp's data structures (such as
-`aiMesh::mNumVertices`, `aiMesh::mVertices`) are replaced by simple python
-lists, so you can call `len()` on them to get their respective size and access
-members using `[]`.
-
-For example, to load a file named `hello.3ds` and print the first
-vertex of the first mesh, you would do (proper error handling
-substituted by assertions ...):
-
-```python
-
-from pyassimp import load
-with load('hello.3ds') as scene:
-
- assert len(scene.meshes)
- mesh = scene.meshes[0]
-
- assert len(mesh.vertices)
- print(mesh.vertices[0])
-
-```
-
-Another example to list the 'top nodes' in a
-scene:
-
-```python
-
-from pyassimp import load
-with load('hello.3ds') as scene:
-
- for c in scene.rootnode.children:
- print(str(c))
-
-```
-
-INSTALL
--------
-
-Install `pyassimp` by running:
-
-```console
-$ python setup.py install
-```
-
-PyAssimp requires a assimp dynamic library (`DLL` on windows,
-`.so` on linux, `.dynlib` on macOS) in order to work. The default search directories are:
- - the current directory
- - on linux additionally: `/usr/lib`, `/usr/local/lib`,
- `/usr/lib/x86_64-linux-gnu`
-
-To build that library, refer to the Assimp master `INSTALL`
-instructions. To look in more places, edit `./pyassimp/helper.py`.
-There's an `additional_dirs` list waiting for your entries.
diff --git a/src/mesh/assimp-master/port/PyAssimp/README.rst b/src/mesh/assimp-master/port/PyAssimp/README.rst
deleted file mode 100644
index 03b7968..0000000
--- a/src/mesh/assimp-master/port/PyAssimp/README.rst
+++ /dev/null
@@ -1,93 +0,0 @@
-PyAssimp: Python bindings for libassimp
-=======================================
-
-A simple Python wrapper for Assimp using ``ctypes`` to access the
-library. Requires Python >= 2.6.
-
-Python 3 support is mostly here, but not well tested.
-
-Note that pyassimp is not complete. Many ASSIMP features are missing.
-
-USAGE
------
-
-Complete example: 3D viewer
-~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
-``pyassimp`` comes with a simple 3D viewer that shows how to load and
-display a 3D model using a shader-based OpenGL pipeline.
-
-.. figure:: 3d_viewer_screenshot.png
- :alt: Screenshot
-
- Screenshot
-
-To use it, from within ``/port/PyAssimp``:
-
-::
-
- $ cd scripts
- $ python ./3D-viewer <path to your model>
-
-You can use this code as starting point in your applications.
-
-Writing your own code
-~~~~~~~~~~~~~~~~~~~~~
-
-To get started with ``pyassimp``, examine the simpler ``sample.py``
-script in ``scripts/``, which illustrates the basic usage. All Assimp
-data structures are wrapped using ``ctypes``. All the data+length fields
-in Assimp's data structures (such as ``aiMesh::mNumVertices``,
-``aiMesh::mVertices``) are replaced by simple python lists, so you can
-call ``len()`` on them to get their respective size and access members
-using ``[]``.
-
-For example, to load a file named ``hello.3ds`` and print the first
-vertex of the first mesh, you would do (proper error handling
-substituted by assertions ...):
-
-.. code:: python
-
-
- from pyassimp import load
- with load('hello.3ds') as scene:
-
- assert len(scene.meshes)
- mesh = scene.meshes[0]
-
- assert len(mesh.vertices)
- print(mesh.vertices[0])
-
-
-Another example to list the 'top nodes' in a scene:
-
-.. code:: python
-
-
- from pyassimp import load
- with load('hello.3ds') as scene:
-
- for c in scene.rootnode.children:
- print(str(c))
-
-
-INSTALL
--------
-
-Install ``pyassimp`` by running:
-
-::
-
- $ python setup.py install
-
-PyAssimp requires a assimp dynamic library (``DLL`` on windows, ``.so``
-on linux, ``.dynlib`` on macOS) in order to work. The default search
-directories are:
-
-- the current directory
-- on linux additionally: ``/usr/lib``, ``/usr/local/lib``,
- ``/usr/lib/x86_64-linux-gnu``
-
-To build that library, refer to the Assimp master ``INSTALL``
-instructions. To look in more places, edit ``./pyassimp/helper.py``.
-There's an ``additional_dirs`` list waiting for your entries.
diff --git a/src/mesh/assimp-master/port/PyAssimp/gen/materialgen.py b/src/mesh/assimp-master/port/PyAssimp/gen/materialgen.py
deleted file mode 100644
index ef32d8e..0000000
--- a/src/mesh/assimp-master/port/PyAssimp/gen/materialgen.py
+++ /dev/null
@@ -1,96 +0,0 @@
-#!/usr/bin/env python
-# -*- Coding: UTF-8 -*-
-
-# ---------------------------------------------------------------------------
-# Open Asset Import Library (ASSIMP)
-# ---------------------------------------------------------------------------
-#
-# Copyright (c) 2006-2020, ASSIMP Development Team
-#
-# All rights reserved.
-#
-# Redistribution and use of this software in source and binary forms,
-# with or without modification, are permitted provided that the following
-# conditions are met:
-#
-# * Redistributions of source code must retain the above
-# copyright notice, this list of conditions and the
-# following disclaimer.
-#
-# * Redistributions in binary form must reproduce the above
-# copyright notice, this list of conditions and the
-# following disclaimer in the documentation and/or other
-# materials provided with the distribution.
-#
-# * Neither the name of the ASSIMP team, nor the names of its
-# contributors may be used to endorse or promote products
-# derived from this software without specific prior
-# written permission of the ASSIMP Development Team.
-#
-# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
-# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
-# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
-# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
-# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-# ---------------------------------------------------------------------------
-
-"""Update PyAssimp's texture type constants C/C++ headers.
-
-This script is meant to be executed in the source tree, directly from
-port/PyAssimp/gen
-"""
-
-import os
-import re
-
-REenumTextureType = re.compile(r''
- r'enum\saiTextureType' # enum aiTextureType
- r'[^{]*?\{' # {
- r'(?P<code>.*?)' # code
- r'\};' # };
- , re.IGNORECASE + re.DOTALL + re.MULTILINE)
-
-# Replace comments
-RErpcom = re.compile(r''
- r'\s*(/\*+\s|\*+/|\B\*\s?|///?!?)' # /**
- r'(?P<line>.*?)' # * line
- , re.IGNORECASE + re.DOTALL)
-
-# Remove trailing commas
-RErmtrailcom = re.compile(r',$', re.IGNORECASE + re.DOTALL)
-
-# Remove #ifdef __cplusplus
-RErmifdef = re.compile(r''
- r'#ifndef SWIG' # #ifndef SWIG
- r'(?P<code>.*)' # code
- r'#endif(\s*//\s*!?\s*SWIG)*' # #endif
- , re.IGNORECASE + re.DOTALL)
-
-path = '../../../include/assimp'
-
-files = os.listdir (path)
-enumText = ''
-for fileName in files:
- if fileName.endswith('.h'):
- text = open(os.path.join(path, fileName)).read()
- for enum in REenumTextureType.findall(text):
- enumText = enum
-
-text = ''
-for line in enumText.split('\n'):
- line = line.lstrip().rstrip()
- line = RErmtrailcom.sub('', line)
- text += RErpcom.sub('# \g<line>', line) + '\n'
-text = RErmifdef.sub('', text)
-
-file = open('material.py', 'w')
-file.write(text)
-file.close()
-
-print("Generation done. You can now review the file 'material.py' and merge it.")
diff --git a/src/mesh/assimp-master/port/PyAssimp/gen/structsgen.py b/src/mesh/assimp-master/port/PyAssimp/gen/structsgen.py
deleted file mode 100644
index f34ec19..0000000
--- a/src/mesh/assimp-master/port/PyAssimp/gen/structsgen.py
+++ /dev/null
@@ -1,290 +0,0 @@
-#!/usr/bin/env python
-# -*- Coding: UTF-8 -*-
-
-# ---------------------------------------------------------------------------
-# Open Asset Import Library (ASSIMP)
-# ---------------------------------------------------------------------------
-#
-# Copyright (c) 2006-2020, ASSIMP Development Team
-#
-# All rights reserved.
-#
-# Redistribution and use of this software in source and binary forms,
-# with or without modification, are permitted provided that the following
-# conditions are met:
-#
-# * Redistributions of source code must retain the above
-# copyright notice, this list of conditions and the
-# following disclaimer.
-#
-# * Redistributions in binary form must reproduce the above
-# copyright notice, this list of conditions and the
-# following disclaimer in the documentation and/or other
-# materials provided with the distribution.
-#
-# * Neither the name of the ASSIMP team, nor the names of its
-# contributors may be used to endorse or promote products
-# derived from this software without specific prior
-# written permission of the ASSIMP Development Team.
-#
-# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
-# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
-# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
-# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
-# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-# ---------------------------------------------------------------------------
-
-"""Update PyAssimp's data structures to keep up with the
-C/C++ headers.
-
-This script is meant to be executed in the source tree, directly from
-port/PyAssimp/gen
-"""
-
-import os
-import re
-
-#==[regexps]=================================================
-
-# Clean desc
-REdefine = re.compile(r''
- r'(?P<desc>)' # /** *desc */
- r'#\s*define\s(?P<name>[^(\n]+?)\s(?P<code>.+)$' # #define name value
- , re.MULTILINE)
-
-# Get structs
-REstructs = re.compile(r''
- #r'//\s?[\-]*\s(?P<desc>.*?)\*/\s' # /** *desc */
- #r'//\s?[\-]*(?P<desc>.*?)\*/(?:.*?)' # garbage
- r'//\s?[\-]*\s(?P<desc>.*?)\*/\W*?' # /** *desc */
- r'struct\s(?:ASSIMP_API\s)?(?P<name>[a-z][a-z0-9_]\w+\b)' # struct name
- r'[^{]*?\{' # {
- r'(?P<code>.*?)' # code
- r'\}\s*(PACK_STRUCT)?;' # };
- , re.IGNORECASE + re.DOTALL + re.MULTILINE)
-
-# Clean desc
-REdesc = re.compile(r''
- r'^\s*?([*]|/\*\*)(?P<line>.*?)' # * line
- , re.IGNORECASE + re.DOTALL + re.MULTILINE)
-
-# Remove #ifdef __cplusplus
-RErmifdef = re.compile(r''
- r'#ifdef __cplusplus' # #ifdef __cplusplus
- r'(?P<code>.*)' # code
- r'#endif(\s*//\s*!?\s*__cplusplus)*' # #endif
- , re.IGNORECASE + re.DOTALL)
-
-# Replace comments
-RErpcom = re.compile(r''
- r'\s*(/\*+\s|\*+/|\B\*\s|///?!?)' # /**
- r'(?P<line>.*?)' # * line
- , re.IGNORECASE + re.DOTALL)
-
-# Restructure
-def GetType(type, prefix='c_'):
- t = type
- while t.endswith('*'):
- t = t[:-1]
- if t[:5] == 'const':
- t = t[5:]
-
- # skip some types
- if t in skiplist:
- return None
-
- t = t.strip()
- types = {'unsigned int':'uint', 'unsigned char':'ubyte',}
- if t in types:
- t = types[t]
- t = prefix + t
- while type.endswith('*'):
- t = "POINTER(" + t + ")"
- type = type[:-1]
- return t
-
-def restructure( match ):
- type = match.group("type")
- if match.group("struct") == "":
- type = GetType(type)
- elif match.group("struct") == "C_ENUM ":
- type = "c_uint"
- else:
- type = GetType(type[2:], '')
- if type is None:
- return ''
- if match.group("index"):
- type = type + "*" + match.group("index")
-
- result = ""
- for name in match.group("name").split(','):
- result += "(\"" + name.strip() + "\", "+ type + "),"
-
- return result
-
-RErestruc = re.compile(r''
- r'(?P<struct>C_STRUCT\s|C_ENUM\s|)' # [C_STRUCT]
- r'(?P<type>\w+\s?\w+?[*]*)\s' # type
- #r'(?P<name>\w+)' # name
- r'(?P<name>\w+|[a-z0-9_, ]+)' # name
- r'(:?\[(?P<index>\w+)\])?;' # []; (optional)
- , re.DOTALL)
-#==[template]================================================
-template = """
-class $NAME$(Structure):
- \"\"\"
-$DESCRIPTION$
- \"\"\"
-$DEFINES$
- _fields_ = [
- $FIELDS$
- ]
-"""
-
-templateSR = """
-class $NAME$(Structure):
- \"\"\"
-$DESCRIPTION$
- \"\"\"
-$DEFINES$
-
-$NAME$._fields_ = [
- $FIELDS$
- ]
-"""
-
-skiplist = ("FileIO", "File", "locateFromAssimpHeap",'LogStream','MeshAnim','AnimMesh')
-
-#============================================================
-def Structify(fileName):
- file = open(fileName, 'r')
- text = file.read()
- result = []
-
- # Get defines.
- defs = REdefine.findall(text)
- # Create defines
- defines = "\n"
- for define in defs:
- # Clean desc
- desc = REdesc.sub('', define[0])
- # Replace comments
- desc = RErpcom.sub('#\g<line>', desc)
- defines += desc
- if len(define[2].strip()):
- # skip non-integral defines, we can support them right now
- try:
- int(define[2],0)
- except:
- continue
- defines += " "*4 + define[1] + " = " + define[2] + "\n"
-
-
- # Get structs
- rs = REstructs.finditer(text)
-
- fileName = os.path.basename(fileName)
- print fileName
- for r in rs:
- name = r.group('name')[2:]
- desc = r.group('desc')
-
- # Skip some structs
- if name in skiplist:
- continue
-
- text = r.group('code')
-
- # Clean desc
- desc = REdesc.sub('', desc)
-
- desc = "See '"+ fileName +"' for details." #TODO
-
- # Remove #ifdef __cplusplus
- text = RErmifdef.sub('', text)
-
- # Whether the struct contains more than just POD
- primitive = text.find('C_STRUCT') == -1
-
- # Restructure
- text = RErestruc.sub(restructure, text)
- # Replace comments
- text = RErpcom.sub('# \g<line>', text)
- text = text.replace("),#", "),\n#")
- text = text.replace("#", "\n#")
- text = "".join([l for l in text.splitlines(True) if not l.strip().endswith("#")]) # remove empty comment lines
-
- # Whether it's selfreferencing: ex. struct Node { Node* parent; };
- selfreferencing = text.find('POINTER('+name+')') != -1
-
- complex = name == "Scene"
-
- # Create description
- description = ""
- for line in desc.split('\n'):
- description += " "*4 + line.strip() + "\n"
- description = description.rstrip()
-
- # Create fields
- fields = ""
- for line in text.split('\n'):
- fields += " "*12 + line.strip() + "\n"
- fields = fields.strip()
-
- if selfreferencing:
- templ = templateSR
- else:
- templ = template
-
- # Put it all together
- text = templ.replace('$NAME$', name)
- text = text.replace('$DESCRIPTION$', description)
- text = text.replace('$FIELDS$', fields)
-
- if ((name.lower() == fileName.split('.')[0][2:].lower()) and (name != 'Material')) or name == "String":
- text = text.replace('$DEFINES$', defines)
- else:
- text = text.replace('$DEFINES$', '')
-
-
- result.append((primitive, selfreferencing, complex, text))
-
- return result
-
-text = "#-*- coding: UTF-8 -*-\n\n"
-text += "from ctypes import POINTER, c_int, c_uint, c_size_t, c_char, c_float, Structure, c_char_p, c_double, c_ubyte\n\n"
-
-structs1 = ""
-structs2 = ""
-structs3 = ""
-structs4 = ""
-
-path = '../../../include/assimp'
-files = os.listdir (path)
-#files = ["aiScene.h", "aiTypes.h"]
-for fileName in files:
- if fileName.endswith('.h'):
- for struct in Structify(os.path.join(path, fileName)):
- primitive, sr, complex, struct = struct
- if primitive:
- structs1 += struct
- elif sr:
- structs2 += struct
- elif complex:
- structs4 += struct
- else:
- structs3 += struct
-
-text += structs1 + structs2 + structs3 + structs4
-
-file = open('structs.py', 'w')
-file.write(text)
-file.close()
-
-print("Generation done. You can now review the file 'structs.py' and merge it.")
diff --git a/src/mesh/assimp-master/port/PyAssimp/pyassimp/__init__.py b/src/mesh/assimp-master/port/PyAssimp/pyassimp/__init__.py
deleted file mode 100644
index bb67a43..0000000
--- a/src/mesh/assimp-master/port/PyAssimp/pyassimp/__init__.py
+++ /dev/null
@@ -1 +0,0 @@
-from .core import *
diff --git a/src/mesh/assimp-master/port/PyAssimp/pyassimp/core.py b/src/mesh/assimp-master/port/PyAssimp/pyassimp/core.py
deleted file mode 100644
index 35ad882..0000000
--- a/src/mesh/assimp-master/port/PyAssimp/pyassimp/core.py
+++ /dev/null
@@ -1,556 +0,0 @@
-"""
-PyAssimp
-
-This is the main-module of PyAssimp.
-"""
-
-import sys
-if sys.version_info < (2,6):
- raise RuntimeError('pyassimp: need python 2.6 or newer')
-
-# xrange was renamed range in Python 3 and the original range from Python 2 was removed.
-# To keep compatibility with both Python 2 and 3, xrange is set to range for version 3.0 and up.
-if sys.version_info >= (3,0):
- xrange = range
-
-
-try:
- import numpy
-except ImportError:
- numpy = None
-import logging
-import ctypes
-from contextlib import contextmanager
-logger = logging.getLogger("pyassimp")
-# attach default null handler to logger so it doesn't complain
-# even if you don't attach another handler to logger
-logger.addHandler(logging.NullHandler())
-
-from . import structs
-from . import helper
-from . import postprocess
-from .errors import AssimpError
-
-class AssimpLib(object):
- """
- Assimp-Singleton
- """
- load, load_mem, export, export_blob, release, dll = helper.search_library()
-_assimp_lib = AssimpLib()
-
-def make_tuple(ai_obj, type = None):
- res = None
-
- #notes:
- # ai_obj._fields_ = [ ("attr", c_type), ... ]
- # getattr(ai_obj, e[0]).__class__ == float
-
- if isinstance(ai_obj, structs.Matrix4x4):
- if numpy:
- res = numpy.array([getattr(ai_obj, e[0]) for e in ai_obj._fields_]).reshape((4,4))
- #import pdb;pdb.set_trace()
- else:
- res = [getattr(ai_obj, e[0]) for e in ai_obj._fields_]
- res = [res[i:i+4] for i in xrange(0,16,4)]
- elif isinstance(ai_obj, structs.Matrix3x3):
- if numpy:
- res = numpy.array([getattr(ai_obj, e[0]) for e in ai_obj._fields_]).reshape((3,3))
- else:
- res = [getattr(ai_obj, e[0]) for e in ai_obj._fields_]
- res = [res[i:i+3] for i in xrange(0,9,3)]
- else:
- if numpy:
- res = numpy.array([getattr(ai_obj, e[0]) for e in ai_obj._fields_])
- else:
- res = [getattr(ai_obj, e[0]) for e in ai_obj._fields_]
-
- return res
-
-# Returns unicode object for Python 2, and str object for Python 3.
-def _convert_assimp_string(assimp_string):
- if sys.version_info >= (3, 0):
- return str(assimp_string.data, errors='ignore')
- else:
- return unicode(assimp_string.data, errors='ignore')
-
-# It is faster and more correct to have an init function for each assimp class
-def _init_face(aiFace):
- aiFace.indices = [aiFace.mIndices[i] for i in range(aiFace.mNumIndices)]
-assimp_struct_inits = { structs.Face : _init_face }
-
-def call_init(obj, caller = None):
- if helper.hasattr_silent(obj,'contents'): #pointer
- _init(obj.contents, obj, caller)
- else:
- _init(obj,parent=caller)
-
-def _is_init_type(obj):
-
- if obj and helper.hasattr_silent(obj,'contents'): #pointer
- return _is_init_type(obj[0])
- # null-pointer case that arises when we reach a mesh attribute
- # like mBitangents which use mNumVertices rather than mNumBitangents
- # so it breaks the 'is iterable' check.
- # Basically:
- # FIXME!
- elif not bool(obj):
- return False
- tname = obj.__class__.__name__
- return not (tname[:2] == 'c_' or tname == 'Structure' \
- or tname == 'POINTER') and not isinstance(obj, (int, str, bytes))
-
-def _init(self, target = None, parent = None):
- """
- Custom initialize() for C structs, adds safely accessible member functionality.
-
- :param target: set the object which receive the added methods. Useful when manipulating
- pointers, to skip the intermediate 'contents' deferencing.
- """
- if not target:
- target = self
-
- dirself = dir(self)
- for m in dirself:
-
- if m.startswith("_"):
- continue
-
- if m.startswith('mNum'):
- if 'm' + m[4:] in dirself:
- continue # will be processed later on
- else:
- name = m[1:].lower()
-
- obj = getattr(self, m)
- setattr(target, name, obj)
- continue
-
- if m == 'mName':
- target.name = str(_convert_assimp_string(self.mName))
- target.__class__.__repr__ = lambda x: str(x.__class__) + "(" + getattr(x, 'name','') + ")"
- target.__class__.__str__ = lambda x: getattr(x, 'name', '')
- continue
-
- name = m[1:].lower()
-
- obj = getattr(self, m)
-
- # Create tuples
- if isinstance(obj, structs.assimp_structs_as_tuple):
- setattr(target, name, make_tuple(obj))
- logger.debug(str(self) + ": Added array " + str(getattr(target, name)) + " as self." + name.lower())
- continue
-
- if m.startswith('m') and len(m) > 1 and m[1].upper() == m[1]:
-
- if name == "parent":
- setattr(target, name, parent)
- logger.debug("Added a parent as self." + name)
- continue
-
- if helper.hasattr_silent(self, 'mNum' + m[1:]):
-
- length = getattr(self, 'mNum' + m[1:])
-
- # -> special case: properties are
- # stored as a dict.
- if m == 'mProperties':
- setattr(target, name, _get_properties(obj, length))
- continue
-
-
- if not length: # empty!
- setattr(target, name, [])
- logger.debug(str(self) + ": " + name + " is an empty list.")
- continue
-
-
- try:
- if obj._type_ in structs.assimp_structs_as_tuple:
- if numpy:
- setattr(target, name, numpy.array([make_tuple(obj[i]) for i in range(length)], dtype=numpy.float32))
-
- logger.debug(str(self) + ": Added an array of numpy arrays (type "+ str(type(obj)) + ") as self." + name)
- else:
- setattr(target, name, [make_tuple(obj[i]) for i in range(length)])
-
- logger.debug(str(self) + ": Added a list of lists (type "+ str(type(obj)) + ") as self." + name)
-
- else:
- setattr(target, name, [obj[i] for i in range(length)]) #TODO: maybe not necessary to recreate an array?
-
- logger.debug(str(self) + ": Added list of " + str(obj) + " " + name + " as self." + name + " (type: " + str(type(obj)) + ")")
-
- # initialize array elements
- try:
- init = assimp_struct_inits[type(obj[0])]
- except KeyError:
- if _is_init_type(obj[0]):
- for e in getattr(target, name):
- call_init(e, target)
- else:
- for e in getattr(target, name):
- init(e)
-
-
- except IndexError:
- logger.error("in " + str(self) +" : mismatch between mNum" + name + " and the actual amount of data in m" + name + ". This may be due to version mismatch between libassimp and pyassimp. Quitting now.")
- sys.exit(1)
-
- except ValueError as e:
-
- logger.error("In " + str(self) + "->" + name + ": " + str(e) + ". Quitting now.")
- if "setting an array element with a sequence" in str(e):
- logger.error("Note that pyassimp does not currently "
- "support meshes with mixed triangles "
- "and quads. Try to load your mesh with"
- " a post-processing to triangulate your"
- " faces.")
- raise e
-
-
-
- else: # starts with 'm' but not iterable
- setattr(target, m, obj)
- logger.debug("Added " + name + " as self." + name + " (type: " + str(type(obj)) + ")")
-
- if _is_init_type(obj):
- call_init(obj, target)
-
- if isinstance(self, structs.Mesh):
- _finalize_mesh(self, target)
-
- if isinstance(self, structs.Texture):
- _finalize_texture(self, target)
-
- if isinstance(self, structs.Metadata):
- _finalize_metadata(self, target)
-
-
- return self
-
-
-def pythonize_assimp(type, obj, scene):
- """ This method modify the Assimp data structures
- to make them easier to work with in Python.
-
- Supported operations:
- - MESH: replace a list of mesh IDs by reference to these meshes
- - ADDTRANSFORMATION: add a reference to an object's transformation taken from their associated node.
-
- :param type: the type of modification to operate (cf above)
- :param obj: the input object to modify
- :param scene: a reference to the whole scene
- """
-
- if type == "MESH":
- meshes = []
- for i in obj:
- meshes.append(scene.meshes[i])
- return meshes
-
- if type == "ADDTRANSFORMATION":
- def getnode(node, name):
- if node.name == name: return node
- for child in node.children:
- n = getnode(child, name)
- if n: return n
-
- node = getnode(scene.rootnode, obj.name)
- if not node:
- raise AssimpError("Object " + str(obj) + " has no associated node!")
- setattr(obj, "transformation", node.transformation)
-
-def recur_pythonize(node, scene):
- '''
- Recursively call pythonize_assimp on
- nodes tree to apply several post-processing to
- pythonize the assimp datastructures.
- '''
- node.meshes = pythonize_assimp("MESH", node.meshes, scene)
- for mesh in node.meshes:
- mesh.material = scene.materials[mesh.materialindex]
- for cam in scene.cameras:
- pythonize_assimp("ADDTRANSFORMATION", cam, scene)
- for c in node.children:
- recur_pythonize(c, scene)
-
-def release(scene):
- '''
- Release resources of a loaded scene.
- '''
- _assimp_lib.release(ctypes.pointer(scene))
-
-@contextmanager
-def load(filename,
- file_type = None,
- processing = postprocess.aiProcess_Triangulate):
- '''
- Load a model into a scene. On failure throws AssimpError.
-
- Arguments
- ---------
- filename: Either a filename or a file object to load model from.
- If a file object is passed, file_type MUST be specified
- Otherwise Assimp has no idea which importer to use.
- This is named 'filename' so as to not break legacy code.
- processing: assimp postprocessing parameters. Verbose keywords are imported
- from postprocessing, and the parameters can be combined bitwise to
- generate the final processing value. Note that the default value will
- triangulate quad faces. Example of generating other possible values:
- processing = (pyassimp.postprocess.aiProcess_Triangulate |
- pyassimp.postprocess.aiProcess_OptimizeMeshes)
- file_type: string of file extension, such as 'stl'
-
- Returns
- ---------
- Scene object with model data
- '''
-
- if hasattr(filename, 'read'):
- # This is the case where a file object has been passed to load.
- # It is calling the following function:
- # const aiScene* aiImportFileFromMemory(const char* pBuffer,
- # unsigned int pLength,
- # unsigned int pFlags,
- # const char* pHint)
- if file_type is None:
- raise AssimpError('File type must be specified when passing file objects!')
- data = filename.read()
- model = _assimp_lib.load_mem(data,
- len(data),
- processing,
- file_type)
- else:
- # a filename string has been passed
- model = _assimp_lib.load(filename.encode(sys.getfilesystemencoding()), processing)
-
- if not model:
- raise AssimpError('Could not import file!')
- scene = _init(model.contents)
- recur_pythonize(scene.rootnode, scene)
- try:
- yield scene
- finally:
- release(scene)
-
-def export(scene,
- filename,
- file_type = None,
- processing = postprocess.aiProcess_Triangulate):
- '''
- Export a scene. On failure throws AssimpError.
-
- Arguments
- ---------
- scene: scene to export.
- filename: Filename that the scene should be exported to.
- file_type: string of file exporter to use. For example "collada".
- processing: assimp postprocessing parameters. Verbose keywords are imported
- from postprocessing, and the parameters can be combined bitwise to
- generate the final processing value. Note that the default value will
- triangulate quad faces. Example of generating other possible values:
- processing = (pyassimp.postprocess.aiProcess_Triangulate |
- pyassimp.postprocess.aiProcess_OptimizeMeshes)
-
- '''
-
- exportStatus = _assimp_lib.export(ctypes.pointer(scene), file_type.encode("ascii"), filename.encode(sys.getfilesystemencoding()), processing)
-
- if exportStatus != 0:
- raise AssimpError('Could not export scene!')
-
-def export_blob(scene,
- file_type = None,
- processing = postprocess.aiProcess_Triangulate):
- '''
- Export a scene and return a blob in the correct format. On failure throws AssimpError.
-
- Arguments
- ---------
- scene: scene to export.
- file_type: string of file exporter to use. For example "collada".
- processing: assimp postprocessing parameters. Verbose keywords are imported
- from postprocessing, and the parameters can be combined bitwise to
- generate the final processing value. Note that the default value will
- triangulate quad faces. Example of generating other possible values:
- processing = (pyassimp.postprocess.aiProcess_Triangulate |
- pyassimp.postprocess.aiProcess_OptimizeMeshes)
- Returns
- ---------
- Pointer to structs.ExportDataBlob
- '''
- exportBlobPtr = _assimp_lib.export_blob(ctypes.pointer(scene), file_type.encode("ascii"), processing)
-
- if exportBlobPtr == 0:
- raise AssimpError('Could not export scene to blob!')
- return exportBlobPtr
-
-def _finalize_texture(tex, target):
- setattr(target, "achformathint", tex.achFormatHint)
- if numpy:
- data = numpy.array([make_tuple(getattr(tex, "pcData")[i]) for i in range(tex.mWidth * tex.mHeight)])
- else:
- data = [make_tuple(getattr(tex, "pcData")[i]) for i in range(tex.mWidth * tex.mHeight)]
- setattr(target, "data", data)
-
-def _finalize_mesh(mesh, target):
- """ Building of meshes is a bit specific.
-
- We override here the various datasets that can
- not be process as regular fields.
-
- For instance, the length of the normals array is
- mNumVertices (no mNumNormals is available)
- """
- nb_vertices = getattr(mesh, "mNumVertices")
-
- def fill(name):
- mAttr = getattr(mesh, name)
- if numpy:
- if mAttr:
- data = numpy.array([make_tuple(getattr(mesh, name)[i]) for i in range(nb_vertices)], dtype=numpy.float32)
- setattr(target, name[1:].lower(), data)
- else:
- setattr(target, name[1:].lower(), numpy.array([], dtype="float32"))
- else:
- if mAttr:
- data = [make_tuple(getattr(mesh, name)[i]) for i in range(nb_vertices)]
- setattr(target, name[1:].lower(), data)
- else:
- setattr(target, name[1:].lower(), [])
-
- def fillarray(name):
- mAttr = getattr(mesh, name)
-
- data = []
- for index, mSubAttr in enumerate(mAttr):
- if mSubAttr:
- data.append([make_tuple(getattr(mesh, name)[index][i]) for i in range(nb_vertices)])
-
- if numpy:
- setattr(target, name[1:].lower(), numpy.array(data, dtype=numpy.float32))
- else:
- setattr(target, name[1:].lower(), data)
-
- fill("mNormals")
- fill("mTangents")
- fill("mBitangents")
-
- fillarray("mColors")
- fillarray("mTextureCoords")
-
- # prepare faces
- if numpy:
- faces = numpy.array([f.indices for f in target.faces], dtype=numpy.int32)
- else:
- faces = [f.indices for f in target.faces]
- setattr(target, 'faces', faces)
-
-def _init_metadata_entry(entry):
- entry.type = entry.mType
- if entry.type == structs.MetadataEntry.AI_BOOL:
- entry.data = ctypes.cast(entry.mData, ctypes.POINTER(ctypes.c_bool)).contents.value
- elif entry.type == structs.MetadataEntry.AI_INT32:
- entry.data = ctypes.cast(entry.mData, ctypes.POINTER(ctypes.c_int32)).contents.value
- elif entry.type == structs.MetadataEntry.AI_UINT64:
- entry.data = ctypes.cast(entry.mData, ctypes.POINTER(ctypes.c_uint64)).contents.value
- elif entry.type == structs.MetadataEntry.AI_FLOAT:
- entry.data = ctypes.cast(entry.mData, ctypes.POINTER(ctypes.c_float)).contents.value
- elif entry.type == structs.MetadataEntry.AI_DOUBLE:
- entry.data = ctypes.cast(entry.mData, ctypes.POINTER(ctypes.c_double)).contents.value
- elif entry.type == structs.MetadataEntry.AI_AISTRING:
- assimp_string = ctypes.cast(entry.mData, ctypes.POINTER(structs.String)).contents
- entry.data = _convert_assimp_string(assimp_string)
- elif entry.type == structs.MetadataEntry.AI_AIVECTOR3D:
- assimp_vector = ctypes.cast(entry.mData, ctypes.POINTER(structs.Vector3D)).contents
- entry.data = make_tuple(assimp_vector)
-
- return entry
-
-def _finalize_metadata(metadata, target):
- """ Building the metadata object is a bit specific.
-
- Firstly, there are two separate arrays: one with metadata keys and one
- with metadata values, and there are no corresponding mNum* attributes,
- so the C arrays are not converted to Python arrays using the generic
- code in the _init function.
-
- Secondly, a metadata entry value has to be cast according to declared
- metadata entry type.
- """
- length = metadata.mNumProperties
- setattr(target, 'keys', [str(_convert_assimp_string(metadata.mKeys[i])) for i in range(length)])
- setattr(target, 'values', [_init_metadata_entry(metadata.mValues[i]) for i in range(length)])
-
-class PropertyGetter(dict):
- def __getitem__(self, key):
- semantic = 0
- if isinstance(key, tuple):
- key, semantic = key
-
- return dict.__getitem__(self, (key, semantic))
-
- def keys(self):
- for k in dict.keys(self):
- yield k[0]
-
- def __iter__(self):
- return self.keys()
-
- def items(self):
- for k, v in dict.items(self):
- yield k[0], v
-
-
-def _get_properties(properties, length):
- """
- Convenience Function to get the material properties as a dict
- and values in a python format.
- """
- result = {}
- #read all properties
- for p in [properties[i] for i in range(length)]:
- #the name
- p = p.contents
- key = str(_convert_assimp_string(p.mKey))
- key = (key.split('.')[1], p.mSemantic)
-
- #the data
- if p.mType == 1:
- arr = ctypes.cast(p.mData,
- ctypes.POINTER(ctypes.c_float * int(p.mDataLength/ctypes.sizeof(ctypes.c_float)))
- ).contents
- value = [x for x in arr]
- elif p.mType == 3: #string can't be an array
- value = _convert_assimp_string(ctypes.cast(p.mData, ctypes.POINTER(structs.MaterialPropertyString)).contents)
-
- elif p.mType == 4:
- arr = ctypes.cast(p.mData,
- ctypes.POINTER(ctypes.c_int * int(p.mDataLength/ctypes.sizeof(ctypes.c_int)))
- ).contents
- value = [x for x in arr]
- else:
- value = p.mData[:p.mDataLength]
-
- if len(value) == 1:
- [value] = value
-
- result[key] = value
-
- return PropertyGetter(result)
-
-def decompose_matrix(matrix):
- if not isinstance(matrix, structs.Matrix4x4):
- raise AssimpError("pyassimp.decompose_matrix failed: Not a Matrix4x4!")
-
- scaling = structs.Vector3D()
- rotation = structs.Quaternion()
- position = structs.Vector3D()
-
- _assimp_lib.dll.aiDecomposeMatrix(ctypes.pointer(matrix),
- ctypes.byref(scaling),
- ctypes.byref(rotation),
- ctypes.byref(position))
- return scaling._init(), rotation._init(), position._init()
-
diff --git a/src/mesh/assimp-master/port/PyAssimp/pyassimp/errors.py b/src/mesh/assimp-master/port/PyAssimp/pyassimp/errors.py
deleted file mode 100644
index e017b51..0000000
--- a/src/mesh/assimp-master/port/PyAssimp/pyassimp/errors.py
+++ /dev/null
@@ -1,11 +0,0 @@
-#-*- coding: UTF-8 -*-
-
-"""
-All possible errors.
-"""
-
-class AssimpError(BaseException):
- """
- If an internal error occurs.
- """
- pass
diff --git a/src/mesh/assimp-master/port/PyAssimp/pyassimp/formats.py b/src/mesh/assimp-master/port/PyAssimp/pyassimp/formats.py
deleted file mode 100644
index 5d454e5..0000000
--- a/src/mesh/assimp-master/port/PyAssimp/pyassimp/formats.py
+++ /dev/null
@@ -1,41 +0,0 @@
-FORMATS = ["CSM",
- "LWS",
- "B3D",
- "COB",
- "PLY",
- "IFC",
- "OFF",
- "SMD",
- "IRRMESH",
- "3D",
- "DAE",
- "MDL",
- "HMP",
- "TER",
- "WRL",
- "XML",
- "NFF",
- "AC",
- "OBJ",
- "3DS",
- "STL",
- "IRR",
- "Q3O",
- "Q3D",
- "MS3D",
- "Q3S",
- "ZGL",
- "MD2",
- "X",
- "BLEND",
- "XGL",
- "MD5MESH",
- "MAX",
- "LXO",
- "DXF",
- "BVH",
- "LWO",
- "NDO"]
-
-def available_formats():
- return FORMATS
diff --git a/src/mesh/assimp-master/port/PyAssimp/pyassimp/helper.py b/src/mesh/assimp-master/port/PyAssimp/pyassimp/helper.py
deleted file mode 100644
index 7c14f60..0000000
--- a/src/mesh/assimp-master/port/PyAssimp/pyassimp/helper.py
+++ /dev/null
@@ -1,283 +0,0 @@
-#-*- coding: UTF-8 -*-
-
-"""
-Some fancy helper functions.
-"""
-
-import os
-import ctypes
-import operator
-
-from distutils.sysconfig import get_python_lib
-import re
-import sys
-
-try: import numpy
-except ImportError: numpy = None
-
-import logging;logger = logging.getLogger("pyassimp")
-
-from .errors import AssimpError
-
-additional_dirs, ext_whitelist = [],[]
-
-# populate search directories and lists of allowed file extensions
-# depending on the platform we're running on.
-if os.name=='posix':
- additional_dirs.append('./')
- additional_dirs.append('/usr/lib/')
- additional_dirs.append('/usr/lib/x86_64-linux-gnu/')
- additional_dirs.append('/usr/lib/aarch64-linux-gnu/')
- additional_dirs.append('/usr/local/lib/')
-
- if 'LD_LIBRARY_PATH' in os.environ:
- additional_dirs.extend([item for item in os.environ['LD_LIBRARY_PATH'].split(':') if item])
-
- # check if running from anaconda.
- anaconda_keywords = ("conda", "continuum")
- if any(k in sys.version.lower() for k in anaconda_keywords):
- cur_path = get_python_lib()
- pattern = re.compile('.*\/lib\/')
- conda_lib = pattern.match(cur_path).group()
- logger.info("Adding Anaconda lib path:"+ conda_lib)
- additional_dirs.append(conda_lib)
-
- # note - this won't catch libassimp.so.N.n, but
- # currently there's always a symlink called
- # libassimp.so in /usr/local/lib.
- ext_whitelist.append('.so')
- # libassimp.dylib in /usr/local/lib
- ext_whitelist.append('.dylib')
-
-elif os.name=='nt':
- ext_whitelist.append('.dll')
- path_dirs = os.environ['PATH'].split(';')
- additional_dirs.extend(path_dirs)
-
-def vec2tuple(x):
- """ Converts a VECTOR3D to a Tuple """
- return (x.x, x.y, x.z)
-
-def transform(vector3, matrix4x4):
- """ Apply a transformation matrix on a 3D vector.
-
- :param vector3: array with 3 elements
- :param matrix4x4: 4x4 matrix
- """
- if numpy:
- return numpy.dot(matrix4x4, numpy.append(vector3, 1.))
- else:
- m0,m1,m2,m3 = matrix4x4; x,y,z = vector3
- return [
- m0[0]*x + m0[1]*y + m0[2]*z + m0[3],
- m1[0]*x + m1[1]*y + m1[2]*z + m1[3],
- m2[0]*x + m2[1]*y + m2[2]*z + m2[3],
- m3[0]*x + m3[1]*y + m3[2]*z + m3[3]
- ]
-
-def _inv(matrix4x4):
- m0,m1,m2,m3 = matrix4x4
-
- det = m0[3]*m1[2]*m2[1]*m3[0] - m0[2]*m1[3]*m2[1]*m3[0] - \
- m0[3]*m1[1]*m2[2]*m3[0] + m0[1]*m1[3]*m2[2]*m3[0] + \
- m0[2]*m1[1]*m2[3]*m3[0] - m0[1]*m1[2]*m2[3]*m3[0] - \
- m0[3]*m1[2]*m2[0]*m3[1] + m0[2]*m1[3]*m2[0]*m3[1] + \
- m0[3]*m1[0]*m2[2]*m3[1] - m0[0]*m1[3]*m2[2]*m3[1] - \
- m0[2]*m1[0]*m2[3]*m3[1] + m0[0]*m1[2]*m2[3]*m3[1] + \
- m0[3]*m1[1]*m2[0]*m3[2] - m0[1]*m1[3]*m2[0]*m3[2] - \
- m0[3]*m1[0]*m2[1]*m3[2] + m0[0]*m1[3]*m2[1]*m3[2] + \
- m0[1]*m1[0]*m2[3]*m3[2] - m0[0]*m1[1]*m2[3]*m3[2] - \
- m0[2]*m1[1]*m2[0]*m3[3] + m0[1]*m1[2]*m2[0]*m3[3] + \
- m0[2]*m1[0]*m2[1]*m3[3] - m0[0]*m1[2]*m2[1]*m3[3] - \
- m0[1]*m1[0]*m2[2]*m3[3] + m0[0]*m1[1]*m2[2]*m3[3]
-
- return[[( m1[2]*m2[3]*m3[1] - m1[3]*m2[2]*m3[1] + m1[3]*m2[1]*m3[2] - m1[1]*m2[3]*m3[2] - m1[2]*m2[1]*m3[3] + m1[1]*m2[2]*m3[3]) /det,
- ( m0[3]*m2[2]*m3[1] - m0[2]*m2[3]*m3[1] - m0[3]*m2[1]*m3[2] + m0[1]*m2[3]*m3[2] + m0[2]*m2[1]*m3[3] - m0[1]*m2[2]*m3[3]) /det,
- ( m0[2]*m1[3]*m3[1] - m0[3]*m1[2]*m3[1] + m0[3]*m1[1]*m3[2] - m0[1]*m1[3]*m3[2] - m0[2]*m1[1]*m3[3] + m0[1]*m1[2]*m3[3]) /det,
- ( m0[3]*m1[2]*m2[1] - m0[2]*m1[3]*m2[1] - m0[3]*m1[1]*m2[2] + m0[1]*m1[3]*m2[2] + m0[2]*m1[1]*m2[3] - m0[1]*m1[2]*m2[3]) /det],
- [( m1[3]*m2[2]*m3[0] - m1[2]*m2[3]*m3[0] - m1[3]*m2[0]*m3[2] + m1[0]*m2[3]*m3[2] + m1[2]*m2[0]*m3[3] - m1[0]*m2[2]*m3[3]) /det,
- ( m0[2]*m2[3]*m3[0] - m0[3]*m2[2]*m3[0] + m0[3]*m2[0]*m3[2] - m0[0]*m2[3]*m3[2] - m0[2]*m2[0]*m3[3] + m0[0]*m2[2]*m3[3]) /det,
- ( m0[3]*m1[2]*m3[0] - m0[2]*m1[3]*m3[0] - m0[3]*m1[0]*m3[2] + m0[0]*m1[3]*m3[2] + m0[2]*m1[0]*m3[3] - m0[0]*m1[2]*m3[3]) /det,
- ( m0[2]*m1[3]*m2[0] - m0[3]*m1[2]*m2[0] + m0[3]*m1[0]*m2[2] - m0[0]*m1[3]*m2[2] - m0[2]*m1[0]*m2[3] + m0[0]*m1[2]*m2[3]) /det],
- [( m1[1]*m2[3]*m3[0] - m1[3]*m2[1]*m3[0] + m1[3]*m2[0]*m3[1] - m1[0]*m2[3]*m3[1] - m1[1]*m2[0]*m3[3] + m1[0]*m2[1]*m3[3]) /det,
- ( m0[3]*m2[1]*m3[0] - m0[1]*m2[3]*m3[0] - m0[3]*m2[0]*m3[1] + m0[0]*m2[3]*m3[1] + m0[1]*m2[0]*m3[3] - m0[0]*m2[1]*m3[3]) /det,
- ( m0[1]*m1[3]*m3[0] - m0[3]*m1[1]*m3[0] + m0[3]*m1[0]*m3[1] - m0[0]*m1[3]*m3[1] - m0[1]*m1[0]*m3[3] + m0[0]*m1[1]*m3[3]) /det,
- ( m0[3]*m1[1]*m2[0] - m0[1]*m1[3]*m2[0] - m0[3]*m1[0]*m2[1] + m0[0]*m1[3]*m2[1] + m0[1]*m1[0]*m2[3] - m0[0]*m1[1]*m2[3]) /det],
- [( m1[2]*m2[1]*m3[0] - m1[1]*m2[2]*m3[0] - m1[2]*m2[0]*m3[1] + m1[0]*m2[2]*m3[1] + m1[1]*m2[0]*m3[2] - m1[0]*m2[1]*m3[2]) /det,
- ( m0[1]*m2[2]*m3[0] - m0[2]*m2[1]*m3[0] + m0[2]*m2[0]*m3[1] - m0[0]*m2[2]*m3[1] - m0[1]*m2[0]*m3[2] + m0[0]*m2[1]*m3[2]) /det,
- ( m0[2]*m1[1]*m3[0] - m0[1]*m1[2]*m3[0] - m0[2]*m1[0]*m3[1] + m0[0]*m1[2]*m3[1] + m0[1]*m1[0]*m3[2] - m0[0]*m1[1]*m3[2]) /det,
- ( m0[1]*m1[2]*m2[0] - m0[2]*m1[1]*m2[0] + m0[2]*m1[0]*m2[1] - m0[0]*m1[2]*m2[1] - m0[1]*m1[0]*m2[2] + m0[0]*m1[1]*m2[2]) /det]]
-
-def get_bounding_box(scene):
- bb_min = [1e10, 1e10, 1e10] # x,y,z
- bb_max = [-1e10, -1e10, -1e10] # x,y,z
- inv = numpy.linalg.inv if numpy else _inv
- return get_bounding_box_for_node(scene.rootnode, bb_min, bb_max, inv(scene.rootnode.transformation))
-
-def get_bounding_box_for_node(node, bb_min, bb_max, transformation):
-
- if numpy:
- transformation = numpy.dot(transformation, node.transformation)
- else:
- t0,t1,t2,t3 = transformation
- T0,T1,T2,T3 = node.transformation
- transformation = [ [
- t0[0]*T0[0] + t0[1]*T1[0] + t0[2]*T2[0] + t0[3]*T3[0],
- t0[0]*T0[1] + t0[1]*T1[1] + t0[2]*T2[1] + t0[3]*T3[1],
- t0[0]*T0[2] + t0[1]*T1[2] + t0[2]*T2[2] + t0[3]*T3[2],
- t0[0]*T0[3] + t0[1]*T1[3] + t0[2]*T2[3] + t0[3]*T3[3]
- ],[
- t1[0]*T0[0] + t1[1]*T1[0] + t1[2]*T2[0] + t1[3]*T3[0],
- t1[0]*T0[1] + t1[1]*T1[1] + t1[2]*T2[1] + t1[3]*T3[1],
- t1[0]*T0[2] + t1[1]*T1[2] + t1[2]*T2[2] + t1[3]*T3[2],
- t1[0]*T0[3] + t1[1]*T1[3] + t1[2]*T2[3] + t1[3]*T3[3]
- ],[
- t2[0]*T0[0] + t2[1]*T1[0] + t2[2]*T2[0] + t2[3]*T3[0],
- t2[0]*T0[1] + t2[1]*T1[1] + t2[2]*T2[1] + t2[3]*T3[1],
- t2[0]*T0[2] + t2[1]*T1[2] + t2[2]*T2[2] + t2[3]*T3[2],
- t2[0]*T0[3] + t2[1]*T1[3] + t2[2]*T2[3] + t2[3]*T3[3]
- ],[
- t3[0]*T0[0] + t3[1]*T1[0] + t3[2]*T2[0] + t3[3]*T3[0],
- t3[0]*T0[1] + t3[1]*T1[1] + t3[2]*T2[1] + t3[3]*T3[1],
- t3[0]*T0[2] + t3[1]*T1[2] + t3[2]*T2[2] + t3[3]*T3[2],
- t3[0]*T0[3] + t3[1]*T1[3] + t3[2]*T2[3] + t3[3]*T3[3]
- ] ]
-
- for mesh in node.meshes:
- for v in mesh.vertices:
- v = transform(v, transformation)
- bb_min[0] = min(bb_min[0], v[0])
- bb_min[1] = min(bb_min[1], v[1])
- bb_min[2] = min(bb_min[2], v[2])
- bb_max[0] = max(bb_max[0], v[0])
- bb_max[1] = max(bb_max[1], v[1])
- bb_max[2] = max(bb_max[2], v[2])
-
-
- for child in node.children:
- bb_min, bb_max = get_bounding_box_for_node(child, bb_min, bb_max, transformation)
-
- return bb_min, bb_max
-
-def try_load_functions(library_path, dll):
- '''
- Try to bind to aiImportFile and aiReleaseImport
-
- Arguments
- ---------
- library_path: path to current lib
- dll: ctypes handle to library
-
- Returns
- ---------
- If unsuccessful:
- None
- If successful:
- Tuple containing (library_path,
- load from filename function,
- load from memory function,
- export to filename function,
- export to blob function,
- release function,
- ctypes handle to assimp library)
- '''
-
- try:
- load = dll.aiImportFile
- release = dll.aiReleaseImport
- load_mem = dll.aiImportFileFromMemory
- export = dll.aiExportScene
- export2blob = dll.aiExportSceneToBlob
- except AttributeError:
- #OK, this is a library, but it doesn't have the functions we need
- return None
-
- # library found!
- from .structs import Scene, ExportDataBlob
- load.restype = ctypes.POINTER(Scene)
- load_mem.restype = ctypes.POINTER(Scene)
- export2blob.restype = ctypes.POINTER(ExportDataBlob)
- return (library_path, load, load_mem, export, export2blob, release, dll)
-
-def search_library():
- '''
- Loads the assimp library.
- Throws exception AssimpError if no library_path is found
-
- Returns: tuple, (load from filename function,
- load from memory function,
- export to filename function,
- export to blob function,
- release function,
- dll)
- '''
- #this path
- folder = os.path.dirname(__file__)
-
- # silence 'DLL not found' message boxes on win
- try:
- ctypes.windll.kernel32.SetErrorMode(0x8007)
- except AttributeError:
- pass
-
- candidates = []
- # test every file
- for curfolder in [folder]+additional_dirs:
- if os.path.isdir(curfolder):
- for filename in os.listdir(curfolder):
- # our minimum requirement for candidates is that
- # they should contain 'assimp' somewhere in
- # their name
- if filename.lower().find('assimp')==-1 :
- continue
- is_out=1
- for et in ext_whitelist:
- if et in filename.lower():
- is_out=0
- break
- if is_out:
- continue
-
- library_path = os.path.join(curfolder, filename)
- logger.debug('Try ' + library_path)
- try:
- dll = ctypes.cdll.LoadLibrary(library_path)
- except Exception as e:
- logger.warning(str(e))
- # OK, this except is evil. But different OSs will throw different
- # errors. So just ignore any errors.
- continue
- # see if the functions we need are in the dll
- loaded = try_load_functions(library_path, dll)
- if loaded: candidates.append(loaded)
-
- if not candidates:
- # no library found
- raise AssimpError("assimp library not found")
- else:
- # get the newest library_path
- candidates = map(lambda x: (os.lstat(x[0])[-2], x), candidates)
- res = max(candidates, key=operator.itemgetter(0))[1]
- logger.debug('Using assimp library located at ' + res[0])
-
- # XXX: if there are 1000 dll/so files containing 'assimp'
- # in their name, do we have all of them in our address
- # space now until gc kicks in?
-
- # XXX: take version postfix of the .so on linux?
- return res[1:]
-
-def hasattr_silent(object, name):
- """
- Calls hasttr() with the given parameters and preserves the legacy (pre-Python 3.2)
- functionality of silently catching exceptions.
-
- Returns the result of hasatter() or False if an exception was raised.
- """
-
- try:
- if not object:
- return False
- return hasattr(object, name)
- except AttributeError:
- return False
diff --git a/src/mesh/assimp-master/port/PyAssimp/pyassimp/material.py b/src/mesh/assimp-master/port/PyAssimp/pyassimp/material.py
deleted file mode 100644
index a36e50a..0000000
--- a/src/mesh/assimp-master/port/PyAssimp/pyassimp/material.py
+++ /dev/null
@@ -1,89 +0,0 @@
-# Dummy value.
-#
-# No texture, but the value to be used as 'texture semantic'
-# (#aiMaterialProperty::mSemantic) for all material properties
-# # not* related to textures.
-#
-aiTextureType_NONE = 0x0
-
-# The texture is combined with the result of the diffuse
-# lighting equation.
-#
-aiTextureType_DIFFUSE = 0x1
-
-# The texture is combined with the result of the specular
-# lighting equation.
-#
-aiTextureType_SPECULAR = 0x2
-
-# The texture is combined with the result of the ambient
-# lighting equation.
-#
-aiTextureType_AMBIENT = 0x3
-
-# The texture is added to the result of the lighting
-# calculation. It isn't influenced by incoming light.
-#
-aiTextureType_EMISSIVE = 0x4
-
-# The texture is a height map.
-#
-# By convention, higher gray-scale values stand for
-# higher elevations from the base height.
-#
-aiTextureType_HEIGHT = 0x5
-
-# The texture is a (tangent space) normal-map.
-#
-# Again, there are several conventions for tangent-space
-# normal maps. Assimp does (intentionally) not
-# distinguish here.
-#
-aiTextureType_NORMALS = 0x6
-
-# The texture defines the glossiness of the material.
-#
-# The glossiness is in fact the exponent of the specular
-# (phong) lighting equation. Usually there is a conversion
-# function defined to map the linear color values in the
-# texture to a suitable exponent. Have fun.
-#
-aiTextureType_SHININESS = 0x7
-
-# The texture defines per-pixel opacity.
-#
-# Usually 'white' means opaque and 'black' means
-# 'transparency'. Or quite the opposite. Have fun.
-#
-aiTextureType_OPACITY = 0x8
-
-# Displacement texture
-#
-# The exact purpose and format is application-dependent.
-# Higher color values stand for higher vertex displacements.
-#
-aiTextureType_DISPLACEMENT = 0x9
-
-# Lightmap texture (aka Ambient Occlusion)
-#
-# Both 'Lightmaps' and dedicated 'ambient occlusion maps' are
-# covered by this material property. The texture contains a
-# scaling value for the final color value of a pixel. Its
-# intensity is not affected by incoming light.
-#
-aiTextureType_LIGHTMAP = 0xA
-
-# Reflection texture
-#
-# Contains the color of a perfect mirror reflection.
-# Rarely used, almost never for real-time applications.
-#
-aiTextureType_REFLECTION = 0xB
-
-# Unknown texture
-#
-# A texture reference that does not match any of the definitions
-# above is considered to be 'unknown'. It is still imported
-# but is excluded from any further postprocessing.
-#
-aiTextureType_UNKNOWN = 0xC
diff --git a/src/mesh/assimp-master/port/PyAssimp/pyassimp/postprocess.py b/src/mesh/assimp-master/port/PyAssimp/pyassimp/postprocess.py
deleted file mode 100644
index 0c55d67..0000000
--- a/src/mesh/assimp-master/port/PyAssimp/pyassimp/postprocess.py
+++ /dev/null
@@ -1,530 +0,0 @@
-# <hr>Calculates the tangents and bitangents for the imported meshes.
-#
-# Does nothing if a mesh does not have normals. You might want this post
-# processing step to be executed if you plan to use tangent space calculations
-# such as normal mapping applied to the meshes. There's a config setting,
-# <tt>#AI_CONFIG_PP_CT_MAX_SMOOTHING_ANGLE<tt>, which allows you to specify
-# a maximum smoothing angle for the algorithm. However, usually you'll
-# want to leave it at the default value.
-#
-aiProcess_CalcTangentSpace = 0x1
-
-## <hr>Identifies and joins identical vertex data sets within all
-# imported meshes.
-#
-# After this step is run, each mesh contains unique vertices,
-# so a vertex may be used by multiple faces. You usually want
-# to use this post processing step. If your application deals with
-# indexed geometry, this step is compulsory or you'll just waste rendering
-# time. <b>If this flag is not specified<b>, no vertices are referenced by
-# more than one face and <b>no index buffer is required<b> for rendering.
-#
-aiProcess_JoinIdenticalVertices = 0x2
-
-## <hr>Converts all the imported data to a left-handed coordinate space.
-#
-# By default the data is returned in a right-handed coordinate space (which
-# OpenGL prefers). In this space, +X points to the right,
-# +Z points towards the viewer, and +Y points upwards. In the DirectX
-# coordinate space +X points to the right, +Y points upwards, and +Z points
-# away from the viewer.
-#
-# You'll probably want to consider this flag if you use Direct3D for
-# rendering. The #aiProcess_ConvertToLeftHanded flag supersedes this
-# setting and bundles all conversions typically required for D3D-based
-# applications.
-#
-aiProcess_MakeLeftHanded = 0x4
-
-## <hr>Triangulates all faces of all meshes.
-#
-# By default the imported mesh data might contain faces with more than 3
-# indices. For rendering you'll usually want all faces to be triangles.
-# This post processing step splits up faces with more than 3 indices into
-# triangles. Line and point primitives are #not# modified! If you want
-# 'triangles only' with no other kinds of primitives, try the following
-# solution:
-# <ul>
-# <li>Specify both #aiProcess_Triangulate and #aiProcess_SortByPType <li>
-# <li>Ignore all point and line meshes when you process assimp's output<li>
-# <ul>
-#
-aiProcess_Triangulate = 0x8
-
-## <hr>Removes some parts of the data structure (animations, materials,
-# light sources, cameras, textures, vertex components).
-#
-# The components to be removed are specified in a separate
-# configuration option, <tt>#AI_CONFIG_PP_RVC_FLAGS<tt>. This is quite useful
-# if you don't need all parts of the output structure. Vertex colors
-# are rarely used today for example... Calling this step to remove unneeded
-# data from the pipeline as early as possible results in increased
-# performance and a more optimized output data structure.
-# This step is also useful if you want to force Assimp to recompute
-# normals or tangents. The corresponding steps don't recompute them if
-# they're already there (loaded from the source asset). By using this
-# step you can make sure they are NOT there.
-#
-# This flag is a poor one, mainly because its purpose is usually
-# misunderstood. Consider the following case: a 3D model has been exported
-# from a CAD app, and it has per-face vertex colors. Vertex positions can't be
-# shared, thus the #aiProcess_JoinIdenticalVertices step fails to
-# optimize the data because of these nasty little vertex colors.
-# Most apps don't even process them, so it's all for nothing. By using
-# this step, unneeded components are excluded as early as possible
-# thus opening more room for internal optimizations.
-#
-aiProcess_RemoveComponent = 0x10
-
-## <hr>Generates normals for all faces of all meshes.
-#
-# This is ignored if normals are already there at the time this flag
-# is evaluated. Model importers try to load them from the source file, so
-# they're usually already there. Face normals are shared between all points
-# of a single face, so a single point can have multiple normals, which
-# forces the library to duplicate vertices in some cases.
-# #aiProcess_JoinIdenticalVertices is #senseless# then.
-#
-# This flag may not be specified together with #aiProcess_GenSmoothNormals.
-#
-aiProcess_GenNormals = 0x20
-
-## <hr>Generates smooth normals for all vertices in the mesh.
-#
-# This is ignored if normals are already there at the time this flag
-# is evaluated. Model importers try to load them from the source file, so
-# they're usually already there.
-#
-# This flag may not be specified together with
-# #aiProcess_GenNormals. There's a configuration option,
-# <tt>#AI_CONFIG_PP_GSN_MAX_SMOOTHING_ANGLE<tt> which allows you to specify
-# an angle maximum for the normal smoothing algorithm. Normals exceeding
-# this limit are not smoothed, resulting in a 'hard' seam between two faces.
-# Using a decent angle here (e.g. 80 degrees) results in very good visual
-# appearance.
-#
-aiProcess_GenSmoothNormals = 0x40
-
-## <hr>Splits large meshes into smaller sub-meshes.
-#
-# This is quite useful for real-time rendering, where the number of triangles
-# which can be maximally processed in a single draw-call is limited
-# by the video driverhardware. The maximum vertex buffer is usually limited
-# too. Both requirements can be met with this step: you may specify both a
-# triangle and vertex limit for a single mesh.
-#
-# The split limits can (and should!) be set through the
-# <tt>#AI_CONFIG_PP_SLM_VERTEX_LIMIT<tt> and <tt>#AI_CONFIG_PP_SLM_TRIANGLE_LIMIT<tt>
-# settings. The default values are <tt>#AI_SLM_DEFAULT_MAX_VERTICES<tt> and
-# <tt>#AI_SLM_DEFAULT_MAX_TRIANGLES<tt>.
-#
-# Note that splitting is generally a time-consuming task, but only if there's
-# something to split. The use of this step is recommended for most users.
-#
-aiProcess_SplitLargeMeshes = 0x80
-
-## <hr>Removes the node graph and pre-transforms all vertices with
-# the local transformation matrices of their nodes.
-#
-# The output scene still contains nodes, however there is only a
-# root node with children, each one referencing only one mesh,
-# and each mesh referencing one material. For rendering, you can
-# simply render all meshes in order - you don't need to pay
-# attention to local transformations and the node hierarchy.
-# Animations are removed during this step.
-# This step is intended for applications without a scenegraph.
-# The step CAN cause some problems: if e.g. a mesh of the asset
-# contains normals and another, using the same material index, does not,
-# they will be brought together, but the first meshes's part of
-# the normal list is zeroed. However, these artifacts are rare.
-# @note The <tt>#AI_CONFIG_PP_PTV_NORMALIZE<tt> configuration property
-# can be set to normalize the scene's spatial dimension to the -1...1
-# range.
-#
-aiProcess_PreTransformVertices = 0x100
-
-## <hr>Limits the number of bones simultaneously affecting a single vertex
-# to a maximum value.
-#
-# If any vertex is affected by more than the maximum number of bones, the least
-# important vertex weights are removed and the remaining vertex weights are
-# renormalized so that the weights still sum up to 1.
-# The default bone weight limit is 4 (defined as <tt>#AI_LMW_MAX_WEIGHTS<tt> in
-# config.h), but you can use the <tt>#AI_CONFIG_PP_LBW_MAX_WEIGHTS<tt> setting to
-# supply your own limit to the post processing step.
-#
-# If you intend to perform the skinning in hardware, this post processing
-# step might be of interest to you.
-#
-aiProcess_LimitBoneWeights = 0x200
-
-## <hr>Validates the imported scene data structure.
-# This makes sure that all indices are valid, all animations and
-# bones are linked correctly, all material references are correct .. etc.
-#
-# It is recommended that you capture Assimp's log output if you use this flag,
-# so you can easily find out what's wrong if a file fails the
-# validation. The validator is quite strict and will find #all#
-# inconsistencies in the data structure... It is recommended that plugin
-# developers use it to debug their loaders. There are two types of
-# validation failures:
-# <ul>
-# <li>Error: There's something wrong with the imported data. Further
-# postprocessing is not possible and the data is not usable at all.
-# The import fails. #Importer::GetErrorString() or #aiGetErrorString()
-# carry the error message around.<li>
-# <li>Warning: There are some minor issues (e.g. 1000000 animation
-# keyframes with the same time), but further postprocessing and use
-# of the data structure is still safe. Warning details are written
-# to the log file, <tt>#AI_SCENE_FLAGS_VALIDATION_WARNING<tt> is set
-# in #aiScene::mFlags<li>
-# <ul>
-#
-# This post-processing step is not time-consuming. Its use is not
-# compulsory, but recommended.
-#
-aiProcess_ValidateDataStructure = 0x400
-
-## <hr>Reorders triangles for better vertex cache locality.
-#
-# The step tries to improve the ACMR (average post-transform vertex cache
-# miss ratio) for all meshes. The implementation runs in O(n) and is
-# roughly based on the 'tipsify' algorithm (see <a href="
-# http:www.cs.princeton.edugfxpubsSander_2007_%3ETRtipsy.pdf">this
-# paper<a>).
-#
-# If you intend to render huge models in hardware, this step might
-# be of interest to you. The <tt>#AI_CONFIG_PP_ICL_PTCACHE_SIZE<tt>config
-# setting can be used to fine-tune the cache optimization.
-#
-aiProcess_ImproveCacheLocality = 0x800
-
-## <hr>Searches for redundantunreferenced materials and removes them.
-#
-# This is especially useful in combination with the
-# #aiProcess_PretransformVertices and #aiProcess_OptimizeMeshes flags.
-# Both join small meshes with equal characteristics, but they can't do
-# their work if two meshes have different materials. Because several
-# material settings are lost during Assimp's import filters,
-# (and because many exporters don't check for redundant materials), huge
-# models often have materials which are are defined several times with
-# exactly the same settings.
-#
-# Several material settings not contributing to the final appearance of
-# a surface are ignored in all comparisons (e.g. the material name).
-# So, if you're passing additional information through the
-# content pipeline (probably using #magic# material names), don't
-# specify this flag. Alternatively take a look at the
-# <tt>#AI_CONFIG_PP_RRM_EXCLUDE_LIST<tt> setting.
-#
-aiProcess_RemoveRedundantMaterials = 0x1000
-
-## <hr>This step tries to determine which meshes have normal vectors
-# that are facing inwards and inverts them.
-#
-# The algorithm is simple but effective:
-# the bounding box of all vertices + their normals is compared against
-# the volume of the bounding box of all vertices without their normals.
-# This works well for most objects, problems might occur with planar
-# surfaces. However, the step tries to filter such cases.
-# The step inverts all in-facing normals. Generally it is recommended
-# to enable this step, although the result is not always correct.
-#
-aiProcess_FixInfacingNormals = 0x2000
-
-## <hr>This step splits meshes with more than one primitive type in
-# homogeneous sub-meshes.
-#
-# The step is executed after the triangulation step. After the step
-# returns, just one bit is set in aiMesh::mPrimitiveTypes. This is
-# especially useful for real-time rendering where point and line
-# primitives are often ignored or rendered separately.
-# You can use the <tt>#AI_CONFIG_PP_SBP_REMOVE<tt> option to specify which
-# primitive types you need. This can be used to easily exclude
-# lines and points, which are rarely used, from the import.
-#
-aiProcess_SortByPType = 0x8000
-
-## <hr>This step searches all meshes for degenerate primitives and
-# converts them to proper lines or points.
-#
-# A face is 'degenerate' if one or more of its points are identical.
-# To have the degenerate stuff not only detected and collapsed but
-# removed, try one of the following procedures:
-# <br><b>1.<b> (if you support lines and points for rendering but don't
-# want the degenerates)<br>
-# <ul>
-# <li>Specify the #aiProcess_FindDegenerates flag.
-# <li>
-# <li>Set the <tt>AI_CONFIG_PP_FD_REMOVE<tt> option to 1. This will
-# cause the step to remove degenerate triangles from the import
-# as soon as they're detected. They won't pass any further
-# pipeline steps.
-# <li>
-# <ul>
-# <br><b>2.<b>(if you don't support lines and points at all)<br>
-# <ul>
-# <li>Specify the #aiProcess_FindDegenerates flag.
-# <li>
-# <li>Specify the #aiProcess_SortByPType flag. This moves line and
-# point primitives to separate meshes.
-# <li>
-# <li>Set the <tt>AI_CONFIG_PP_SBP_REMOVE<tt> option to
-# @code aiPrimitiveType_POINTS | aiPrimitiveType_LINES
-# @endcode to cause SortByPType to reject point
-# and line meshes from the scene.
-# <li>
-# <ul>
-# @note Degenerate polygons are not necessarily evil and that's why
-# they're not removed by default. There are several file formats which
-# don't support lines or points, and some exporters bypass the
-# format specification and write them as degenerate triangles instead.
-#
-aiProcess_FindDegenerates = 0x10000
-
-## <hr>This step searches all meshes for invalid data, such as zeroed
-# normal vectors or invalid UV coords and removesfixes them. This is
-# intended to get rid of some common exporter errors.
-#
-# This is especially useful for normals. If they are invalid, and
-# the step recognizes this, they will be removed and can later
-# be recomputed, i.e. by the #aiProcess_GenSmoothNormals flag.<br>
-# The step will also remove meshes that are infinitely small and reduce
-# animation tracks consisting of hundreds if redundant keys to a single
-# key. The <tt>AI_CONFIG_PP_FID_ANIM_ACCURACY<tt> config property decides
-# the accuracy of the check for duplicate animation tracks.
-#
-aiProcess_FindInvalidData = 0x20000
-
-## <hr>This step converts non-UV mappings (such as spherical or
-# cylindrical mapping) to proper texture coordinate channels.
-#
-# Most applications will support UV mapping only, so you will
-# probably want to specify this step in every case. Note that Assimp is not
-# always able to match the original mapping implementation of the
-# 3D app which produced a model perfectly. It's always better to let the
-# modelling app compute the UV channels - 3ds max, Maya, Blender,
-# LightWave, and Modo do this for example.
-#
-# @note If this step is not requested, you'll need to process the
-# <tt>#AI_MATKEY_MAPPING<tt> material property in order to display all assets
-# properly.
-#
-aiProcess_GenUVCoords = 0x40000
-
-## <hr>This step applies per-texture UV transformations and bakes
-# them into stand-alone vtexture coordinate channels.
-#
-# UV transformations are specified per-texture - see the
-# <tt>#AI_MATKEY_UVTRANSFORM<tt> material key for more information.
-# This step processes all textures with
-# transformed input UV coordinates and generates a new (pre-transformed) UV channel
-# which replaces the old channel. Most applications won't support UV
-# transformations, so you will probably want to specify this step.
-#
-# @note UV transformations are usually implemented in real-time apps by
-# transforming texture coordinates at vertex shader stage with a 3x3
-# (homogenous) transformation matrix.
-#
-aiProcess_TransformUVCoords = 0x80000
-
-## <hr>This step searches for duplicate meshes and replaces them
-# with references to the first mesh.
-#
-# This step takes a while, so don't use it if speed is a concern.
-# Its main purpose is to workaround the fact that many export
-# file formats don't support instanced meshes, so exporters need to
-# duplicate meshes. This step removes the duplicates again. Please
-# note that Assimp does not currently support per-node material
-# assignment to meshes, which means that identical meshes with
-# different materials are currently #not# joined, although this is
-# planned for future versions.
-#
-aiProcess_FindInstances = 0x100000
-
-## <hr>A postprocessing step to reduce the number of meshes.
-#
-# This will, in fact, reduce the number of draw calls.
-#
-# This is a very effective optimization and is recommended to be used
-# together with #aiProcess_OptimizeGraph, if possible. The flag is fully
-# compatible with both #aiProcess_SplitLargeMeshes and #aiProcess_SortByPType.
-#
-aiProcess_OptimizeMeshes = 0x200000
-
-
-## <hr>A postprocessing step to optimize the scene hierarchy.
-#
-# Nodes without animations, bones, lights or cameras assigned are
-# collapsed and joined.
-#
-# Node names can be lost during this step. If you use special 'tag nodes'
-# to pass additional information through your content pipeline, use the
-# <tt>#AI_CONFIG_PP_OG_EXCLUDE_LIST<tt> setting to specify a list of node
-# names you want to be kept. Nodes matching one of the names in this list won't
-# be touched or modified.
-#
-# Use this flag with caution. Most simple files will be collapsed to a
-# single node, so complex hierarchies are usually completely lost. This is not
-# useful for editor environments, but probably a very effective
-# optimization if you just want to get the model data, convert it to your
-# own format, and render it as fast as possible.
-#
-# This flag is designed to be used with #aiProcess_OptimizeMeshes for best
-# results.
-#
-# @note 'Crappy' scenes with thousands of extremely small meshes packed
-# in deeply nested nodes exist for almost all file formats.
-# #aiProcess_OptimizeMeshes in combination with #aiProcess_OptimizeGraph
-# usually fixes them all and makes them renderable.
-#
-aiProcess_OptimizeGraph = 0x400000
-
-## <hr>This step flips all UV coordinates along the y-axis and adjusts
-# material settings and bitangents accordingly.
-#
-# <b>Output UV coordinate system:<b>
-# @code
-# 0y|0y ---------- 1x|0y
-# | |
-# | |
-# | |
-# 0x|1y ---------- 1x|1y
-# @endcode
-#
-# You'll probably want to consider this flag if you use Direct3D for
-# rendering. The #aiProcess_ConvertToLeftHanded flag supersedes this
-# setting and bundles all conversions typically required for D3D-based
-# applications.
-#
-aiProcess_FlipUVs = 0x800000
-
-## <hr>This step adjusts the output face winding order to be CW.
-#
-# The default face winding order is counter clockwise (CCW).
-#
-# <b>Output face order:<b>
-# @code
-# x2
-#
-# x0
-# x1
-# @endcode
-#
-aiProcess_FlipWindingOrder = 0x1000000
-
-## <hr>This step splits meshes with many bones into sub-meshes so that each
-# su-bmesh has fewer or as many bones as a given limit.
-#
-aiProcess_SplitByBoneCount = 0x2000000
-
-## <hr>This step removes bones losslessly or according to some threshold.
-#
-# In some cases (i.e. formats that require it) exporters are forced to
-# assign dummy bone weights to otherwise static meshes assigned to
-# animated meshes. Full, weight-based skinning is expensive while
-# animating nodes is extremely cheap, so this step is offered to clean up
-# the data in that regard.
-#
-# Use <tt>#AI_CONFIG_PP_DB_THRESHOLD<tt> to control this.
-# Use <tt>#AI_CONFIG_PP_DB_ALL_OR_NONE<tt> if you want bones removed if and
-# only if all bones within the scene qualify for removal.
-#
-aiProcess_Debone = 0x4000000
-
-aiProcess_GenEntityMeshes = 0x100000
-aiProcess_OptimizeAnimations = 0x200000
-aiProcess_FixTexturePaths = 0x200000
-aiProcess_EmbedTextures = 0x10000000,
-
-## @def aiProcess_ConvertToLeftHanded
- # @brief Shortcut flag for Direct3D-based applications.
- #
- # Supersedes the #aiProcess_MakeLeftHanded and #aiProcess_FlipUVs and
- # #aiProcess_FlipWindingOrder flags.
- # The output data matches Direct3D's conventions: left-handed geometry, upper-left
- # origin for UV coordinates and finally clockwise face order, suitable for CCW culling.
- #
- # @deprecated
- #
-aiProcess_ConvertToLeftHanded = ( \
- aiProcess_MakeLeftHanded | \
- aiProcess_FlipUVs | \
- aiProcess_FlipWindingOrder | \
- 0 )
-
-
-## @def aiProcessPreset_TargetRealtimeUse_Fast
- # @brief Default postprocess configuration optimizing the data for real-time rendering.
- #
- # Applications would want to use this preset to load models on end-user PCs,
- # maybe for direct use in game.
- #
- # If you're using DirectX, don't forget to combine this value with
- # the #aiProcess_ConvertToLeftHanded step. If you don't support UV transformations
- # in your application apply the #aiProcess_TransformUVCoords step, too.
- # @note Please take the time to read the docs for the steps enabled by this preset.
- # Some of them offer further configurable properties, while some of them might not be of
- # use for you so it might be better to not specify them.
- #
-aiProcessPreset_TargetRealtime_Fast = ( \
- aiProcess_CalcTangentSpace | \
- aiProcess_GenNormals | \
- aiProcess_JoinIdenticalVertices | \
- aiProcess_Triangulate | \
- aiProcess_GenUVCoords | \
- aiProcess_SortByPType | \
- 0 )
-
- ## @def aiProcessPreset_TargetRealtime_Quality
- # @brief Default postprocess configuration optimizing the data for real-time rendering.
- #
- # Unlike #aiProcessPreset_TargetRealtime_Fast, this configuration
- # performs some extra optimizations to improve rendering speed and
- # to minimize memory usage. It could be a good choice for a level editor
- # environment where import speed is not so important.
- #
- # If you're using DirectX, don't forget to combine this value with
- # the #aiProcess_ConvertToLeftHanded step. If you don't support UV transformations
- # in your application apply the #aiProcess_TransformUVCoords step, too.
- # @note Please take the time to read the docs for the steps enabled by this preset.
- # Some of them offer further configurable properties, while some of them might not be
- # of use for you so it might be better to not specify them.
- #
-aiProcessPreset_TargetRealtime_Quality = ( \
- aiProcess_CalcTangentSpace | \
- aiProcess_GenSmoothNormals | \
- aiProcess_JoinIdenticalVertices | \
- aiProcess_ImproveCacheLocality | \
- aiProcess_LimitBoneWeights | \
- aiProcess_RemoveRedundantMaterials | \
- aiProcess_SplitLargeMeshes | \
- aiProcess_Triangulate | \
- aiProcess_GenUVCoords | \
- aiProcess_SortByPType | \
- aiProcess_FindDegenerates | \
- aiProcess_FindInvalidData | \
- 0 )
-
- ## @def aiProcessPreset_TargetRealtime_MaxQuality
- # @brief Default postprocess configuration optimizing the data for real-time rendering.
- #
- # This preset enables almost every optimization step to achieve perfectly
- # optimized data. It's your choice for level editor environments where import speed
- # is not important.
- #
- # If you're using DirectX, don't forget to combine this value with
- # the #aiProcess_ConvertToLeftHanded step. If you don't support UV transformations
- # in your application, apply the #aiProcess_TransformUVCoords step, too.
- # @note Please take the time to read the docs for the steps enabled by this preset.
- # Some of them offer further configurable properties, while some of them might not be
- # of use for you so it might be better to not specify them.
- #
-aiProcessPreset_TargetRealtime_MaxQuality = ( \
- aiProcessPreset_TargetRealtime_Quality | \
- aiProcess_FindInstances | \
- aiProcess_ValidateDataStructure | \
- aiProcess_OptimizeMeshes | \
- 0 )
-
-
diff --git a/src/mesh/assimp-master/port/PyAssimp/pyassimp/structs.py b/src/mesh/assimp-master/port/PyAssimp/pyassimp/structs.py
deleted file mode 100644
index e1fba19..0000000
--- a/src/mesh/assimp-master/port/PyAssimp/pyassimp/structs.py
+++ /dev/null
@@ -1,1135 +0,0 @@
-#-*- coding: utf-8 -*-
-
-from ctypes import POINTER, c_void_p, c_uint, c_char, c_float, Structure, c_double, c_ubyte, c_size_t, c_uint32
-
-
-class Vector2D(Structure):
- """
- See 'vector2.h' for details.
- """
-
-
- _fields_ = [
- ("x", c_float),("y", c_float),
- ]
-
-class Matrix3x3(Structure):
- """
- See 'matrix3x3.h' for details.
- """
-
-
- _fields_ = [
- ("a1", c_float),("a2", c_float),("a3", c_float),
- ("b1", c_float),("b2", c_float),("b3", c_float),
- ("c1", c_float),("c2", c_float),("c3", c_float),
- ]
-
-class Texel(Structure):
- """
- See 'texture.h' for details.
- """
-
- _fields_ = [
- ("b", c_ubyte),("g", c_ubyte),("r", c_ubyte),("a", c_ubyte),
- ]
-
-class Color4D(Structure):
- """
- See 'color4.h' for details.
- """
-
-
- _fields_ = [
- # Red, green, blue and alpha color values
- ("r", c_float),("g", c_float),("b", c_float),("a", c_float),
- ]
-
-class Plane(Structure):
- """
- See 'types.h' for details.
- """
-
- _fields_ = [
- # Plane equation
- ("a", c_float),("b", c_float),("c", c_float),("d", c_float),
- ]
-
-class Color3D(Structure):
- """
- See 'types.h' for details.
- """
-
- _fields_ = [
- # Red, green and blue color values
- ("r", c_float),("g", c_float),("b", c_float),
- ]
-
-class String(Structure):
- """
- See 'types.h' for details.
- """
-
- MAXLEN = 1024
-
- _fields_ = [
- # Binary length of the string excluding the terminal 0. This is NOT the
- # logical length of strings containing UTF-8 multibyte sequences! It's
- # the number of bytes from the beginning of the string to its end.
- ("length", c_uint32),
-
- # String buffer. Size limit is MAXLEN
- ("data", c_char*MAXLEN),
- ]
-
-class MaterialPropertyString(Structure):
- """
- See 'MaterialSystem.cpp' for details.
-
- The size of length is truncated to 4 bytes on 64-bit platforms when used as a
- material property (see MaterialSystem.cpp aiMaterial::AddProperty() for details).
- """
-
- MAXLEN = 1024
-
- _fields_ = [
- # Binary length of the string excluding the terminal 0. This is NOT the
- # logical length of strings containing UTF-8 multibyte sequences! It's
- # the number of bytes from the beginning of the string to its end.
- ("length", c_uint32),
-
- # String buffer. Size limit is MAXLEN
- ("data", c_char*MAXLEN),
- ]
-
-class MemoryInfo(Structure):
- """
- See 'types.h' for details.
- """
-
- _fields_ = [
- # Storage allocated for texture data
- ("textures", c_uint),
-
- # Storage allocated for material data
- ("materials", c_uint),
-
- # Storage allocated for mesh data
- ("meshes", c_uint),
-
- # Storage allocated for node data
- ("nodes", c_uint),
-
- # Storage allocated for animation data
- ("animations", c_uint),
-
- # Storage allocated for camera data
- ("cameras", c_uint),
-
- # Storage allocated for light data
- ("lights", c_uint),
-
- # Total storage allocated for the full import.
- ("total", c_uint),
- ]
-
-class Quaternion(Structure):
- """
- See 'quaternion.h' for details.
- """
-
-
- _fields_ = [
- # w,x,y,z components of the quaternion
- ("w", c_float),("x", c_float),("y", c_float),("z", c_float),
- ]
-
-class Face(Structure):
- """
- See 'mesh.h' for details.
- """
-
- _fields_ = [
- # Number of indices defining this face.
- # The maximum value for this member is
- #AI_MAX_FACE_INDICES.
- ("mNumIndices", c_uint),
-
- # Pointer to the indices array. Size of the array is given in numIndices.
- ("mIndices", POINTER(c_uint)),
- ]
-
-class VertexWeight(Structure):
- """
- See 'mesh.h' for details.
- """
-
- _fields_ = [
- # Index of the vertex which is influenced by the bone.
- ("mVertexId", c_uint),
-
- # The strength of the influence in the range (0...1).
- # The influence from all bones at one vertex amounts to 1.
- ("mWeight", c_float),
- ]
-
-class Matrix4x4(Structure):
- """
- See 'matrix4x4.h' for details.
- """
-
-
- _fields_ = [
- ("a1", c_float),("a2", c_float),("a3", c_float),("a4", c_float),
- ("b1", c_float),("b2", c_float),("b3", c_float),("b4", c_float),
- ("c1", c_float),("c2", c_float),("c3", c_float),("c4", c_float),
- ("d1", c_float),("d2", c_float),("d3", c_float),("d4", c_float),
- ]
-
-class Vector3D(Structure):
- """
- See 'vector3.h' for details.
- """
-
-
- _fields_ = [
- ("x", c_float),("y", c_float),("z", c_float),
- ]
-
-class MeshKey(Structure):
- """
- See 'anim.h' for details.
- """
-
- _fields_ = [
- # The time of this key
- ("mTime", c_double),
-
- # Index into the aiMesh::mAnimMeshes array of the
- # mesh corresponding to the
- #aiMeshAnim hosting this
- # key frame. The referenced anim mesh is evaluated
- # according to the rules defined in the docs for
- #aiAnimMesh.
- ("mValue", c_uint),
- ]
-
-class MetadataEntry(Structure):
- """
- See 'metadata.h' for details
- """
- AI_BOOL = 0
- AI_INT32 = 1
- AI_UINT64 = 2
- AI_FLOAT = 3
- AI_DOUBLE = 4
- AI_AISTRING = 5
- AI_AIVECTOR3D = 6
- AI_META_MAX = 7
- _fields_ = [
- # The type field uniquely identifies the underlying type of the data field
- ("mType", c_uint),
- ("mData", c_void_p),
- ]
-
-class Metadata(Structure):
- """
- See 'metadata.h' for details
- """
- _fields_ = [
- # Length of the mKeys and mValues arrays, respectively
- ("mNumProperties", c_uint),
-
- # Arrays of keys, may not be NULL. Entries in this array may not be NULL
- # as well.
- ("mKeys", POINTER(String)),
-
- # Arrays of values, may not be NULL. Entries in this array may be NULL
- # if the corresponding property key has no assigned value.
- ("mValues", POINTER(MetadataEntry)),
- ]
-
-class Node(Structure):
- """
- See 'scene.h' for details.
- """
-
-
-Node._fields_ = [
- # The name of the node.
- # The name might be empty (length of zero) but all nodes which
- # need to be accessed afterwards by bones or anims are usually named.
- # Multiple nodes may have the same name, but nodes which are accessed
- # by bones (see
- #aiBone and
- #aiMesh::mBones) *must* be unique.
- # Cameras and lights are assigned to a specific node name - if there
- # are multiple nodes with this name, they're assigned to each of them.
- # <br>
- # There are no limitations regarding the characters contained in
- # this text. You should be able to handle stuff like whitespace, tabs,
- # linefeeds, quotation marks, ampersands, ... .
- ("mName", String),
-
- # The transformation relative to the node's parent.
- ("mTransformation", Matrix4x4),
-
- # Parent node. NULL if this node is the root node.
- ("mParent", POINTER(Node)),
-
- # The number of child nodes of this node.
- ("mNumChildren", c_uint),
-
- # The child nodes of this node. NULL if mNumChildren is 0.
- ("mChildren", POINTER(POINTER(Node))),
-
- # The number of meshes of this node.
- ("mNumMeshes", c_uint),
-
- # The meshes of this node. Each entry is an index into the mesh
- ("mMeshes", POINTER(c_uint)),
-
- # Metadata associated with this node or NULL if there is no metadata.
- # Whether any metadata is generated depends on the source file format.
- ("mMetadata", POINTER(Metadata)),
- ]
-
-class Light(Structure):
- """
- See 'light.h' for details.
- """
-
-
- _fields_ = [
- # The name of the light source.
- # There must be a node in the scenegraph with the same name.
- # This node specifies the position of the light in the scene
- # hierarchy and can be animated.
- ("mName", String),
-
- # The type of the light source.
- # aiLightSource_UNDEFINED is not a valid value for this member.
- ("mType", c_uint),
-
- # Position of the light source in space. Relative to the
- # transformation of the node corresponding to the light.
- # The position is undefined for directional lights.
- ("mPosition", Vector3D),
-
- # Direction of the light source in space. Relative to the
- # transformation of the node corresponding to the light.
- # The direction is undefined for point lights. The vector
- # may be normalized, but it needn't.
- ("mDirection", Vector3D),
-
- # Up direction of the light source in space. Relative to the
- # transformation of the node corresponding to the light.
- #
- # The direction is undefined for point lights. The vector
- # may be normalized, but it needn't.
- ("mUp", Vector3D),
-
- # Constant light attenuation factor.
- # The intensity of the light source at a given distance 'd' from
- # the light's position is
- # @code
- # Atten = 1/( att0 + att1
- # d + att2
- # d*d)
- # @endcode
- # This member corresponds to the att0 variable in the equation.
- # Naturally undefined for directional lights.
- ("mAttenuationConstant", c_float),
-
- # Linear light attenuation factor.
- # The intensity of the light source at a given distance 'd' from
- # the light's position is
- # @code
- # Atten = 1/( att0 + att1
- # d + att2
- # d*d)
- # @endcode
- # This member corresponds to the att1 variable in the equation.
- # Naturally undefined for directional lights.
- ("mAttenuationLinear", c_float),
-
- # Quadratic light attenuation factor.
- # The intensity of the light source at a given distance 'd' from
- # the light's position is
- # @code
- # Atten = 1/( att0 + att1
- # d + att2
- # d*d)
- # @endcode
- # This member corresponds to the att2 variable in the equation.
- # Naturally undefined for directional lights.
- ("mAttenuationQuadratic", c_float),
-
- # Diffuse color of the light source
- # The diffuse light color is multiplied with the diffuse
- # material color to obtain the final color that contributes
- # to the diffuse shading term.
- ("mColorDiffuse", Color3D),
-
- # Specular color of the light source
- # The specular light color is multiplied with the specular
- # material color to obtain the final color that contributes
- # to the specular shading term.
- ("mColorSpecular", Color3D),
-
- # Ambient color of the light source
- # The ambient light color is multiplied with the ambient
- # material color to obtain the final color that contributes
- # to the ambient shading term. Most renderers will ignore
- # this value it, is just a remaining of the fixed-function pipeline
- # that is still supported by quite many file formats.
- ("mColorAmbient", Color3D),
-
- # Inner angle of a spot light's light cone.
- # The spot light has maximum influence on objects inside this
- # angle. The angle is given in radians. It is 2PI for point
- # lights and undefined for directional lights.
- ("mAngleInnerCone", c_float),
-
- # Outer angle of a spot light's light cone.
- # The spot light does not affect objects outside this angle.
- # The angle is given in radians. It is 2PI for point lights and
- # undefined for directional lights. The outer angle must be
- # greater than or equal to the inner angle.
- # It is assumed that the application uses a smooth
- # interpolation between the inner and the outer cone of the
- # spot light.
- ("mAngleOuterCone", c_float),
-
- # Size of area light source.
- ("mSize", Vector2D),
- ]
-
-class Texture(Structure):
- """
- See 'texture.h' for details.
- """
-
-
- _fields_ = [
- # Width of the texture, in pixels
- # If mHeight is zero the texture is compressed in a format
- # like JPEG. In this case mWidth specifies the size of the
- # memory area pcData is pointing to, in bytes.
- ("mWidth", c_uint),
-
- # Height of the texture, in pixels
- # If this value is zero, pcData points to an compressed texture
- # in any format (e.g. JPEG).
- ("mHeight", c_uint),
-
- # A hint from the loader to make it easier for applications
- # to determine the type of embedded textures.
- #
- # If mHeight != 0 this member is show how data is packed. Hint will consist of
- # two parts: channel order and channel bitness (count of the bits for every
- # color channel). For simple parsing by the viewer it's better to not omit
- # absent color channel and just use 0 for bitness. For example:
- # 1. Image contain RGBA and 8 bit per channel, achFormatHint == "rgba8888";
- # 2. Image contain ARGB and 8 bit per channel, achFormatHint == "argb8888";
- # 3. Image contain RGB and 5 bit for R and B channels and 6 bit for G channel,
- # achFormatHint == "rgba5650";
- # 4. One color image with B channel and 1 bit for it, achFormatHint == "rgba0010";
- # If mHeight == 0 then achFormatHint is set set to '\\0\\0\\0\\0' if the loader has no additional
- # information about the texture file format used OR the
- # file extension of the format without a trailing dot. If there
- # are multiple file extensions for a format, the shortest
- # extension is chosen (JPEG maps to 'jpg', not to 'jpeg').
- # E.g. 'dds\\0', 'pcx\\0', 'jpg\\0'. All characters are lower-case.
- # The fourth character will always be '\\0'.
- ("achFormatHint", c_char*9),
-
- # Data of the texture.
- # Points to an array of mWidth
- # mHeight aiTexel's.
- # The format of the texture data is always ARGB8888 to
- # make the implementation for user of the library as easy
- # as possible. If mHeight = 0 this is a pointer to a memory
- # buffer of size mWidth containing the compressed texture
- # data. Good luck, have fun!
- ("pcData", POINTER(Texel)),
-
- # Texture original filename
- # Used to get the texture reference
- ("mFilename", String),
- ]
-
-class Ray(Structure):
- """
- See 'types.h' for details.
- """
-
- _fields_ = [
- # Position and direction of the ray
- ("pos", Vector3D),("dir", Vector3D),
- ]
-
-class UVTransform(Structure):
- """
- See 'material.h' for details.
- """
-
- _fields_ = [
- # Translation on the u and v axes.
- # The default value is (0|0).
- ("mTranslation", Vector2D),
-
- # Scaling on the u and v axes.
- # The default value is (1|1).
- ("mScaling", Vector2D),
-
- # Rotation - in counter-clockwise direction.
- # The rotation angle is specified in radians. The
- # rotation center is 0.5f|0.5f. The default value
- # 0.f.
- ("mRotation", c_float),
- ]
-
-class MaterialProperty(Structure):
- """
- See 'material.h' for details.
- """
-
- _fields_ = [
- # Specifies the name of the property (key)
- # Keys are generally case insensitive.
- ("mKey", String),
-
- # Textures: Specifies their exact usage semantic.
- # For non-texture properties, this member is always 0
- # (or, better-said,
- #aiTextureType_NONE).
- ("mSemantic", c_uint),
-
- # Textures: Specifies the index of the texture.
- # For non-texture properties, this member is always 0.
- ("mIndex", c_uint),
-
- # Size of the buffer mData is pointing to, in bytes.
- # This value may not be 0.
- ("mDataLength", c_uint),
-
- # Type information for the property.
- # Defines the data layout inside the data buffer. This is used
- # by the library internally to perform debug checks and to
- # utilize proper type conversions.
- # (It's probably a hacky solution, but it works.)
- ("mType", c_uint),
-
- # Binary buffer to hold the property's value.
- # The size of the buffer is always mDataLength.
- ("mData", POINTER(c_char)),
- ]
-
-class Material(Structure):
- """
- See 'material.h' for details.
- """
-
- _fields_ = [
- # List of all material properties loaded.
- ("mProperties", POINTER(POINTER(MaterialProperty))),
-
- # Number of properties in the data base
- ("mNumProperties", c_uint),
-
- # Storage allocated
- ("mNumAllocated", c_uint),
- ]
-
-class Bone(Structure):
- """
- See 'mesh.h' for details.
- """
-
- _fields_ = [
- # The name of the bone.
- ("mName", String),
-
- # The number of vertices affected by this bone
- # The maximum value for this member is
- #AI_MAX_BONE_WEIGHTS.
- ("mNumWeights", c_uint),
-
- # The vertices affected by this bone
- ("mWeights", POINTER(VertexWeight)),
-
- # Matrix that transforms from mesh space to bone space in bind pose
- ("mOffsetMatrix", Matrix4x4),
- ]
-
-
-class AnimMesh(Structure):
- """
- See 'mesh.h' for details.
- """
-
- AI_MAX_NUMBER_OF_TEXTURECOORDS = 0x8
- AI_MAX_NUMBER_OF_COLOR_SETS = 0x8
-
- _fields_ = [
- # Anim Mesh name
- ("mName", String),
-
- # Replacement for aiMesh::mVertices. If this array is non-NULL,
- # it *must* contain mNumVertices entries. The corresponding
- # array in the host mesh must be non-NULL as well - animation
- # meshes may neither add or nor remove vertex components (if
- # a replacement array is NULL and the corresponding source
- # array is not, the source data is taken instead)
- ("mVertices", POINTER(Vector3D)),
-
- # Replacement for aiMesh::mNormals.
- ("mNormals", POINTER(Vector3D)),
-
- # Replacement for aiMesh::mTangents.
- ("mTangents", POINTER(Vector3D)),
-
- # Replacement for aiMesh::mBitangents.
- ("mBitangents", POINTER(Vector3D)),
-
- # Replacement for aiMesh::mColors
- ("mColors", POINTER(Color4D) * AI_MAX_NUMBER_OF_COLOR_SETS),
-
- # Replacement for aiMesh::mTextureCoords
- ("mTextureCoords", POINTER(Vector3D) * AI_MAX_NUMBER_OF_TEXTURECOORDS),
-
- # The number of vertices in the aiAnimMesh, and thus the length of all
- # the member arrays.
- #
- # This has always the same value as the mNumVertices property in the
- # corresponding aiMesh. It is duplicated here merely to make the length
- # of the member arrays accessible even if the aiMesh is not known, e.g.
- # from language bindings.
- ("mNumVertices", c_uint),
-
- # Weight of the AnimMesh.
- ("mWeight", c_float),
- ]
-
-
-class Mesh(Structure):
- """
- See 'mesh.h' for details.
- """
-
- AI_MAX_FACE_INDICES = 0x7fff
- AI_MAX_BONE_WEIGHTS = 0x7fffffff
- AI_MAX_VERTICES = 0x7fffffff
- AI_MAX_FACES = 0x7fffffff
- AI_MAX_NUMBER_OF_COLOR_SETS = 0x8
- AI_MAX_NUMBER_OF_TEXTURECOORDS = 0x8
-
- _fields_ = [ # Bitwise combination of the members of the
- #aiPrimitiveType enum.
- # This specifies which types of primitives are present in the mesh.
- # The "SortByPrimitiveType"-Step can be used to make sure the
- # output meshes consist of one primitive type each.
- ("mPrimitiveTypes", c_uint),
-
- # The number of vertices in this mesh.
- # This is also the size of all of the per-vertex data arrays.
- # The maximum value for this member is
- #AI_MAX_VERTICES.
- ("mNumVertices", c_uint),
-
- # The number of primitives (triangles, polygons, lines) in this mesh.
- # This is also the size of the mFaces array.
- # The maximum value for this member is
- #AI_MAX_FACES.
- ("mNumFaces", c_uint),
-
- # Vertex positions.
- # This array is always present in a mesh. The array is
- # mNumVertices in size.
- ("mVertices", POINTER(Vector3D)),
-
- # Vertex normals.
- # The array contains normalized vectors, NULL if not present.
- # The array is mNumVertices in size. Normals are undefined for
- # point and line primitives. A mesh consisting of points and
- # lines only may not have normal vectors. Meshes with mixed
- # primitive types (i.e. lines and triangles) may have normals,
- # but the normals for vertices that are only referenced by
- # point or line primitives are undefined and set to QNaN (WARN:
- # qNaN compares to inequal to *everything*, even to qNaN itself.
- # Using code like this to check whether a field is qnan is:
- # @code
- #define IS_QNAN(f) (f != f)
- # @endcode
- # still dangerous because even 1.f == 1.f could evaluate to false! (
- # remember the subtleties of IEEE754 artithmetics). Use stuff like
- # @c fpclassify instead.
- # @note Normal vectors computed by Assimp are always unit-length.
- # However, this needn't apply for normals that have been taken
- # directly from the model file.
- ("mNormals", POINTER(Vector3D)),
-
- # Vertex tangents.
- # The tangent of a vertex points in the direction of the positive
- # X texture axis. The array contains normalized vectors, NULL if
- # not present. The array is mNumVertices in size. A mesh consisting
- # of points and lines only may not have normal vectors. Meshes with
- # mixed primitive types (i.e. lines and triangles) may have
- # normals, but the normals for vertices that are only referenced by
- # point or line primitives are undefined and set to qNaN. See
- # the
- #mNormals member for a detailed discussion of qNaNs.
- # @note If the mesh contains tangents, it automatically also
- # contains bitangents (the bitangent is just the cross product of
- # tangent and normal vectors).
- ("mTangents", POINTER(Vector3D)),
-
- # Vertex bitangents.
- # The bitangent of a vertex points in the direction of the positive
- # Y texture axis. The array contains normalized vectors, NULL if not
- # present. The array is mNumVertices in size.
- # @note If the mesh contains tangents, it automatically also contains
- # bitangents.
- ("mBitangents", POINTER(Vector3D)),
-
- # Vertex color sets.
- # A mesh may contain 0 to
- #AI_MAX_NUMBER_OF_COLOR_SETS vertex
- # colors per vertex. NULL if not present. Each array is
- # mNumVertices in size if present.
- ("mColors", POINTER(Color4D)*AI_MAX_NUMBER_OF_COLOR_SETS),
-
- # Vertex texture coords, also known as UV channels.
- # A mesh may contain 0 to AI_MAX_NUMBER_OF_TEXTURECOORDS per
- # vertex. NULL if not present. The array is mNumVertices in size.
- ("mTextureCoords", POINTER(Vector3D)*AI_MAX_NUMBER_OF_TEXTURECOORDS),
-
- # Specifies the number of components for a given UV channel.
- # Up to three channels are supported (UVW, for accessing volume
- # or cube maps). If the value is 2 for a given channel n, the
- # component p.z of mTextureCoords[n][p] is set to 0.0f.
- # If the value is 1 for a given channel, p.y is set to 0.0f, too.
- # @note 4D coords are not supported
- ("mNumUVComponents", c_uint*AI_MAX_NUMBER_OF_TEXTURECOORDS),
-
- # The faces the mesh is constructed from.
- # Each face refers to a number of vertices by their indices.
- # This array is always present in a mesh, its size is given
- # in mNumFaces. If the
- #AI_SCENE_FLAGS_NON_VERBOSE_FORMAT
- # is NOT set each face references an unique set of vertices.
- ("mFaces", POINTER(Face)),
-
- # The number of bones this mesh contains.
- # Can be 0, in which case the mBones array is NULL.
- ("mNumBones", c_uint),
-
- # The bones of this mesh.
- # A bone consists of a name by which it can be found in the
- # frame hierarchy and a set of vertex weights.
- ("mBones", POINTER(POINTER(Bone))),
-
- # The material used by this mesh.
- # A mesh does use only a single material. If an imported model uses
- # multiple materials, the import splits up the mesh. Use this value
- # as index into the scene's material list.
- ("mMaterialIndex", c_uint),
-
- # Name of the mesh. Meshes can be named, but this is not a
- # requirement and leaving this field empty is totally fine.
- # There are mainly three uses for mesh names:
- # - some formats name nodes and meshes independently.
- # - importers tend to split meshes up to meet the
- # one-material-per-mesh requirement. Assigning
- # the same (dummy) name to each of the result meshes
- # aids the caller at recovering the original mesh
- # partitioning.
- # - Vertex animations refer to meshes by their names.
- ("mName", String),
-
- # The number of attachment meshes. Note! Currently only works with Collada loader.
- ("mNumAnimMeshes", c_uint),
-
- # Attachment meshes for this mesh, for vertex-based animation.
- # Attachment meshes carry replacement data for some of the
- # mesh'es vertex components (usually positions, normals).
- # Note! Currently only works with Collada loader.
- ("mAnimMeshes", POINTER(POINTER(AnimMesh))),
-
- # Method of morphing when animeshes are specified.
- ("mMethod", c_uint),
-
- ]
-
-class Camera(Structure):
- """
- See 'camera.h' for details.
- """
-
-
- _fields_ = [
- # The name of the camera.
- # There must be a node in the scenegraph with the same name.
- # This node specifies the position of the camera in the scene
- # hierarchy and can be animated.
- ("mName", String),
-
- # Position of the camera relative to the coordinate space
- # defined by the corresponding node.
- # The default value is 0|0|0.
- ("mPosition", Vector3D),
-
- # 'Up' - vector of the camera coordinate system relative to
- # the coordinate space defined by the corresponding node.
- # The 'right' vector of the camera coordinate system is
- # the cross product of the up and lookAt vectors.
- # The default value is 0|1|0. The vector
- # may be normalized, but it needn't.
- ("mUp", Vector3D),
-
- # 'LookAt' - vector of the camera coordinate system relative to
- # the coordinate space defined by the corresponding node.
- # This is the viewing direction of the user.
- # The default value is 0|0|1. The vector
- # may be normalized, but it needn't.
- ("mLookAt", Vector3D),
-
- # Half horizontal field of view angle, in radians.
- # The field of view angle is the angle between the center
- # line of the screen and the left or right border.
- # The default value is 1/4PI.
- ("mHorizontalFOV", c_float),
-
- # Distance of the near clipping plane from the camera.
- # The value may not be 0.f (for arithmetic reasons to prevent
- # a division through zero). The default value is 0.1f.
- ("mClipPlaneNear", c_float),
-
- # Distance of the far clipping plane from the camera.
- # The far clipping plane must, of course, be further away than the
- # near clipping plane. The default value is 1000.f. The ratio
- # between the near and the far plane should not be too
- # large (between 1000-10000 should be ok) to avoid floating-point
- # inaccuracies which could lead to z-fighting.
- ("mClipPlaneFar", c_float),
-
- # Screen aspect ratio.
- # This is the ration between the width and the height of the
- # screen. Typical values are 4/3, 1/2 or 1/1. This value is
- # 0 if the aspect ratio is not defined in the source file.
- # 0 is also the default value.
- ("mAspect", c_float),
- ]
-
-class VectorKey(Structure):
- """
- See 'anim.h' for details.
- """
-
- _fields_ = [
- # The time of this key
- ("mTime", c_double),
-
- # The value of this key
- ("mValue", Vector3D),
- ]
-
-class QuatKey(Structure):
- """
- See 'anim.h' for details.
- """
-
- _fields_ = [
- # The time of this key
- ("mTime", c_double),
-
- # The value of this key
- ("mValue", Quaternion),
- ]
-
-class MeshMorphKey(Structure):
- """
- See 'anim.h' for details.
- """
-
- _fields_ = [
- # The time of this key
- ("mTime", c_double),
-
- # The values and weights at the time of this key
- ("mValues", POINTER(c_uint)),
- ("mWeights", POINTER(c_double)),
-
- # The number of values and weights
- ("mNumValuesAndWeights", c_uint),
-
- ]
-
-class NodeAnim(Structure):
- """
- See 'anim.h' for details.
- """
-
- _fields_ = [
- # The name of the node affected by this animation. The node
- # must exist and it must be unique.
- ("mNodeName", String),
-
- # The number of position keys
- ("mNumPositionKeys", c_uint),
-
- # The position keys of this animation channel. Positions are
- # specified as 3D vector. The array is mNumPositionKeys in size.
- # If there are position keys, there will also be at least one
- # scaling and one rotation key.
- ("mPositionKeys", POINTER(VectorKey)),
-
- # The number of rotation keys
- ("mNumRotationKeys", c_uint),
-
- # The rotation keys of this animation channel. Rotations are
- # given as quaternions, which are 4D vectors. The array is
- # mNumRotationKeys in size.
- # If there are rotation keys, there will also be at least one
- # scaling and one position key.
- ("mRotationKeys", POINTER(QuatKey)),
-
- # The number of scaling keys
- ("mNumScalingKeys", c_uint),
-
- # The scaling keys of this animation channel. Scalings are
- # specified as 3D vector. The array is mNumScalingKeys in size.
- # If there are scaling keys, there will also be at least one
- # position and one rotation key.
- ("mScalingKeys", POINTER(VectorKey)),
-
- # Defines how the animation behaves before the first
- # key is encountered.
- # The default value is aiAnimBehaviour_DEFAULT (the original
- # transformation matrix of the affected node is used).
- ("mPreState", c_uint),
-
- # Defines how the animation behaves after the last
- # key was processed.
- # The default value is aiAnimBehaviour_DEFAULT (the original
- # transformation matrix of the affected node is taken).
- ("mPostState", c_uint),
- ]
-
-class MeshAnim(Structure):
- """
- See 'anim.h' for details.
- """
-
- _fields_ = [
- # Name of the mesh to be animated. An empty string is not allowed,
- # animated meshes need to be named (not necessarily uniquely,
- # the name can basically serve as wild-card to select a group
- # of meshes with similar animation setup)
- ("mName", String),
-
- # Size of the #mKeys array. Must be 1, at least.
- ("mNumKeys", c_uint),
-
- # Key frames of the animation. May not be NULL.
- ("mKeys", POINTER(MeshKey)),
- ]
-
-class MeshMorphAnim(Structure):
- """
- See 'anim.h' for details.
- """
-
- _fields_ = [
- # Name of the mesh to be animated. An empty string is not allowed,
- # animated meshes need to be named (not necessarily uniquely,
- # the name can basically serve as wildcard to select a group
- # of meshes with similar animation setup)
- ("mName", String),
-
- # Size of the #mKeys array. Must be 1, at least.
- ("mNumKeys", c_uint),
-
- # Key frames of the animation. May not be NULL.
- ("mKeys", POINTER(MeshMorphKey)),
- ]
-
-
-class Animation(Structure):
- """
- See 'anim.h' for details.
- """
-
- _fields_ = [
- # The name of the animation. If the modeling package this data was
- # exported from does support only a single animation channel, this
- # name is usually empty (length is zero).
- ("mName", String),
-
- # Duration of the animation in ticks.
- ("mDuration", c_double),
-
- # Ticks per second. 0 if not specified in the imported file
- ("mTicksPerSecond", c_double),
-
- # The number of bone animation channels. Each channel affects
- # a single node.
- ("mNumChannels", c_uint),
-
- # The node animation channels. Each channel affects a single node.
- # The array is mNumChannels in size.
- ("mChannels", POINTER(POINTER(NodeAnim))),
-
- # The number of mesh animation channels. Each channel affects
- # a single mesh and defines vertex-based animation.
- ("mNumMeshChannels", c_uint),
-
- # The mesh animation channels. Each channel affects a single mesh.
- # The array is mNumMeshChannels in size.
- ("mMeshChannels", POINTER(POINTER(MeshAnim))),
-
- # The number of mesh animation channels. Each channel affects
- # a single mesh and defines morphing animation.
- ("mNumMorphMeshChannels", c_uint),
-
- # The morph mesh animation channels. Each channel affects a single mesh.
- # The array is mNumMorphMeshChannels in size.
- ("mMorphMeshChannels", POINTER(POINTER(MeshMorphAnim))),
-
- ]
-
-class ExportDataBlob(Structure):
- """
- See 'cexport.h' for details.
-
- Note that the '_fields_' definition is outside the class to allow the 'next' field to be recursive
- """
- pass
-
-ExportDataBlob._fields_ = [
- # Size of the data in bytes
- ("size", c_size_t),
-
- # The data.
- ("data", c_void_p),
-
- # Name of the blob. An empty string always
- # indicates the first (and primary) blob,
- # which contains the actual file data.
- # Any other blobs are auxiliary files produced
- # by exporters (i.e. material files). Existence
- # of such files depends on the file format. Most
- # formats don't split assets across multiple files.
- #
- # If used, blob names usually contain the file
- # extension that should be used when writing
- # the data to disc.
- ("name", String),
-
- # Pointer to the next blob in the chain or NULL if there is none.
- ("next", POINTER(ExportDataBlob)),
- ]
-
-
-class Scene(Structure):
- """
- See 'aiScene.h' for details.
- """
-
- AI_SCENE_FLAGS_INCOMPLETE = 0x1
- AI_SCENE_FLAGS_VALIDATED = 0x2
- AI_SCENE_FLAGS_VALIDATION_WARNING = 0x4
- AI_SCENE_FLAGS_NON_VERBOSE_FORMAT = 0x8
- AI_SCENE_FLAGS_TERRAIN = 0x10
- AI_SCENE_FLAGS_ALLOW_SHARED = 0x20
-
- _fields_ = [
- # Any combination of the AI_SCENE_FLAGS_XXX flags. By default
- # this value is 0, no flags are set. Most applications will
- # want to reject all scenes with the AI_SCENE_FLAGS_INCOMPLETE
- # bit set.
- ("mFlags", c_uint),
-
- # The root node of the hierarchy.
- # There will always be at least the root node if the import
- # was successful (and no special flags have been set).
- # Presence of further nodes depends on the format and content
- # of the imported file.
- ("mRootNode", POINTER(Node)),
-
- # The number of meshes in the scene.
- ("mNumMeshes", c_uint),
-
- # The array of meshes.
- # Use the indices given in the aiNode structure to access
- # this array. The array is mNumMeshes in size. If the
- # AI_SCENE_FLAGS_INCOMPLETE flag is not set there will always
- # be at least ONE material.
- ("mMeshes", POINTER(POINTER(Mesh))),
-
- # The number of materials in the scene.
- ("mNumMaterials", c_uint),
-
- # The array of materials.
- # Use the index given in each aiMesh structure to access this
- # array. The array is mNumMaterials in size. If the
- # AI_SCENE_FLAGS_INCOMPLETE flag is not set there will always
- # be at least ONE material.
- ("mMaterials", POINTER(POINTER(Material))),
-
- # The number of animations in the scene.
- ("mNumAnimations", c_uint),
-
- # The array of animations.
- # All animations imported from the given file are listed here.
- # The array is mNumAnimations in size.
- ("mAnimations", POINTER(POINTER(Animation))),
-
- # The number of textures embedded into the file
- ("mNumTextures", c_uint),
-
- # The array of embedded textures.
- # Not many file formats embed their textures into the file.
- # An example is Quake's MDL format (which is also used by
- # some GameStudio versions)
- ("mTextures", POINTER(POINTER(Texture))),
-
- # The number of light sources in the scene. Light sources
- # are fully optional, in most cases this attribute will be 0
- ("mNumLights", c_uint),
-
- # The array of light sources.
- # All light sources imported from the given file are
- # listed here. The array is mNumLights in size.
- ("mLights", POINTER(POINTER(Light))),
-
- # The number of cameras in the scene. Cameras
- # are fully optional, in most cases this attribute will be 0
- ("mNumCameras", c_uint),
-
- # The array of cameras.
- # All cameras imported from the given file are listed here.
- # The array is mNumCameras in size. The first camera in the
- # array (if existing) is the default camera view into
- # the scene.
- ("mCameras", POINTER(POINTER(Camera))),
-
- # This data contains global metadata which belongs to the scene like
- # unit-conversions, versions, vendors or other model-specific data. This
- # can be used to store format-specific metadata as well.
- ("mMetadata", POINTER(Metadata)),
-
- # Internal data, do not touch
- ("mPrivate", POINTER(c_char)),
- ]
-
-assimp_structs_as_tuple = (Matrix4x4,
- Matrix3x3,
- Vector2D,
- Vector3D,
- Color3D,
- Color4D,
- Quaternion,
- Plane,
- Texel)
diff --git a/src/mesh/assimp-master/port/PyAssimp/scripts/3d_viewer.py b/src/mesh/assimp-master/port/PyAssimp/scripts/3d_viewer.py
deleted file mode 100755
index 08a6266..0000000
--- a/src/mesh/assimp-master/port/PyAssimp/scripts/3d_viewer.py
+++ /dev/null
@@ -1,1318 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: UTF-8 -*-
-
-""" This program loads a model with PyASSIMP, and display it.
-
-Based on:
-- pygame code from http://3dengine.org/Spectator_%28PyOpenGL%29
-- http://www.lighthouse3d.com/tutorials
-- http://www.songho.ca/opengl/gl_transform.html
-- http://code.activestate.com/recipes/325391/
-- ASSIMP's C++ SimpleOpenGL viewer
-
-Authors: Séverin Lemaignan, 2012-2016
-"""
-import sys
-import logging
-
-logger = logging.getLogger("pyassimp")
-gllogger = logging.getLogger("OpenGL")
-gllogger.setLevel(logging.WARNING)
-logging.basicConfig(level=logging.INFO)
-
-import OpenGL
-
-OpenGL.ERROR_CHECKING = False
-OpenGL.ERROR_LOGGING = False
-# OpenGL.ERROR_ON_COPY = True
-# OpenGL.FULL_LOGGING = True
-from OpenGL.GL import *
-from OpenGL.arrays import vbo
-from OpenGL.GL import shaders
-
-import pygame
-import pygame.font
-import pygame.image
-
-import math, random
-from numpy import linalg
-
-import pyassimp
-from pyassimp.postprocess import *
-from pyassimp.helper import *
-import transformations
-
-ROTATION_180_X = numpy.array([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]], dtype=numpy.float32)
-
-# rendering mode
-BASE = "BASE"
-COLORS = "COLORS"
-SILHOUETTE = "SILHOUETTE"
-HELPERS = "HELPERS"
-
-# Entities type
-ENTITY = "entity"
-CAMERA = "camera"
-MESH = "mesh"
-
-FLAT_VERTEX_SHADER_120 = """
-#version 120
-
-uniform mat4 u_viewProjectionMatrix;
-uniform mat4 u_modelMatrix;
-
-uniform vec4 u_materialDiffuse;
-
-attribute vec3 a_vertex;
-
-varying vec4 v_color;
-
-void main(void)
-{
- v_color = u_materialDiffuse;
- gl_Position = u_viewProjectionMatrix * u_modelMatrix * vec4(a_vertex, 1.0);
-}
-"""
-
-FLAT_VERTEX_SHADER_130 = """
-#version 130
-
-uniform mat4 u_viewProjectionMatrix;
-uniform mat4 u_modelMatrix;
-
-uniform vec4 u_materialDiffuse;
-
-in vec3 a_vertex;
-
-out vec4 v_color;
-
-void main(void)
-{
- v_color = u_materialDiffuse;
- gl_Position = u_viewProjectionMatrix * u_modelMatrix * vec4(a_vertex, 1.0);
-}
-"""
-
-BASIC_VERTEX_SHADER_120 = """
-#version 120
-
-uniform mat4 u_viewProjectionMatrix;
-uniform mat4 u_modelMatrix;
-uniform mat3 u_normalMatrix;
-uniform vec3 u_lightPos;
-
-uniform vec4 u_materialDiffuse;
-
-attribute vec3 a_vertex;
-attribute vec3 a_normal;
-
-varying vec4 v_color;
-
-void main(void)
-{
- // Now the normal is in world space, as we pass the light in world space.
- vec3 normal = u_normalMatrix * a_normal;
-
- float dist = distance(a_vertex, u_lightPos);
-
- // go to https://www.desmos.com/calculator/nmnaud1hrw to play with the parameters
- // att is not used for now
- float att=1.0/(1.0+0.8*dist*dist);
-
- vec3 surf2light = normalize(u_lightPos - a_vertex);
- vec3 norm = normalize(normal);
- float dcont=max(0.0,dot(norm,surf2light));
-
- float ambient = 0.3;
- float intensity = dcont + 0.3 + ambient;
-
- v_color = u_materialDiffuse * intensity;
-
- gl_Position = u_viewProjectionMatrix * u_modelMatrix * vec4(a_vertex, 1.0);
-}
-"""
-
-BASIC_VERTEX_SHADER_130 = """
-#version 130
-
-uniform mat4 u_viewProjectionMatrix;
-uniform mat4 u_modelMatrix;
-uniform mat3 u_normalMatrix;
-uniform vec3 u_lightPos;
-
-uniform vec4 u_materialDiffuse;
-
-in vec3 a_vertex;
-in vec3 a_normal;
-
-out vec4 v_color;
-
-void main(void)
-{
- // Now the normal is in world space, as we pass the light in world space.
- vec3 normal = u_normalMatrix * a_normal;
-
- float dist = distance(a_vertex, u_lightPos);
-
- // go to https://www.desmos.com/calculator/nmnaud1hrw to play with the parameters
- // att is not used for now
- float att=1.0/(1.0+0.8*dist*dist);
-
- vec3 surf2light = normalize(u_lightPos - a_vertex);
- vec3 norm = normalize(normal);
- float dcont=max(0.0,dot(norm,surf2light));
-
- float ambient = 0.3;
- float intensity = dcont + 0.3 + ambient;
-
- v_color = u_materialDiffuse * intensity;
-
- gl_Position = u_viewProjectionMatrix * u_modelMatrix * vec4(a_vertex, 1.0);
-}
-"""
-
-BASIC_FRAGMENT_SHADER_120 = """
-#version 120
-
-varying vec4 v_color;
-
-void main() {
- gl_FragColor = v_color;
-}
-"""
-
-BASIC_FRAGMENT_SHADER_130 = """
-#version 130
-
-in vec4 v_color;
-
-void main() {
- gl_FragColor = v_color;
-}
-"""
-
-GOOCH_VERTEX_SHADER_120 = """
-#version 120
-
-// attributes
-attribute vec3 a_vertex; // xyz - position
-attribute vec3 a_normal; // xyz - normal
-
-// uniforms
-uniform mat4 u_modelMatrix;
-uniform mat4 u_viewProjectionMatrix;
-uniform mat3 u_normalMatrix;
-uniform vec3 u_lightPos;
-uniform vec3 u_camPos;
-
-// output data from vertex to fragment shader
-varying vec3 o_normal;
-varying vec3 o_lightVector;
-
-///////////////////////////////////////////////////////////////////
-
-void main(void)
-{
- // transform position and normal to world space
- vec4 positionWorld = u_modelMatrix * vec4(a_vertex, 1.0);
- vec3 normalWorld = u_normalMatrix * a_normal;
-
- // calculate and pass vectors required for lighting
- o_lightVector = u_lightPos - positionWorld.xyz;
- o_normal = normalWorld;
-
- // project world space position to the screen and output it
- gl_Position = u_viewProjectionMatrix * positionWorld;
-}
-"""
-
-GOOCH_VERTEX_SHADER_130 = """
-#version 130
-
-// attributes
-in vec3 a_vertex; // xyz - position
-in vec3 a_normal; // xyz - normal
-
-// uniforms
-uniform mat4 u_modelMatrix;
-uniform mat4 u_viewProjectionMatrix;
-uniform mat3 u_normalMatrix;
-uniform vec3 u_lightPos;
-uniform vec3 u_camPos;
-
-// output data from vertex to fragment shader
-out vec3 o_normal;
-out vec3 o_lightVector;
-
-///////////////////////////////////////////////////////////////////
-
-void main(void)
-{
- // transform position and normal to world space
- vec4 positionWorld = u_modelMatrix * vec4(a_vertex, 1.0);
- vec3 normalWorld = u_normalMatrix * a_normal;
-
- // calculate and pass vectors required for lighting
- o_lightVector = u_lightPos - positionWorld.xyz;
- o_normal = normalWorld;
-
- // project world space position to the screen and output it
- gl_Position = u_viewProjectionMatrix * positionWorld;
-}
-"""
-
-GOOCH_FRAGMENT_SHADER_120 = """
-#version 120
-
-// data from vertex shader
-varying vec3 o_normal;
-varying vec3 o_lightVector;
-
-// diffuse color of the object
-uniform vec4 u_materialDiffuse;
-// cool color of gooch shading
-uniform vec3 u_coolColor;
-// warm color of gooch shading
-uniform vec3 u_warmColor;
-// how much to take from object color in final cool color
-uniform float u_alpha;
-// how much to take from object color in final warm color
-uniform float u_beta;
-
-///////////////////////////////////////////////////////////
-
-void main(void)
-{
- // normlize vectors for lighting
- vec3 normalVector = normalize(o_normal);
- vec3 lightVector = normalize(o_lightVector);
- // intensity of diffuse lighting [-1, 1]
- float diffuseLighting = dot(lightVector, normalVector);
- // map intensity of lighting from range [-1; 1] to [0, 1]
- float interpolationValue = (1.0 + diffuseLighting)/2;
-
- //////////////////////////////////////////////////////////////////
-
- // cool color mixed with color of the object
- vec3 coolColorMod = u_coolColor + vec3(u_materialDiffuse) * u_alpha;
- // warm color mixed with color of the object
- vec3 warmColorMod = u_warmColor + vec3(u_materialDiffuse) * u_beta;
- // interpolation of cool and warm colors according
- // to lighting intensity. The lower the light intensity,
- // the larger part of the cool color is used
- vec3 colorOut = mix(coolColorMod, warmColorMod, interpolationValue);
-
- //////////////////////////////////////////////////////////////////
-
- // save color
- gl_FragColor.rgb = colorOut;
- gl_FragColor.a = 1;
-}
-"""
-
-GOOCH_FRAGMENT_SHADER_130 = """
-#version 130
-
-// data from vertex shader
-in vec3 o_normal;
-in vec3 o_lightVector;
-
-// diffuse color of the object
-uniform vec4 u_materialDiffuse;
-// cool color of gooch shading
-uniform vec3 u_coolColor;
-// warm color of gooch shading
-uniform vec3 u_warmColor;
-// how much to take from object color in final cool color
-uniform float u_alpha;
-// how much to take from object color in final warm color
-uniform float u_beta;
-
-// output to framebuffer
-out vec4 resultingColor;
-
-///////////////////////////////////////////////////////////
-
-void main(void)
-{
- // normlize vectors for lighting
- vec3 normalVector = normalize(o_normal);
- vec3 lightVector = normalize(o_lightVector);
- // intensity of diffuse lighting [-1, 1]
- float diffuseLighting = dot(lightVector, normalVector);
- // map intensity of lighting from range [-1; 1] to [0, 1]
- float interpolationValue = (1.0 + diffuseLighting)/2;
-
- //////////////////////////////////////////////////////////////////
-
- // cool color mixed with color of the object
- vec3 coolColorMod = u_coolColor + vec3(u_materialDiffuse) * u_alpha;
- // warm color mixed with color of the object
- vec3 warmColorMod = u_warmColor + vec3(u_materialDiffuse) * u_beta;
- // interpolation of cool and warm colors according
- // to lighting intensity. The lower the light intensity,
- // the larger part of the cool color is used
- vec3 colorOut = mix(coolColorMod, warmColorMod, interpolationValue);
-
- //////////////////////////////////////////////////////////////////
-
- // save color
- resultingColor.rgb = colorOut;
- resultingColor.a = 1;
-}
-"""
-
-SILHOUETTE_VERTEX_SHADER_120 = """
-#version 120
-
-attribute vec3 a_vertex; // xyz - position
-attribute vec3 a_normal; // xyz - normal
-
-uniform mat4 u_modelMatrix;
-uniform mat4 u_viewProjectionMatrix;
-uniform mat4 u_modelViewMatrix;
-uniform vec4 u_materialDiffuse;
-uniform float u_bordersize; // width of the border
-
-varying vec4 v_color;
-
-void main(void){
- v_color = u_materialDiffuse;
- float distToCamera = -(u_modelViewMatrix * vec4(a_vertex, 1.0)).z;
- vec4 tPos = vec4(a_vertex + a_normal * u_bordersize * distToCamera, 1.0);
- gl_Position = u_viewProjectionMatrix * u_modelMatrix * tPos;
-}
-"""
-
-SILHOUETTE_VERTEX_SHADER_130 = """
-#version 130
-
-in vec3 a_vertex; // xyz - position
-in vec3 a_normal; // xyz - normal
-
-uniform mat4 u_modelMatrix;
-uniform mat4 u_viewProjectionMatrix;
-uniform mat4 u_modelViewMatrix;
-uniform vec4 u_materialDiffuse;
-uniform float u_bordersize; // width of the border
-
-out vec4 v_color;
-
-void main(void){
- v_color = u_materialDiffuse;
- float distToCamera = -(u_modelViewMatrix * vec4(a_vertex, 1.0)).z;
- vec4 tPos = vec4(a_vertex + a_normal * u_bordersize * distToCamera, 1.0);
- gl_Position = u_viewProjectionMatrix * u_modelMatrix * tPos;
-}
-"""
-DEFAULT_CLIP_PLANE_NEAR = 0.001
-DEFAULT_CLIP_PLANE_FAR = 1000.0
-
-
-def get_world_transform(scene, node):
- if node == scene.rootnode:
- return numpy.identity(4, dtype=numpy.float32)
-
- parents = reversed(_get_parent_chain(scene, node, []))
- parent_transform = reduce(numpy.dot, [p.transformation for p in parents])
- return numpy.dot(parent_transform, node.transformation)
-
-
-def _get_parent_chain(scene, node, parents):
- parent = node.parent
-
- parents.append(parent)
-
- if parent == scene.rootnode:
- return parents
-
- return _get_parent_chain(scene, parent, parents)
-
-
-class DefaultCamera:
- def __init__(self, w, h, fov):
- self.name = "default camera"
- self.type = CAMERA
- self.clipplanenear = DEFAULT_CLIP_PLANE_NEAR
- self.clipplanefar = DEFAULT_CLIP_PLANE_FAR
- self.aspect = w / h
- self.horizontalfov = fov * math.pi / 180
- self.transformation = numpy.array([[0.68, -0.32, 0.65, 7.48],
- [0.73, 0.31, -0.61, -6.51],
- [-0.01, 0.89, 0.44, 5.34],
- [0., 0., 0., 1.]], dtype=numpy.float32)
-
- self.transformation = numpy.dot(self.transformation, ROTATION_180_X)
-
- def __str__(self):
- return self.name
-
-
-class PyAssimp3DViewer:
- base_name = "PyASSIMP 3D viewer"
-
- def __init__(self, model, w=1024, h=768):
-
- self.w = w
- self.h = h
-
- pygame.init()
- pygame.display.set_caption(self.base_name)
- pygame.display.set_mode((w, h), pygame.OPENGL | pygame.DOUBLEBUF)
-
- glClearColor(0.18, 0.18, 0.18, 1.0)
-
- shader_compilation_succeeded = False
- try:
- self.set_shaders_v130()
- self.prepare_shaders()
- except RuntimeError, message:
- sys.stderr.write("%s\n" % message)
- sys.stdout.write("Could not compile shaders in version 1.30, trying version 1.20\n")
-
- if not shader_compilation_succeeded:
- self.set_shaders_v120()
- self.prepare_shaders()
-
- self.scene = None
- self.meshes = {} # stores the OpenGL vertex/faces/normals buffers pointers
-
- self.node2colorid = {} # stores a color ID for each node. Useful for mouse picking and visibility checking
- self.colorid2node = {} # reverse dict of node2colorid
-
- self.currently_selected = None
- self.moving = False
- self.moving_situation = None
-
- self.default_camera = DefaultCamera(self.w, self.h, fov=70)
- self.cameras = [self.default_camera]
-
- self.current_cam_index = 0
- self.current_cam = self.default_camera
- self.set_camera_projection()
-
- self.load_model(model)
-
- # user interactions
- self.focal_point = [0, 0, 0]
- self.is_rotating = False
- self.is_panning = False
- self.is_zooming = False
-
- def set_shaders_v120(self):
- self.BASIC_VERTEX_SHADER = BASIC_VERTEX_SHADER_120
- self.FLAT_VERTEX_SHADER = FLAT_VERTEX_SHADER_120
- self.SILHOUETTE_VERTEX_SHADER = SILHOUETTE_VERTEX_SHADER_120
- self.GOOCH_VERTEX_SHADER = GOOCH_VERTEX_SHADER_120
-
- self.BASIC_FRAGMENT_SHADER = BASIC_FRAGMENT_SHADER_120
- self.GOOCH_FRAGMENT_SHADER = GOOCH_FRAGMENT_SHADER_120
-
- def set_shaders_v130(self):
- self.BASIC_VERTEX_SHADER = BASIC_VERTEX_SHADER_130
- self.FLAT_VERTEX_SHADER = FLAT_VERTEX_SHADER_130
- self.SILHOUETTE_VERTEX_SHADER = SILHOUETTE_VERTEX_SHADER_130
- self.GOOCH_VERTEX_SHADER = GOOCH_VERTEX_SHADER_130
-
- self.BASIC_FRAGMENT_SHADER = BASIC_FRAGMENT_SHADER_130
- self.GOOCH_FRAGMENT_SHADER = GOOCH_FRAGMENT_SHADER_130
-
- def prepare_shaders(self):
-
- ### Base shader
- vertex = shaders.compileShader(self.BASIC_VERTEX_SHADER, GL_VERTEX_SHADER)
- fragment = shaders.compileShader(self.BASIC_FRAGMENT_SHADER, GL_FRAGMENT_SHADER)
-
- self.shader = shaders.compileProgram(vertex, fragment)
-
- self.set_shader_accessors(('u_modelMatrix',
- 'u_viewProjectionMatrix',
- 'u_normalMatrix',
- 'u_lightPos',
- 'u_materialDiffuse'),
- ('a_vertex',
- 'a_normal'), self.shader)
-
- ### Flat shader
- flatvertex = shaders.compileShader(self.FLAT_VERTEX_SHADER, GL_VERTEX_SHADER)
- self.flatshader = shaders.compileProgram(flatvertex, fragment)
-
- self.set_shader_accessors(('u_modelMatrix',
- 'u_viewProjectionMatrix',
- 'u_materialDiffuse',),
- ('a_vertex',), self.flatshader)
-
- ### Silhouette shader
- silh_vertex = shaders.compileShader(self.SILHOUETTE_VERTEX_SHADER, GL_VERTEX_SHADER)
- self.silhouette_shader = shaders.compileProgram(silh_vertex, fragment)
-
- self.set_shader_accessors(('u_modelMatrix',
- 'u_viewProjectionMatrix',
- 'u_modelViewMatrix',
- 'u_materialDiffuse',
- 'u_bordersize' # width of the silhouette
- ),
- ('a_vertex',
- 'a_normal'), self.silhouette_shader)
-
- ### Gooch shader
- gooch_vertex = shaders.compileShader(self.GOOCH_VERTEX_SHADER, GL_VERTEX_SHADER)
- gooch_fragment = shaders.compileShader(self.GOOCH_FRAGMENT_SHADER, GL_FRAGMENT_SHADER)
- self.gooch_shader = shaders.compileProgram(gooch_vertex, gooch_fragment)
-
- self.set_shader_accessors(('u_modelMatrix',
- 'u_viewProjectionMatrix',
- 'u_normalMatrix',
- 'u_lightPos',
- 'u_materialDiffuse',
- 'u_coolColor',
- 'u_warmColor',
- 'u_alpha',
- 'u_beta'
- ),
- ('a_vertex',
- 'a_normal'), self.gooch_shader)
-
- @staticmethod
- def set_shader_accessors(uniforms, attributes, shader):
- # add accessors to the shaders uniforms and attributes
- for uniform in uniforms:
- location = glGetUniformLocation(shader, uniform)
- if location in (None, -1):
- raise RuntimeError('No uniform: %s (maybe it is not used '
- 'anymore and has been optimized out by'
- ' the shader compiler)' % uniform)
- setattr(shader, uniform, location)
-
- for attribute in attributes:
- location = glGetAttribLocation(shader, attribute)
- if location in (None, -1):
- raise RuntimeError('No attribute: %s' % attribute)
- setattr(shader, attribute, location)
-
- @staticmethod
- def prepare_gl_buffers(mesh):
-
- mesh.gl = {}
-
- # Fill the buffer for vertex and normals positions
- v = numpy.array(mesh.vertices, 'f')
- n = numpy.array(mesh.normals, 'f')
-
- mesh.gl["vbo"] = vbo.VBO(numpy.hstack((v, n)))
-
- # Fill the buffer for vertex positions
- mesh.gl["faces"] = glGenBuffers(1)
- glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, mesh.gl["faces"])
- glBufferData(GL_ELEMENT_ARRAY_BUFFER,
- numpy.array(mesh.faces, dtype=numpy.int32),
- GL_STATIC_DRAW)
-
- mesh.gl["nbfaces"] = len(mesh.faces)
-
- # Unbind buffers
- glBindBuffer(GL_ARRAY_BUFFER, 0)
- glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0)
-
- @staticmethod
- def get_rgb_from_colorid(colorid):
- r = (colorid >> 0) & 0xff
- g = (colorid >> 8) & 0xff
- b = (colorid >> 16) & 0xff
-
- return r, g, b
-
- def get_color_id(self):
- id = random.randint(0, 256 * 256 * 256)
- if id not in self.colorid2node:
- return id
- else:
- return self.get_color_id()
-
- def glize(self, scene, node):
-
- logger.info("Loading node <%s>" % node)
- node.selected = True if self.currently_selected and self.currently_selected == node else False
-
- node.transformation = node.transformation.astype(numpy.float32)
-
- if node.meshes:
- node.type = MESH
- colorid = self.get_color_id()
- self.colorid2node[colorid] = node
- self.node2colorid[node.name] = colorid
-
- elif node.name in [c.name for c in scene.cameras]:
-
- # retrieve the ASSIMP camera object
- [cam] = [c for c in scene.cameras if c.name == node.name]
- node.type = CAMERA
- logger.info("Added camera <%s>" % node.name)
- logger.info("Camera position: %.3f, %.3f, %.3f" % tuple(node.transformation[:, 3][:3].tolist()))
- self.cameras.append(node)
- node.clipplanenear = cam.clipplanenear
- node.clipplanefar = cam.clipplanefar
-
- if numpy.allclose(cam.lookat, [0, 0, -1]) and numpy.allclose(cam.up, [0, 1, 0]): # Cameras in .blend files
-
- # Rotate by 180deg around X to have Z pointing forward
- node.transformation = numpy.dot(node.transformation, ROTATION_180_X)
- else:
- raise RuntimeError(
- "I do not know how to normalize this camera orientation: lookat=%s, up=%s" % (cam.lookat, cam.up))
-
- if cam.aspect == 0.0:
- logger.warning("Camera aspect not set. Setting to default 4:3")
- node.aspect = 1.333
- else:
- node.aspect = cam.aspect
-
- node.horizontalfov = cam.horizontalfov
-
- else:
- node.type = ENTITY
-
- for child in node.children:
- self.glize(scene, child)
-
- def load_model(self, path, postprocess=aiProcessPreset_TargetRealtime_MaxQuality):
- logger.info("Loading model:" + path + "...")
-
- if postprocess:
- self.scene = pyassimp.load(path, processing=postprocess)
- else:
- self.scene = pyassimp.load(path)
- logger.info("Done.")
-
- scene = self.scene
- # log some statistics
- logger.info(" meshes: %d" % len(scene.meshes))
- logger.info(" total faces: %d" % sum([len(mesh.faces) for mesh in scene.meshes]))
- logger.info(" materials: %d" % len(scene.materials))
- self.bb_min, self.bb_max = get_bounding_box(self.scene)
- logger.info(" bounding box:" + str(self.bb_min) + " - " + str(self.bb_max))
-
- self.scene_center = [(a + b) / 2. for a, b in zip(self.bb_min, self.bb_max)]
-
- for index, mesh in enumerate(scene.meshes):
- self.prepare_gl_buffers(mesh)
-
- self.glize(scene, scene.rootnode)
-
- # Finally release the model
- pyassimp.release(scene)
- logger.info("Ready for 3D rendering!")
-
- def cycle_cameras(self):
-
- self.current_cam_index = (self.current_cam_index + 1) % len(self.cameras)
- self.current_cam = self.cameras[self.current_cam_index]
- self.set_camera_projection(self.current_cam)
- logger.info("Switched to camera <%s>" % self.current_cam)
-
- def set_overlay_projection(self):
- glViewport(0, 0, self.w, self.h)
- glMatrixMode(GL_PROJECTION)
- glLoadIdentity()
- glOrtho(0.0, self.w - 1.0, 0.0, self.h - 1.0, -1.0, 1.0)
- glMatrixMode(GL_MODELVIEW)
- glLoadIdentity()
-
- def set_camera_projection(self, camera=None):
-
- if not camera:
- camera = self.current_cam
-
- znear = camera.clipplanenear or DEFAULT_CLIP_PLANE_NEAR
- zfar = camera.clipplanefar or DEFAULT_CLIP_PLANE_FAR
- aspect = camera.aspect
- fov = camera.horizontalfov
-
- glMatrixMode(GL_PROJECTION)
- glLoadIdentity()
-
- # Compute gl frustrum
- tangent = math.tan(fov / 2.)
- h = znear * tangent
- w = h * aspect
-
- # params: left, right, bottom, top, near, far
- glFrustum(-w, w, -h, h, znear, zfar)
- # equivalent to:
- # gluPerspective(fov * 180/math.pi, aspect, znear, zfar)
-
- self.projection_matrix = glGetFloatv(GL_PROJECTION_MATRIX).transpose()
-
- glMatrixMode(GL_MODELVIEW)
- glLoadIdentity()
-
- def render_colors(self):
-
- glEnable(GL_DEPTH_TEST)
- glDepthFunc(GL_LEQUAL)
-
- glPolygonMode(GL_FRONT_AND_BACK, GL_FILL)
- glEnable(GL_CULL_FACE)
-
- glUseProgram(self.flatshader)
-
- glUniformMatrix4fv(self.flatshader.u_viewProjectionMatrix, 1, GL_TRUE,
- numpy.dot(self.projection_matrix, self.view_matrix))
-
- self.recursive_render(self.scene.rootnode, self.flatshader, mode=COLORS)
-
- glUseProgram(0)
-
- def get_hovered_node(self, mousex, mousey):
- """
- Attention: The performances of this method relies heavily on the size of the display!
- """
-
- # mouse out of the window?
- if mousex < 0 or mousex >= self.w or mousey < 0 or mousey >= self.h:
- return None
-
- self.render_colors()
- # Capture image from the OpenGL buffer
- buf = (GLubyte * (3 * self.w * self.h))(0)
- glReadPixels(0, 0, self.w, self.h, GL_RGB, GL_UNSIGNED_BYTE, buf)
-
- # Reinterpret the RGB pixel buffer as a 1-D array of 24bits colors
- a = numpy.ndarray(len(buf), numpy.dtype('>u1'), buf)
- colors = numpy.zeros(len(buf) / 3, numpy.dtype('<u4'))
- for i in range(3):
- colors.view(dtype='>u1')[i::4] = a.view(dtype='>u1')[i::3]
-
- colorid = colors[mousex + mousey * self.w]
-
- glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)
-
- if colorid in self.colorid2node:
- return self.colorid2node[colorid]
-
- def render(self, wireframe=False, twosided=False):
-
- glEnable(GL_DEPTH_TEST)
- glDepthFunc(GL_LEQUAL)
-
- glPolygonMode(GL_FRONT_AND_BACK, GL_LINE if wireframe else GL_FILL)
- glDisable(GL_CULL_FACE) if twosided else glEnable(GL_CULL_FACE)
-
- self.render_grid()
-
- self.recursive_render(self.scene.rootnode, None, mode=HELPERS)
-
- ### First, the silhouette
-
- if False:
- shader = self.silhouette_shader
-
- # glDepthMask(GL_FALSE)
- glCullFace(GL_FRONT) # cull front faces
-
- glUseProgram(shader)
- glUniform1f(shader.u_bordersize, 0.01)
-
- glUniformMatrix4fv(shader.u_viewProjectionMatrix, 1, GL_TRUE,
- numpy.dot(self.projection_matrix, self.view_matrix))
-
- self.recursive_render(self.scene.rootnode, shader, mode=SILHOUETTE)
-
- glUseProgram(0)
-
- ### Then, inner shading
- # glDepthMask(GL_TRUE)
- glCullFace(GL_BACK)
-
- use_gooch = False
- if use_gooch:
- shader = self.gooch_shader
-
- glUseProgram(shader)
- glUniform3f(shader.u_lightPos, -.5, -.5, .5)
-
- ##### GOOCH specific
- glUniform3f(shader.u_coolColor, 159.0 / 255, 148.0 / 255, 255.0 / 255)
- glUniform3f(shader.u_warmColor, 255.0 / 255, 75.0 / 255, 75.0 / 255)
- glUniform1f(shader.u_alpha, .25)
- glUniform1f(shader.u_beta, .25)
- #########
- else:
- shader = self.shader
- glUseProgram(shader)
- glUniform3f(shader.u_lightPos, -.5, -.5, .5)
-
- glUniformMatrix4fv(shader.u_viewProjectionMatrix, 1, GL_TRUE,
- numpy.dot(self.projection_matrix, self.view_matrix))
-
- self.recursive_render(self.scene.rootnode, shader)
-
- glUseProgram(0)
-
- def render_axis(self,
- transformation=numpy.identity(4, dtype=numpy.float32),
- label=None,
- size=0.2,
- selected=False):
- m = transformation.transpose() # OpenGL row major
-
- glPushMatrix()
- glMultMatrixf(m)
-
- glLineWidth(3 if selected else 1)
-
- size = 2 * size if selected else size
-
- glBegin(GL_LINES)
-
- # draw line for x axis
- glColor3f(1.0, 0.0, 0.0)
- glVertex3f(0.0, 0.0, 0.0)
- glVertex3f(size, 0.0, 0.0)
-
- # draw line for y axis
- glColor3f(0.0, 1.0, 0.0)
- glVertex3f(0.0, 0.0, 0.0)
- glVertex3f(0.0, size, 0.0)
-
- # draw line for Z axis
- glColor3f(0.0, 0.0, 1.0)
- glVertex3f(0.0, 0.0, 0.0)
- glVertex3f(0.0, 0.0, size)
-
- glEnd()
-
- if label:
- self.showtext(label)
-
- glPopMatrix()
-
- @staticmethod
- def render_camera(camera, transformation):
-
- m = transformation.transpose() # OpenGL row major
-
- aspect = camera.aspect
-
- u = 0.1 # unit size (in m)
- l = 3 * u # length of the camera cone
- f = 3 * u # aperture of the camera cone
-
- glPushMatrix()
- glMultMatrixf(m)
-
- glLineWidth(2)
- glBegin(GL_LINE_STRIP)
-
- glColor3f(.2, .2, .2)
-
- glVertex3f(u, u, -u)
- glVertex3f(u, -u, -u)
- glVertex3f(-u, -u, -u)
- glVertex3f(-u, u, -u)
- glVertex3f(u, u, -u)
-
- glVertex3f(u, u, 0.0)
- glVertex3f(u, -u, 0.0)
- glVertex3f(-u, -u, 0.0)
- glVertex3f(-u, u, 0.0)
- glVertex3f(u, u, 0.0)
-
- glVertex3f(f * aspect, f, l)
- glVertex3f(f * aspect, -f, l)
- glVertex3f(-f * aspect, -f, l)
- glVertex3f(-f * aspect, f, l)
- glVertex3f(f * aspect, f, l)
-
- glEnd()
-
- glBegin(GL_LINE_STRIP)
- glVertex3f(u, -u, -u)
- glVertex3f(u, -u, 0.0)
- glVertex3f(f * aspect, -f, l)
- glEnd()
-
- glBegin(GL_LINE_STRIP)
- glVertex3f(-u, -u, -u)
- glVertex3f(-u, -u, 0.0)
- glVertex3f(-f * aspect, -f, l)
- glEnd()
-
- glBegin(GL_LINE_STRIP)
- glVertex3f(-u, u, -u)
- glVertex3f(-u, u, 0.0)
- glVertex3f(-f * aspect, f, l)
- glEnd()
-
- glPopMatrix()
-
- @staticmethod
- def render_grid():
-
- glLineWidth(1)
- glColor3f(0.5, 0.5, 0.5)
- glBegin(GL_LINES)
- for i in range(-10, 11):
- glVertex3f(i, -10.0, 0.0)
- glVertex3f(i, 10.0, 0.0)
-
- for i in range(-10, 11):
- glVertex3f(-10.0, i, 0.0)
- glVertex3f(10.0, i, 0.0)
- glEnd()
-
- def recursive_render(self, node, shader, mode=BASE, with_normals=True):
- """ Main recursive rendering method.
- """
-
- normals = with_normals
-
- if mode == COLORS:
- normals = False
-
-
- if not hasattr(node, "selected"):
- node.selected = False
-
- m = get_world_transform(self.scene, node)
-
- # HELPERS mode
- ###
- if mode == HELPERS:
- # if node.type == ENTITY:
- self.render_axis(m,
- label=node.name if node != self.scene.rootnode else None,
- selected=node.selected if hasattr(node, "selected") else False)
-
- if node.type == CAMERA:
- self.render_camera(node, m)
-
- for child in node.children:
- self.recursive_render(child, shader, mode)
-
- return
-
- # Mesh rendering modes
- ###
- if node.type == MESH:
-
- for mesh in node.meshes:
-
- stride = 24 # 6 * 4 bytes
-
- if node.selected and mode == SILHOUETTE:
- glUniform4f(shader.u_materialDiffuse, 1.0, 0.0, 0.0, 1.0)
- glUniformMatrix4fv(shader.u_modelViewMatrix, 1, GL_TRUE,
- numpy.dot(self.view_matrix, m))
-
- else:
- if mode == COLORS:
- colorid = self.node2colorid[node.name]
- r, g, b = self.get_rgb_from_colorid(colorid)
- glUniform4f(shader.u_materialDiffuse, r / 255.0, g / 255.0, b / 255.0, 1.0)
- elif mode == SILHOUETTE:
- glUniform4f(shader.u_materialDiffuse, .0, .0, .0, 1.0)
- else:
- if node.selected:
- diffuse = (1.0, 0.0, 0.0, 1.0) # selected nodes in red
- else:
- diffuse = mesh.material.properties["diffuse"]
- if len(diffuse) == 3: # RGB instead of expected RGBA
- diffuse.append(1.0)
- glUniform4f(shader.u_materialDiffuse, *diffuse)
- # if ambient:
- # glUniform4f( shader.Material_ambient, *mat["ambient"] )
-
- if mode == BASE: # not in COLORS or SILHOUETTE
- normal_matrix = linalg.inv(numpy.dot(self.view_matrix, m)[0:3, 0:3]).transpose()
- glUniformMatrix3fv(shader.u_normalMatrix, 1, GL_TRUE, normal_matrix)
-
- glUniformMatrix4fv(shader.u_modelMatrix, 1, GL_TRUE, m)
-
- vbo = mesh.gl["vbo"]
- vbo.bind()
-
- glEnableVertexAttribArray(shader.a_vertex)
- if normals:
- glEnableVertexAttribArray(shader.a_normal)
-
- glVertexAttribPointer(
- shader.a_vertex,
- 3, GL_FLOAT, False, stride, vbo
- )
-
- if normals:
- glVertexAttribPointer(
- shader.a_normal,
- 3, GL_FLOAT, False, stride, vbo + 12
- )
-
- glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, mesh.gl["faces"])
- glDrawElements(GL_TRIANGLES, mesh.gl["nbfaces"] * 3, GL_UNSIGNED_INT, None)
-
- vbo.unbind()
- glDisableVertexAttribArray(shader.a_vertex)
-
- if normals:
- glDisableVertexAttribArray(shader.a_normal)
-
- glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0)
-
- for child in node.children:
- self.recursive_render(child, shader, mode)
-
-
- def switch_to_overlay(self):
- glPushMatrix()
- self.set_overlay_projection()
-
- def switch_from_overlay(self):
- self.set_camera_projection()
- glPopMatrix()
-
- def select_node(self, node):
- self.currently_selected = node
- self.update_node_select(self.scene.rootnode)
-
- def update_node_select(self, node):
- if node is self.currently_selected:
- node.selected = True
- else:
- node.selected = False
-
- for child in node.children:
- self.update_node_select(child)
-
- def loop(self):
-
- pygame.display.flip()
-
- if not self.process_events():
- return False # ESC has been pressed
-
- glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)
-
- return True
-
- def process_events(self):
-
- LEFT_BUTTON = 1
- MIDDLE_BUTTON = 2
- RIGHT_BUTTON = 3
- WHEEL_UP = 4
- WHEEL_DOWN = 5
-
- dx, dy = pygame.mouse.get_rel()
- mousex, mousey = pygame.mouse.get_pos()
-
- zooming_one_shot = False
-
- ok = True
-
- for evt in pygame.event.get():
- if evt.type == pygame.MOUSEBUTTONDOWN and evt.button == LEFT_BUTTON:
- hovered = self.get_hovered_node(mousex, self.h - mousey)
- if hovered:
- if self.currently_selected and self.currently_selected == hovered:
- self.select_node(None)
- else:
- logger.info("Node %s selected" % hovered)
- self.select_node(hovered)
- else:
- self.is_rotating = True
- if evt.type == pygame.MOUSEBUTTONUP and evt.button == LEFT_BUTTON:
- self.is_rotating = False
-
- if evt.type == pygame.MOUSEBUTTONDOWN and evt.button == MIDDLE_BUTTON:
- self.is_panning = True
- if evt.type == pygame.MOUSEBUTTONUP and evt.button == MIDDLE_BUTTON:
- self.is_panning = False
-
- if evt.type == pygame.MOUSEBUTTONDOWN and evt.button == RIGHT_BUTTON:
- self.is_zooming = True
- if evt.type == pygame.MOUSEBUTTONUP and evt.button == RIGHT_BUTTON:
- self.is_zooming = False
-
- if evt.type == pygame.MOUSEBUTTONDOWN and evt.button in [WHEEL_UP, WHEEL_DOWN]:
- zooming_one_shot = True
- self.is_zooming = True
- dy = -10 if evt.button == WHEEL_UP else 10
-
- if evt.type == pygame.KEYDOWN:
- ok = (ok and self.process_keystroke(evt.key, evt.mod))
-
- self.controls_3d(dx, dy, zooming_one_shot)
-
- return ok
-
- def process_keystroke(self, key, mod):
-
- # process arrow keys if an object is selected
- if self.currently_selected:
- up = 0
- strafe = 0
-
- if key == pygame.K_UP:
- up = 1
- if key == pygame.K_DOWN:
- up = -1
- if key == pygame.K_LEFT:
- strafe = -1
- if key == pygame.K_RIGHT:
- strafe = 1
-
- self.move_selected_node(up, strafe)
-
- if key == pygame.K_f:
- pygame.display.toggle_fullscreen()
-
- if key == pygame.K_TAB:
- self.cycle_cameras()
-
- if key in [pygame.K_ESCAPE, pygame.K_q]:
- return False
-
- return True
-
- def controls_3d(self, dx, dy, zooming_one_shot=False):
-
- CAMERA_TRANSLATION_FACTOR = 0.01
- CAMERA_ROTATION_FACTOR = 0.01
-
- if not (self.is_rotating or self.is_panning or self.is_zooming):
- return
-
- current_pos = self.current_cam.transformation[:3, 3].copy()
- distance = numpy.linalg.norm(self.focal_point - current_pos)
-
- if self.is_rotating:
- """ Orbiting the camera is implemented the following way:
-
- - the rotation is split into a rotation around the *world* Z axis
- (controlled by the horizontal mouse motion along X) and a
- rotation around the *X* axis of the camera (pitch) *shifted to
- the focal origin* (the world origin for now). This is controlled
- by the vertical motion of the mouse (Y axis).
-
- - as a result, the resulting transformation of the camera in the
- world frame C' is:
- C' = (T · Rx · T⁻¹ · (Rz · C)⁻¹)⁻¹
-
- where:
- - C is the original camera transformation in the world frame,
- - Rz is the rotation along the Z axis (in the world frame)
- - T is the translation camera -> world (ie, the inverse of the
- translation part of C
- - Rx is the rotation around X in the (translated) camera frame
- """
-
- rotation_camera_x = dy * CAMERA_ROTATION_FACTOR
- rotation_world_z = dx * CAMERA_ROTATION_FACTOR
- world_z_rotation = transformations.euler_matrix(0, 0, rotation_world_z)
- cam_x_rotation = transformations.euler_matrix(rotation_camera_x, 0, 0)
-
- after_world_z_rotation = numpy.dot(world_z_rotation, self.current_cam.transformation)
-
- inverse_transformation = transformations.inverse_matrix(after_world_z_rotation)
-
- translation = transformations.translation_matrix(
- transformations.decompose_matrix(inverse_transformation)[3])
- inverse_translation = transformations.inverse_matrix(translation)
-
- new_inverse = numpy.dot(inverse_translation, inverse_transformation)
- new_inverse = numpy.dot(cam_x_rotation, new_inverse)
- new_inverse = numpy.dot(translation, new_inverse)
-
- self.current_cam.transformation = transformations.inverse_matrix(new_inverse).astype(numpy.float32)
-
- if self.is_panning:
- tx = -dx * CAMERA_TRANSLATION_FACTOR * distance
- ty = dy * CAMERA_TRANSLATION_FACTOR * distance
- cam_transform = transformations.translation_matrix((tx, ty, 0)).astype(numpy.float32)
- self.current_cam.transformation = numpy.dot(self.current_cam.transformation, cam_transform)
-
- if self.is_zooming:
- tz = dy * CAMERA_TRANSLATION_FACTOR * distance
- cam_transform = transformations.translation_matrix((0, 0, tz)).astype(numpy.float32)
- self.current_cam.transformation = numpy.dot(self.current_cam.transformation, cam_transform)
-
- if zooming_one_shot:
- self.is_zooming = False
-
- self.update_view_camera()
-
- def update_view_camera(self):
-
- self.view_matrix = linalg.inv(self.current_cam.transformation)
-
- # Rotate by 180deg around X to have Z pointing backward (OpenGL convention)
- self.view_matrix = numpy.dot(ROTATION_180_X, self.view_matrix)
-
- glMatrixMode(GL_MODELVIEW)
- glLoadIdentity()
- glMultMatrixf(self.view_matrix.transpose())
-
- def move_selected_node(self, up, strafe):
- self.currently_selected.transformation[0][3] += strafe
- self.currently_selected.transformation[2][3] += up
-
- @staticmethod
- def showtext(text, x=0, y=0, z=0, size=20):
-
- # TODO: alpha blending does not work...
- # glEnable(GL_BLEND)
- # glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)
-
- font = pygame.font.Font(None, size)
- text_surface = font.render(text, True, (10, 10, 10, 255),
- (255 * 0.18, 255 * 0.18, 255 * 0.18, 0))
- text_data = pygame.image.tostring(text_surface, "RGBA", True)
- glRasterPos3d(x, y, z)
- glDrawPixels(text_surface.get_width(),
- text_surface.get_height(),
- GL_RGBA, GL_UNSIGNED_BYTE,
- text_data)
-
- # glDisable(GL_BLEND)
-
-
-def main(model, width, height):
- app = PyAssimp3DViewer(model, w=width, h=height)
-
- clock = pygame.time.Clock()
-
- while app.loop():
-
- app.update_view_camera()
-
- ## Main rendering
- app.render()
-
- ## GUI text display
- app.switch_to_overlay()
- app.showtext("Active camera: %s" % str(app.current_cam), 10, app.h - 30)
- if app.currently_selected:
- app.showtext("Selected node: %s" % app.currently_selected, 10, app.h - 50)
- pos = app.h - 70
-
- app.showtext("(%sm, %sm, %sm)" % (app.currently_selected.transformation[0, 3],
- app.currently_selected.transformation[1, 3],
- app.currently_selected.transformation[2, 3]), 30, pos)
-
- app.switch_from_overlay()
-
- # Make sure we do not go over 30fps
- clock.tick(30)
-
- logger.info("Quitting! Bye bye!")
-
-
-#########################################################################
-#########################################################################
-
-if __name__ == '__main__':
- if not len(sys.argv) > 1:
- print("Usage: " + __file__ + " <model>")
- sys.exit(2)
-
- main(model=sys.argv[1], width=1024, height=768)
diff --git a/src/mesh/assimp-master/port/PyAssimp/scripts/3d_viewer_py3.py b/src/mesh/assimp-master/port/PyAssimp/scripts/3d_viewer_py3.py
deleted file mode 100755
index fcee637..0000000
--- a/src/mesh/assimp-master/port/PyAssimp/scripts/3d_viewer_py3.py
+++ /dev/null
@@ -1,1316 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: UTF-8 -*-
-
-""" This program loads a model with PyASSIMP, and display it.
-
-Based on:
-- pygame code from http://3dengine.org/Spectator_%28PyOpenGL%29
-- http://www.lighthouse3d.com/tutorials
-- http://www.songho.ca/opengl/gl_transform.html
-- http://code.activestate.com/recipes/325391/
-- ASSIMP's C++ SimpleOpenGL viewer
-
-Authors: Séverin Lemaignan, 2012-2016
-"""
-import sys
-import logging
-
-from functools import reduce
-
-logger = logging.getLogger("pyassimp")
-gllogger = logging.getLogger("OpenGL")
-gllogger.setLevel(logging.WARNING)
-logging.basicConfig(level=logging.INFO)
-
-import OpenGL
-
-OpenGL.ERROR_CHECKING = False
-OpenGL.ERROR_LOGGING = False
-# OpenGL.ERROR_ON_COPY = True
-# OpenGL.FULL_LOGGING = True
-from OpenGL.GL import *
-from OpenGL.arrays import vbo
-from OpenGL.GL import shaders
-
-import pygame
-import pygame.font
-import pygame.image
-
-import math, random
-from numpy import linalg
-
-import pyassimp
-from pyassimp.postprocess import *
-from pyassimp.helper import *
-import transformations
-
-ROTATION_180_X = numpy.array([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]], dtype=numpy.float32)
-
-# rendering mode
-BASE = "BASE"
-COLORS = "COLORS"
-SILHOUETTE = "SILHOUETTE"
-HELPERS = "HELPERS"
-
-# Entities type
-ENTITY = "entity"
-CAMERA = "camera"
-MESH = "mesh"
-
-FLAT_VERTEX_SHADER_120 = """
-#version 120
-
-uniform mat4 u_viewProjectionMatrix;
-uniform mat4 u_modelMatrix;
-
-uniform vec4 u_materialDiffuse;
-
-attribute vec3 a_vertex;
-
-varying vec4 v_color;
-
-void main(void)
-{
- v_color = u_materialDiffuse;
- gl_Position = u_viewProjectionMatrix * u_modelMatrix * vec4(a_vertex, 1.0);
-}
-"""
-
-FLAT_VERTEX_SHADER_130 = """
-#version 130
-
-uniform mat4 u_viewProjectionMatrix;
-uniform mat4 u_modelMatrix;
-
-uniform vec4 u_materialDiffuse;
-
-in vec3 a_vertex;
-
-out vec4 v_color;
-
-void main(void)
-{
- v_color = u_materialDiffuse;
- gl_Position = u_viewProjectionMatrix * u_modelMatrix * vec4(a_vertex, 1.0);
-}
-"""
-
-BASIC_VERTEX_SHADER_120 = """
-#version 120
-
-uniform mat4 u_viewProjectionMatrix;
-uniform mat4 u_modelMatrix;
-uniform mat3 u_normalMatrix;
-uniform vec3 u_lightPos;
-
-uniform vec4 u_materialDiffuse;
-
-attribute vec3 a_vertex;
-attribute vec3 a_normal;
-
-varying vec4 v_color;
-
-void main(void)
-{
- // Now the normal is in world space, as we pass the light in world space.
- vec3 normal = u_normalMatrix * a_normal;
-
- float dist = distance(a_vertex, u_lightPos);
-
- // go to https://www.desmos.com/calculator/nmnaud1hrw to play with the parameters
- // att is not used for now
- float att=1.0/(1.0+0.8*dist*dist);
-
- vec3 surf2light = normalize(u_lightPos - a_vertex);
- vec3 norm = normalize(normal);
- float dcont=max(0.0,dot(norm,surf2light));
-
- float ambient = 0.3;
- float intensity = dcont + 0.3 + ambient;
-
- v_color = u_materialDiffuse * intensity;
-
- gl_Position = u_viewProjectionMatrix * u_modelMatrix * vec4(a_vertex, 1.0);
-}
-"""
-
-BASIC_VERTEX_SHADER_130 = """
-#version 130
-
-uniform mat4 u_viewProjectionMatrix;
-uniform mat4 u_modelMatrix;
-uniform mat3 u_normalMatrix;
-uniform vec3 u_lightPos;
-
-uniform vec4 u_materialDiffuse;
-
-in vec3 a_vertex;
-in vec3 a_normal;
-
-out vec4 v_color;
-
-void main(void)
-{
- // Now the normal is in world space, as we pass the light in world space.
- vec3 normal = u_normalMatrix * a_normal;
-
- float dist = distance(a_vertex, u_lightPos);
-
- // go to https://www.desmos.com/calculator/nmnaud1hrw to play with the parameters
- // att is not used for now
- float att=1.0/(1.0+0.8*dist*dist);
-
- vec3 surf2light = normalize(u_lightPos - a_vertex);
- vec3 norm = normalize(normal);
- float dcont=max(0.0,dot(norm,surf2light));
-
- float ambient = 0.3;
- float intensity = dcont + 0.3 + ambient;
-
- v_color = u_materialDiffuse * intensity;
-
- gl_Position = u_viewProjectionMatrix * u_modelMatrix * vec4(a_vertex, 1.0);
-}
-"""
-
-BASIC_FRAGMENT_SHADER_120 = """
-#version 120
-
-varying vec4 v_color;
-
-void main() {
- gl_FragColor = v_color;
-}
-"""
-
-BASIC_FRAGMENT_SHADER_130 = """
-#version 130
-
-in vec4 v_color;
-
-void main() {
- gl_FragColor = v_color;
-}
-"""
-
-GOOCH_VERTEX_SHADER_120 = """
-#version 120
-
-// attributes
-attribute vec3 a_vertex; // xyz - position
-attribute vec3 a_normal; // xyz - normal
-
-// uniforms
-uniform mat4 u_modelMatrix;
-uniform mat4 u_viewProjectionMatrix;
-uniform mat3 u_normalMatrix;
-uniform vec3 u_lightPos;
-uniform vec3 u_camPos;
-
-// output data from vertex to fragment shader
-varying vec3 o_normal;
-varying vec3 o_lightVector;
-
-///////////////////////////////////////////////////////////////////
-
-void main(void)
-{
- // transform position and normal to world space
- vec4 positionWorld = u_modelMatrix * vec4(a_vertex, 1.0);
- vec3 normalWorld = u_normalMatrix * a_normal;
-
- // calculate and pass vectors required for lighting
- o_lightVector = u_lightPos - positionWorld.xyz;
- o_normal = normalWorld;
-
- // project world space position to the screen and output it
- gl_Position = u_viewProjectionMatrix * positionWorld;
-}
-"""
-
-GOOCH_VERTEX_SHADER_130 = """
-#version 130
-
-// attributes
-in vec3 a_vertex; // xyz - position
-in vec3 a_normal; // xyz - normal
-
-// uniforms
-uniform mat4 u_modelMatrix;
-uniform mat4 u_viewProjectionMatrix;
-uniform mat3 u_normalMatrix;
-uniform vec3 u_lightPos;
-uniform vec3 u_camPos;
-
-// output data from vertex to fragment shader
-out vec3 o_normal;
-out vec3 o_lightVector;
-
-///////////////////////////////////////////////////////////////////
-
-void main(void)
-{
- // transform position and normal to world space
- vec4 positionWorld = u_modelMatrix * vec4(a_vertex, 1.0);
- vec3 normalWorld = u_normalMatrix * a_normal;
-
- // calculate and pass vectors required for lighting
- o_lightVector = u_lightPos - positionWorld.xyz;
- o_normal = normalWorld;
-
- // project world space position to the screen and output it
- gl_Position = u_viewProjectionMatrix * positionWorld;
-}
-"""
-
-GOOCH_FRAGMENT_SHADER_120 = """
-#version 120
-
-// data from vertex shader
-varying vec3 o_normal;
-varying vec3 o_lightVector;
-
-// diffuse color of the object
-uniform vec4 u_materialDiffuse;
-// cool color of gooch shading
-uniform vec3 u_coolColor;
-// warm color of gooch shading
-uniform vec3 u_warmColor;
-// how much to take from object color in final cool color
-uniform float u_alpha;
-// how much to take from object color in final warm color
-uniform float u_beta;
-
-///////////////////////////////////////////////////////////
-
-void main(void)
-{
- // normlize vectors for lighting
- vec3 normalVector = normalize(o_normal);
- vec3 lightVector = normalize(o_lightVector);
- // intensity of diffuse lighting [-1, 1]
- float diffuseLighting = dot(lightVector, normalVector);
- // map intensity of lighting from range [-1; 1] to [0, 1]
- float interpolationValue = (1.0 + diffuseLighting)/2;
-
- //////////////////////////////////////////////////////////////////
-
- // cool color mixed with color of the object
- vec3 coolColorMod = u_coolColor + vec3(u_materialDiffuse) * u_alpha;
- // warm color mixed with color of the object
- vec3 warmColorMod = u_warmColor + vec3(u_materialDiffuse) * u_beta;
- // interpolation of cool and warm colors according
- // to lighting intensity. The lower the light intensity,
- // the larger part of the cool color is used
- vec3 colorOut = mix(coolColorMod, warmColorMod, interpolationValue);
-
- //////////////////////////////////////////////////////////////////
-
- // save color
- gl_FragColor.rgb = colorOut;
- gl_FragColor.a = 1;
-}
-"""
-
-GOOCH_FRAGMENT_SHADER_130 = """
-#version 130
-
-// data from vertex shader
-in vec3 o_normal;
-in vec3 o_lightVector;
-
-// diffuse color of the object
-uniform vec4 u_materialDiffuse;
-// cool color of gooch shading
-uniform vec3 u_coolColor;
-// warm color of gooch shading
-uniform vec3 u_warmColor;
-// how much to take from object color in final cool color
-uniform float u_alpha;
-// how much to take from object color in final warm color
-uniform float u_beta;
-
-// output to framebuffer
-out vec4 resultingColor;
-
-///////////////////////////////////////////////////////////
-
-void main(void)
-{
- // normlize vectors for lighting
- vec3 normalVector = normalize(o_normal);
- vec3 lightVector = normalize(o_lightVector);
- // intensity of diffuse lighting [-1, 1]
- float diffuseLighting = dot(lightVector, normalVector);
- // map intensity of lighting from range [-1; 1] to [0, 1]
- float interpolationValue = (1.0 + diffuseLighting)/2;
-
- //////////////////////////////////////////////////////////////////
-
- // cool color mixed with color of the object
- vec3 coolColorMod = u_coolColor + vec3(u_materialDiffuse) * u_alpha;
- // warm color mixed with color of the object
- vec3 warmColorMod = u_warmColor + vec3(u_materialDiffuse) * u_beta;
- // interpolation of cool and warm colors according
- // to lighting intensity. The lower the light intensity,
- // the larger part of the cool color is used
- vec3 colorOut = mix(coolColorMod, warmColorMod, interpolationValue);
-
- //////////////////////////////////////////////////////////////////
-
- // save color
- resultingColor.rgb = colorOut;
- resultingColor.a = 1;
-}
-"""
-
-SILHOUETTE_VERTEX_SHADER_120 = """
-#version 120
-
-attribute vec3 a_vertex; // xyz - position
-attribute vec3 a_normal; // xyz - normal
-
-uniform mat4 u_modelMatrix;
-uniform mat4 u_viewProjectionMatrix;
-uniform mat4 u_modelViewMatrix;
-uniform vec4 u_materialDiffuse;
-uniform float u_bordersize; // width of the border
-
-varying vec4 v_color;
-
-void main(void){
- v_color = u_materialDiffuse;
- float distToCamera = -(u_modelViewMatrix * vec4(a_vertex, 1.0)).z;
- vec4 tPos = vec4(a_vertex + a_normal * u_bordersize * distToCamera, 1.0);
- gl_Position = u_viewProjectionMatrix * u_modelMatrix * tPos;
-}
-"""
-
-SILHOUETTE_VERTEX_SHADER_130 = """
-#version 130
-
-in vec3 a_vertex; // xyz - position
-in vec3 a_normal; // xyz - normal
-
-uniform mat4 u_modelMatrix;
-uniform mat4 u_viewProjectionMatrix;
-uniform mat4 u_modelViewMatrix;
-uniform vec4 u_materialDiffuse;
-uniform float u_bordersize; // width of the border
-
-out vec4 v_color;
-
-void main(void){
- v_color = u_materialDiffuse;
- float distToCamera = -(u_modelViewMatrix * vec4(a_vertex, 1.0)).z;
- vec4 tPos = vec4(a_vertex + a_normal * u_bordersize * distToCamera, 1.0);
- gl_Position = u_viewProjectionMatrix * u_modelMatrix * tPos;
-}
-"""
-DEFAULT_CLIP_PLANE_NEAR = 0.001
-DEFAULT_CLIP_PLANE_FAR = 1000.0
-
-
-def get_world_transform(scene, node):
- if node == scene.rootnode:
- return numpy.identity(4, dtype=numpy.float32)
-
- parents = reversed(_get_parent_chain(scene, node, []))
- parent_transform = reduce(numpy.dot, [p.transformation for p in parents])
- return numpy.dot(parent_transform, node.transformation)
-
-
-def _get_parent_chain(scene, node, parents):
- parent = node.parent
-
- parents.append(parent)
-
- if parent == scene.rootnode:
- return parents
-
- return _get_parent_chain(scene, parent, parents)
-
-
-class DefaultCamera:
- def __init__(self, w, h, fov):
- self.name = "default camera"
- self.type = CAMERA
- self.clipplanenear = DEFAULT_CLIP_PLANE_NEAR
- self.clipplanefar = DEFAULT_CLIP_PLANE_FAR
- self.aspect = w / h
- self.horizontalfov = fov * math.pi / 180
- self.transformation = numpy.array([[0.68, -0.32, 0.65, 7.48],
- [0.73, 0.31, -0.61, -6.51],
- [-0.01, 0.89, 0.44, 5.34],
- [0., 0., 0., 1.]], dtype=numpy.float32)
-
- self.transformation = numpy.dot(self.transformation, ROTATION_180_X)
-
- def __str__(self):
- return self.name
-
-
-class PyAssimp3DViewer:
- base_name = "PyASSIMP 3D viewer"
-
- def __init__(self, model, w=1024, h=768):
-
- self.w = w
- self.h = h
-
- pygame.init()
- pygame.display.set_caption(self.base_name)
- pygame.display.set_mode((w, h), pygame.OPENGL | pygame.DOUBLEBUF)
-
- glClearColor(0.18, 0.18, 0.18, 1.0)
-
- shader_compilation_succeeded = False
- try:
- self.set_shaders_v130()
- self.prepare_shaders()
- except RuntimeError as message:
- sys.stderr.write("%s\n" % message)
- sys.stdout.write("Could not compile shaders in version 1.30, trying version 1.20\n")
-
- if not shader_compilation_succeeded:
- self.set_shaders_v120()
- self.prepare_shaders()
-
- self.scene = None
- self.meshes = {} # stores the OpenGL vertex/faces/normals buffers pointers
-
- self.node2colorid = {} # stores a color ID for each node. Useful for mouse picking and visibility checking
- self.colorid2node = {} # reverse dict of node2colorid
-
- self.currently_selected = None
- self.moving = False
- self.moving_situation = None
-
- self.default_camera = DefaultCamera(self.w, self.h, fov=70)
- self.cameras = [self.default_camera]
-
- self.current_cam_index = 0
- self.current_cam = self.default_camera
- self.set_camera_projection()
-
- self.load_model(model)
-
- # user interactions
- self.focal_point = [0, 0, 0]
- self.is_rotating = False
- self.is_panning = False
- self.is_zooming = False
-
- def set_shaders_v120(self):
- self.BASIC_VERTEX_SHADER = BASIC_VERTEX_SHADER_120
- self.FLAT_VERTEX_SHADER = FLAT_VERTEX_SHADER_120
- self.SILHOUETTE_VERTEX_SHADER = SILHOUETTE_VERTEX_SHADER_120
- self.GOOCH_VERTEX_SHADER = GOOCH_VERTEX_SHADER_120
-
- self.BASIC_FRAGMENT_SHADER = BASIC_FRAGMENT_SHADER_120
- self.GOOCH_FRAGMENT_SHADER = GOOCH_FRAGMENT_SHADER_120
-
- def set_shaders_v130(self):
- self.BASIC_VERTEX_SHADER = BASIC_VERTEX_SHADER_130
- self.FLAT_VERTEX_SHADER = FLAT_VERTEX_SHADER_130
- self.SILHOUETTE_VERTEX_SHADER = SILHOUETTE_VERTEX_SHADER_130
- self.GOOCH_VERTEX_SHADER = GOOCH_VERTEX_SHADER_130
-
- self.BASIC_FRAGMENT_SHADER = BASIC_FRAGMENT_SHADER_130
- self.GOOCH_FRAGMENT_SHADER = GOOCH_FRAGMENT_SHADER_130
-
- def prepare_shaders(self):
-
- ### Base shader
- vertex = shaders.compileShader(self.BASIC_VERTEX_SHADER, GL_VERTEX_SHADER)
- fragment = shaders.compileShader(self.BASIC_FRAGMENT_SHADER, GL_FRAGMENT_SHADER)
-
- self.shader = shaders.compileProgram(vertex, fragment)
-
- self.set_shader_accessors(('u_modelMatrix',
- 'u_viewProjectionMatrix',
- 'u_normalMatrix',
- 'u_lightPos',
- 'u_materialDiffuse'),
- ('a_vertex',
- 'a_normal'), self.shader)
-
- ### Flat shader
- flatvertex = shaders.compileShader(self.FLAT_VERTEX_SHADER, GL_VERTEX_SHADER)
- self.flatshader = shaders.compileProgram(flatvertex, fragment)
-
- self.set_shader_accessors(('u_modelMatrix',
- 'u_viewProjectionMatrix',
- 'u_materialDiffuse',),
- ('a_vertex',), self.flatshader)
-
- ### Silhouette shader
- silh_vertex = shaders.compileShader(self.SILHOUETTE_VERTEX_SHADER, GL_VERTEX_SHADER)
- self.silhouette_shader = shaders.compileProgram(silh_vertex, fragment)
-
- self.set_shader_accessors(('u_modelMatrix',
- 'u_viewProjectionMatrix',
- 'u_modelViewMatrix',
- 'u_materialDiffuse',
- 'u_bordersize' # width of the silhouette
- ),
- ('a_vertex',
- 'a_normal'), self.silhouette_shader)
-
- ### Gooch shader
- gooch_vertex = shaders.compileShader(self.GOOCH_VERTEX_SHADER, GL_VERTEX_SHADER)
- gooch_fragment = shaders.compileShader(self.GOOCH_FRAGMENT_SHADER, GL_FRAGMENT_SHADER)
- self.gooch_shader = shaders.compileProgram(gooch_vertex, gooch_fragment)
-
- self.set_shader_accessors(('u_modelMatrix',
- 'u_viewProjectionMatrix',
- 'u_normalMatrix',
- 'u_lightPos',
- 'u_materialDiffuse',
- 'u_coolColor',
- 'u_warmColor',
- 'u_alpha',
- 'u_beta'
- ),
- ('a_vertex',
- 'a_normal'), self.gooch_shader)
-
- @staticmethod
- def set_shader_accessors(uniforms, attributes, shader):
- # add accessors to the shaders uniforms and attributes
- for uniform in uniforms:
- location = glGetUniformLocation(shader, uniform)
- if location in (None, -1):
- raise RuntimeError('No uniform: %s (maybe it is not used '
- 'anymore and has been optimized out by'
- ' the shader compiler)' % uniform)
- setattr(shader, uniform, location)
-
- for attribute in attributes:
- location = glGetAttribLocation(shader, attribute)
- if location in (None, -1):
- raise RuntimeError('No attribute: %s' % attribute)
- setattr(shader, attribute, location)
-
- @staticmethod
- def prepare_gl_buffers(mesh):
-
- mesh.gl = {}
-
- # Fill the buffer for vertex and normals positions
- v = numpy.array(mesh.vertices, 'f')
- n = numpy.array(mesh.normals, 'f')
-
- mesh.gl["vbo"] = vbo.VBO(numpy.hstack((v, n)))
-
- # Fill the buffer for vertex positions
- mesh.gl["faces"] = glGenBuffers(1)
- glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, mesh.gl["faces"])
- glBufferData(GL_ELEMENT_ARRAY_BUFFER,
- numpy.array(mesh.faces, dtype=numpy.int32),
- GL_STATIC_DRAW)
-
- mesh.gl["nbfaces"] = len(mesh.faces)
-
- # Unbind buffers
- glBindBuffer(GL_ARRAY_BUFFER, 0)
- glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0)
-
- @staticmethod
- def get_rgb_from_colorid(colorid):
- r = (colorid >> 0) & 0xff
- g = (colorid >> 8) & 0xff
- b = (colorid >> 16) & 0xff
-
- return r, g, b
-
- def get_color_id(self):
- id = random.randint(0, 256 * 256 * 256)
- if id not in self.colorid2node:
- return id
- else:
- return self.get_color_id()
-
- def glize(self, scene, node):
-
- logger.info("Loading node <%s>" % node)
- node.selected = True if self.currently_selected and self.currently_selected == node else False
-
- node.transformation = node.transformation.astype(numpy.float32)
-
- if node.meshes:
- node.type = MESH
- colorid = self.get_color_id()
- self.colorid2node[colorid] = node
- self.node2colorid[node.name] = colorid
-
- elif node.name in [c.name for c in scene.cameras]:
-
- # retrieve the ASSIMP camera object
- [cam] = [c for c in scene.cameras if c.name == node.name]
- node.type = CAMERA
- logger.info("Added camera <%s>" % node.name)
- logger.info("Camera position: %.3f, %.3f, %.3f" % tuple(node.transformation[:, 3][:3].tolist()))
- self.cameras.append(node)
- node.clipplanenear = cam.clipplanenear
- node.clipplanefar = cam.clipplanefar
-
- if numpy.allclose(cam.lookat, [0, 0, -1]) and numpy.allclose(cam.up, [0, 1, 0]): # Cameras in .blend files
-
- # Rotate by 180deg around X to have Z pointing forward
- node.transformation = numpy.dot(node.transformation, ROTATION_180_X)
- else:
- raise RuntimeError(
- "I do not know how to normalize this camera orientation: lookat=%s, up=%s" % (cam.lookat, cam.up))
-
- if cam.aspect == 0.0:
- logger.warning("Camera aspect not set. Setting to default 4:3")
- node.aspect = 1.333
- else:
- node.aspect = cam.aspect
-
- node.horizontalfov = cam.horizontalfov
-
- else:
- node.type = ENTITY
-
- for child in node.children:
- self.glize(scene, child)
-
- def load_model(self, path, postprocess=aiProcessPreset_TargetRealtime_MaxQuality):
- logger.info("Loading model:" + path + "...")
-
- if postprocess:
- self.scene = pyassimp.load(path, processing=postprocess)
- else:
- self.scene = pyassimp.load(path)
- logger.info("Done.")
-
- scene = self.scene
- # log some statistics
- logger.info(" meshes: %d" % len(scene.meshes))
- logger.info(" total faces: %d" % sum([len(mesh.faces) for mesh in scene.meshes]))
- logger.info(" materials: %d" % len(scene.materials))
- self.bb_min, self.bb_max = get_bounding_box(self.scene)
- logger.info(" bounding box:" + str(self.bb_min) + " - " + str(self.bb_max))
-
- self.scene_center = [(a + b) / 2. for a, b in zip(self.bb_min, self.bb_max)]
-
- for index, mesh in enumerate(scene.meshes):
- self.prepare_gl_buffers(mesh)
-
- self.glize(scene, scene.rootnode)
-
- # Finally release the model
- pyassimp.release(scene)
- logger.info("Ready for 3D rendering!")
-
- def cycle_cameras(self):
-
- self.current_cam_index = (self.current_cam_index + 1) % len(self.cameras)
- self.current_cam = self.cameras[self.current_cam_index]
- self.set_camera_projection(self.current_cam)
- logger.info("Switched to camera <%s>" % self.current_cam)
-
- def set_overlay_projection(self):
- glViewport(0, 0, self.w, self.h)
- glMatrixMode(GL_PROJECTION)
- glLoadIdentity()
- glOrtho(0.0, self.w - 1.0, 0.0, self.h - 1.0, -1.0, 1.0)
- glMatrixMode(GL_MODELVIEW)
- glLoadIdentity()
-
- def set_camera_projection(self, camera=None):
-
- if not camera:
- camera = self.current_cam
-
- znear = camera.clipplanenear or DEFAULT_CLIP_PLANE_NEAR
- zfar = camera.clipplanefar or DEFAULT_CLIP_PLANE_FAR
- aspect = camera.aspect
- fov = camera.horizontalfov
-
- glMatrixMode(GL_PROJECTION)
- glLoadIdentity()
-
- # Compute gl frustrum
- tangent = math.tan(fov / 2.)
- h = znear * tangent
- w = h * aspect
-
- # params: left, right, bottom, top, near, far
- glFrustum(-w, w, -h, h, znear, zfar)
- # equivalent to:
- # gluPerspective(fov * 180/math.pi, aspect, znear, zfar)
-
- self.projection_matrix = glGetFloatv(GL_PROJECTION_MATRIX).transpose()
-
- glMatrixMode(GL_MODELVIEW)
- glLoadIdentity()
-
- def render_colors(self):
-
- glEnable(GL_DEPTH_TEST)
- glDepthFunc(GL_LEQUAL)
-
- glPolygonMode(GL_FRONT_AND_BACK, GL_FILL)
- glEnable(GL_CULL_FACE)
-
- glUseProgram(self.flatshader)
-
- glUniformMatrix4fv(self.flatshader.u_viewProjectionMatrix, 1, GL_TRUE,
- numpy.dot(self.projection_matrix, self.view_matrix))
-
- self.recursive_render(self.scene.rootnode, self.flatshader, mode=COLORS)
-
- glUseProgram(0)
-
- def get_hovered_node(self, mousex, mousey):
- """
- Attention: The performances of this method relies heavily on the size of the display!
- """
-
- # mouse out of the window?
- if mousex < 0 or mousex >= self.w or mousey < 0 or mousey >= self.h:
- return None
-
- self.render_colors()
- # Capture image from the OpenGL buffer
- buf = (GLubyte * (3 * self.w * self.h))(0)
- glReadPixels(0, 0, self.w, self.h, GL_RGB, GL_UNSIGNED_BYTE, buf)
-
- # Reinterpret the RGB pixel buffer as a 1-D array of 24bits colors
- a = numpy.ndarray(len(buf), numpy.dtype('>u1'), buf)
- colors = numpy.zeros(len(buf) // 3, numpy.dtype('<u4'))
- for i in range(3):
- colors.view(dtype='>u1')[i::4] = a.view(dtype='>u1')[i::3]
-
- colorid = colors[mousex + mousey * self.w]
-
- glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)
-
- if colorid in self.colorid2node:
- return self.colorid2node[colorid]
-
- def render(self, wireframe=False, twosided=False):
-
- glEnable(GL_DEPTH_TEST)
- glDepthFunc(GL_LEQUAL)
-
- glPolygonMode(GL_FRONT_AND_BACK, GL_LINE if wireframe else GL_FILL)
- glDisable(GL_CULL_FACE) if twosided else glEnable(GL_CULL_FACE)
-
- self.render_grid()
-
- self.recursive_render(self.scene.rootnode, None, mode=HELPERS)
-
- ### First, the silhouette
-
- if False:
- shader = self.silhouette_shader
-
- # glDepthMask(GL_FALSE)
- glCullFace(GL_FRONT) # cull front faces
-
- glUseProgram(shader)
- glUniform1f(shader.u_bordersize, 0.01)
-
- glUniformMatrix4fv(shader.u_viewProjectionMatrix, 1, GL_TRUE,
- numpy.dot(self.projection_matrix, self.view_matrix))
-
- self.recursive_render(self.scene.rootnode, shader, mode=SILHOUETTE)
-
- glUseProgram(0)
-
- ### Then, inner shading
- # glDepthMask(GL_TRUE)
- glCullFace(GL_BACK)
-
- use_gooch = False
- if use_gooch:
- shader = self.gooch_shader
-
- glUseProgram(shader)
- glUniform3f(shader.u_lightPos, -.5, -.5, .5)
-
- ##### GOOCH specific
- glUniform3f(shader.u_coolColor, 159.0 / 255, 148.0 / 255, 255.0 / 255)
- glUniform3f(shader.u_warmColor, 255.0 / 255, 75.0 / 255, 75.0 / 255)
- glUniform1f(shader.u_alpha, .25)
- glUniform1f(shader.u_beta, .25)
- #########
- else:
- shader = self.shader
- glUseProgram(shader)
- glUniform3f(shader.u_lightPos, -.5, -.5, .5)
-
- glUniformMatrix4fv(shader.u_viewProjectionMatrix, 1, GL_TRUE,
- numpy.dot(self.projection_matrix, self.view_matrix))
-
- self.recursive_render(self.scene.rootnode, shader)
-
- glUseProgram(0)
-
- def render_axis(self,
- transformation=numpy.identity(4, dtype=numpy.float32),
- label=None,
- size=0.2,
- selected=False):
- m = transformation.transpose() # OpenGL row major
-
- glPushMatrix()
- glMultMatrixf(m)
-
- glLineWidth(3 if selected else 1)
-
- size = 2 * size if selected else size
-
- glBegin(GL_LINES)
-
- # draw line for x axis
- glColor3f(1.0, 0.0, 0.0)
- glVertex3f(0.0, 0.0, 0.0)
- glVertex3f(size, 0.0, 0.0)
-
- # draw line for y axis
- glColor3f(0.0, 1.0, 0.0)
- glVertex3f(0.0, 0.0, 0.0)
- glVertex3f(0.0, size, 0.0)
-
- # draw line for Z axis
- glColor3f(0.0, 0.0, 1.0)
- glVertex3f(0.0, 0.0, 0.0)
- glVertex3f(0.0, 0.0, size)
-
- glEnd()
-
- if label:
- self.showtext(label)
-
- glPopMatrix()
-
- @staticmethod
- def render_camera(camera, transformation):
-
- m = transformation.transpose() # OpenGL row major
-
- aspect = camera.aspect
-
- u = 0.1 # unit size (in m)
- l = 3 * u # length of the camera cone
- f = 3 * u # aperture of the camera cone
-
- glPushMatrix()
- glMultMatrixf(m)
-
- glLineWidth(2)
- glBegin(GL_LINE_STRIP)
-
- glColor3f(.2, .2, .2)
-
- glVertex3f(u, u, -u)
- glVertex3f(u, -u, -u)
- glVertex3f(-u, -u, -u)
- glVertex3f(-u, u, -u)
- glVertex3f(u, u, -u)
-
- glVertex3f(u, u, 0.0)
- glVertex3f(u, -u, 0.0)
- glVertex3f(-u, -u, 0.0)
- glVertex3f(-u, u, 0.0)
- glVertex3f(u, u, 0.0)
-
- glVertex3f(f * aspect, f, l)
- glVertex3f(f * aspect, -f, l)
- glVertex3f(-f * aspect, -f, l)
- glVertex3f(-f * aspect, f, l)
- glVertex3f(f * aspect, f, l)
-
- glEnd()
-
- glBegin(GL_LINE_STRIP)
- glVertex3f(u, -u, -u)
- glVertex3f(u, -u, 0.0)
- glVertex3f(f * aspect, -f, l)
- glEnd()
-
- glBegin(GL_LINE_STRIP)
- glVertex3f(-u, -u, -u)
- glVertex3f(-u, -u, 0.0)
- glVertex3f(-f * aspect, -f, l)
- glEnd()
-
- glBegin(GL_LINE_STRIP)
- glVertex3f(-u, u, -u)
- glVertex3f(-u, u, 0.0)
- glVertex3f(-f * aspect, f, l)
- glEnd()
-
- glPopMatrix()
-
- @staticmethod
- def render_grid():
-
- glLineWidth(1)
- glColor3f(0.5, 0.5, 0.5)
- glBegin(GL_LINES)
- for i in range(-10, 11):
- glVertex3f(i, -10.0, 0.0)
- glVertex3f(i, 10.0, 0.0)
-
- for i in range(-10, 11):
- glVertex3f(-10.0, i, 0.0)
- glVertex3f(10.0, i, 0.0)
- glEnd()
-
- def recursive_render(self, node, shader, mode=BASE, with_normals=True):
- """ Main recursive rendering method.
- """
-
- normals = with_normals
-
- if mode == COLORS:
- normals = False
-
-
- if not hasattr(node, "selected"):
- node.selected = False
-
- m = get_world_transform(self.scene, node)
-
- # HELPERS mode
- ###
- if mode == HELPERS:
- # if node.type == ENTITY:
- self.render_axis(m,
- label=node.name if node != self.scene.rootnode else None,
- selected=node.selected if hasattr(node, "selected") else False)
-
- if node.type == CAMERA:
- self.render_camera(node, m)
-
- for child in node.children:
- self.recursive_render(child, shader, mode)
-
- return
-
- # Mesh rendering modes
- ###
- if node.type == MESH:
-
- for mesh in node.meshes:
-
- stride = 24 # 6 * 4 bytes
-
- if node.selected and mode == SILHOUETTE:
- glUniform4f(shader.u_materialDiffuse, 1.0, 0.0, 0.0, 1.0)
- glUniformMatrix4fv(shader.u_modelViewMatrix, 1, GL_TRUE,
- numpy.dot(self.view_matrix, m))
-
- else:
- if mode == COLORS:
- colorid = self.node2colorid[node.name]
- r, g, b = self.get_rgb_from_colorid(colorid)
- glUniform4f(shader.u_materialDiffuse, r / 255.0, g / 255.0, b / 255.0, 1.0)
- elif mode == SILHOUETTE:
- glUniform4f(shader.u_materialDiffuse, .0, .0, .0, 1.0)
- else:
- if node.selected:
- diffuse = (1.0, 0.0, 0.0, 1.0) # selected nodes in red
- else:
- diffuse = mesh.material.properties["diffuse"]
- if len(diffuse) == 3: # RGB instead of expected RGBA
- diffuse.append(1.0)
- glUniform4f(shader.u_materialDiffuse, *diffuse)
- # if ambient:
- # glUniform4f( shader.Material_ambient, *mat["ambient"] )
-
- if mode == BASE: # not in COLORS or SILHOUETTE
- normal_matrix = linalg.inv(numpy.dot(self.view_matrix, m)[0:3, 0:3]).transpose()
- glUniformMatrix3fv(shader.u_normalMatrix, 1, GL_TRUE, normal_matrix)
-
- glUniformMatrix4fv(shader.u_modelMatrix, 1, GL_TRUE, m)
-
- vbo = mesh.gl["vbo"]
- vbo.bind()
-
- glEnableVertexAttribArray(shader.a_vertex)
- if normals:
- glEnableVertexAttribArray(shader.a_normal)
-
- glVertexAttribPointer(
- shader.a_vertex,
- 3, GL_FLOAT, False, stride, vbo
- )
-
- if normals:
- glVertexAttribPointer(
- shader.a_normal,
- 3, GL_FLOAT, False, stride, vbo + 12
- )
-
- glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, mesh.gl["faces"])
- glDrawElements(GL_TRIANGLES, mesh.gl["nbfaces"] * 3, GL_UNSIGNED_INT, None)
-
- vbo.unbind()
- glDisableVertexAttribArray(shader.a_vertex)
-
- if normals:
- glDisableVertexAttribArray(shader.a_normal)
-
- glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0)
-
- for child in node.children:
- self.recursive_render(child, shader, mode)
-
-
- def switch_to_overlay(self):
- glPushMatrix()
- self.set_overlay_projection()
-
- def switch_from_overlay(self):
- self.set_camera_projection()
- glPopMatrix()
-
- def select_node(self, node):
- self.currently_selected = node
- self.update_node_select(self.scene.rootnode)
-
- def update_node_select(self, node):
- if node is self.currently_selected:
- node.selected = True
- else:
- node.selected = False
-
- for child in node.children:
- self.update_node_select(child)
-
- def loop(self):
-
- pygame.display.flip()
-
- if not self.process_events():
- return False # ESC has been pressed
-
- glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)
-
- return True
-
- def process_events(self):
-
- LEFT_BUTTON = 1
- MIDDLE_BUTTON = 2
- RIGHT_BUTTON = 3
- WHEEL_UP = 4
- WHEEL_DOWN = 5
-
- dx, dy = pygame.mouse.get_rel()
- mousex, mousey = pygame.mouse.get_pos()
-
- zooming_one_shot = False
-
- ok = True
-
- for evt in pygame.event.get():
- if evt.type == pygame.MOUSEBUTTONDOWN and evt.button == LEFT_BUTTON:
- hovered = self.get_hovered_node(mousex, self.h - mousey)
- if hovered:
- if self.currently_selected and self.currently_selected == hovered:
- self.select_node(None)
- else:
- logger.info("Node %s selected" % hovered)
- self.select_node(hovered)
- else:
- self.is_rotating = True
- if evt.type == pygame.MOUSEBUTTONUP and evt.button == LEFT_BUTTON:
- self.is_rotating = False
-
- if evt.type == pygame.MOUSEBUTTONDOWN and evt.button == MIDDLE_BUTTON:
- self.is_panning = True
- if evt.type == pygame.MOUSEBUTTONUP and evt.button == MIDDLE_BUTTON:
- self.is_panning = False
-
- if evt.type == pygame.MOUSEBUTTONDOWN and evt.button == RIGHT_BUTTON:
- self.is_zooming = True
- if evt.type == pygame.MOUSEBUTTONUP and evt.button == RIGHT_BUTTON:
- self.is_zooming = False
-
- if evt.type == pygame.MOUSEBUTTONDOWN and evt.button in [WHEEL_UP, WHEEL_DOWN]:
- zooming_one_shot = True
- self.is_zooming = True
- dy = -10 if evt.button == WHEEL_UP else 10
-
- if evt.type == pygame.KEYDOWN:
- ok = (ok and self.process_keystroke(evt.key, evt.mod))
-
- self.controls_3d(dx, dy, zooming_one_shot)
-
- return ok
-
- def process_keystroke(self, key, mod):
-
- # process arrow keys if an object is selected
- if self.currently_selected:
- up = 0
- strafe = 0
-
- if key == pygame.K_UP:
- up = 1
- if key == pygame.K_DOWN:
- up = -1
- if key == pygame.K_LEFT:
- strafe = -1
- if key == pygame.K_RIGHT:
- strafe = 1
-
- self.move_selected_node(up, strafe)
-
- if key == pygame.K_f:
- pygame.display.toggle_fullscreen()
-
- if key == pygame.K_TAB:
- self.cycle_cameras()
-
- if key in [pygame.K_ESCAPE, pygame.K_q]:
- return False
-
- return True
-
- def controls_3d(self, dx, dy, zooming_one_shot=False):
- """ Orbiting the camera is implemented the following way:
-
- - the rotation is split into a rotation around the *world* Z axis
- (controlled by the horizontal mouse motion along X) and a
- rotation around the *X* axis of the camera (pitch) *shifted to
- the focal origin* (the world origin for now). This is controlled
- by the vertical motion of the mouse (Y axis).
- - as a result, the resulting transformation of the camera in the
- world frame C' is:
- C' = (T · Rx · T⁻¹ · (Rz · C)⁻¹)⁻¹
- where:
- - C is the original camera transformation in the world frame,
- - Rz is the rotation along the Z axis (in the world frame)
- - T is the translation camera -> world (ie, the inverse of the
- translation part of C
- - Rx is the rotation around X in the (translated) camera frame """
-
- CAMERA_TRANSLATION_FACTOR = 0.01
- CAMERA_ROTATION_FACTOR = 0.01
-
- if not (self.is_rotating or self.is_panning or self.is_zooming):
- return
-
- current_pos = self.current_cam.transformation[:3, 3].copy()
- distance = numpy.linalg.norm(self.focal_point - current_pos)
-
- if self.is_rotating:
- rotation_camera_x = dy * CAMERA_ROTATION_FACTOR
- rotation_world_z = dx * CAMERA_ROTATION_FACTOR
- world_z_rotation = transformations.euler_matrix(0, 0, rotation_world_z)
- cam_x_rotation = transformations.euler_matrix(rotation_camera_x, 0, 0)
-
- after_world_z_rotation = numpy.dot(world_z_rotation, self.current_cam.transformation)
-
- inverse_transformation = transformations.inverse_matrix(after_world_z_rotation)
-
- translation = transformations.translation_matrix(
- transformations.decompose_matrix(inverse_transformation)[3])
- inverse_translation = transformations.inverse_matrix(translation)
-
- new_inverse = numpy.dot(inverse_translation, inverse_transformation)
- new_inverse = numpy.dot(cam_x_rotation, new_inverse)
- new_inverse = numpy.dot(translation, new_inverse)
-
- self.current_cam.transformation = transformations.inverse_matrix(new_inverse).astype(numpy.float32)
-
- if self.is_panning:
- tx = -dx * CAMERA_TRANSLATION_FACTOR * distance
- ty = dy * CAMERA_TRANSLATION_FACTOR * distance
- cam_transform = transformations.translation_matrix((tx, ty, 0)).astype(numpy.float32)
- self.current_cam.transformation = numpy.dot(self.current_cam.transformation, cam_transform)
-
- if self.is_zooming:
- tz = dy * CAMERA_TRANSLATION_FACTOR * distance
- cam_transform = transformations.translation_matrix((0, 0, tz)).astype(numpy.float32)
- self.current_cam.transformation = numpy.dot(self.current_cam.transformation, cam_transform)
-
- if zooming_one_shot:
- self.is_zooming = False
-
- self.update_view_camera()
-
- def update_view_camera(self):
-
- self.view_matrix = linalg.inv(self.current_cam.transformation)
-
- # Rotate by 180deg around X to have Z pointing backward (OpenGL convention)
- self.view_matrix = numpy.dot(ROTATION_180_X, self.view_matrix)
-
- glMatrixMode(GL_MODELVIEW)
- glLoadIdentity()
- glMultMatrixf(self.view_matrix.transpose())
-
- def move_selected_node(self, up, strafe):
- self.currently_selected.transformation[0][3] += strafe
- self.currently_selected.transformation[2][3] += up
-
- @staticmethod
- def showtext(text, x=0, y=0, z=0, size=20):
-
- # TODO: alpha blending does not work...
- # glEnable(GL_BLEND)
- # glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)
-
- font = pygame.font.Font(None, size)
- text_surface = font.render(text, True, (10, 10, 10, 255),
- (255 * 0.18, 255 * 0.18, 255 * 0.18, 0))
- text_data = pygame.image.tostring(text_surface, "RGBA", True)
- glRasterPos3d(x, y, z)
- glDrawPixels(text_surface.get_width(),
- text_surface.get_height(),
- GL_RGBA, GL_UNSIGNED_BYTE,
- text_data)
-
- # glDisable(GL_BLEND)
-
-
-def main(model, width, height):
- app = PyAssimp3DViewer(model, w=width, h=height)
-
- clock = pygame.time.Clock()
-
- while app.loop():
-
- app.update_view_camera()
-
- ## Main rendering
- app.render()
-
- ## GUI text display
- app.switch_to_overlay()
- app.showtext("Active camera: %s" % str(app.current_cam), 10, app.h - 30)
- if app.currently_selected:
- app.showtext("Selected node: %s" % app.currently_selected, 10, app.h - 50)
- pos = app.h - 70
-
- app.showtext("(%sm, %sm, %sm)" % (app.currently_selected.transformation[0, 3],
- app.currently_selected.transformation[1, 3],
- app.currently_selected.transformation[2, 3]), 30, pos)
-
- app.switch_from_overlay()
-
- # Make sure we do not go over 30fps
- clock.tick(30)
-
- logger.info("Quitting! Bye bye!")
-
-
-#########################################################################
-#########################################################################
-
-if __name__ == '__main__':
- if not len(sys.argv) > 1:
- print("Usage: " + __file__ + " <model>")
- sys.exit(2)
-
- main(model=sys.argv[1], width=1024, height=768)
diff --git a/src/mesh/assimp-master/port/PyAssimp/scripts/README.md b/src/mesh/assimp-master/port/PyAssimp/scripts/README.md
deleted file mode 100644
index 42caa27..0000000
--- a/src/mesh/assimp-master/port/PyAssimp/scripts/README.md
+++ /dev/null
@@ -1,13 +0,0 @@
-pyassimp examples
-=================
-
-- `sample.py`: shows how to load a model with pyassimp, and display some statistics.
-- `3d_viewer.py`: an OpenGL 3D viewer that requires shaders
-- `fixed_pipeline_3d_viewer`: an OpenGL 3D viewer using the old fixed-pipeline.
- Only for illustration example. Base new projects on `3d_viewer.py`.
-
-
-Requirements for the 3D viewers:
-
-- `pyopengl` (on Ubuntu/Debian, `sudo apt-get install python-opengl`)
-- `pygame` (on Ubuntu/Debian, `sudo apt-get install python-pygame`)
diff --git a/src/mesh/assimp-master/port/PyAssimp/scripts/fixed_pipeline_3d_viewer.py b/src/mesh/assimp-master/port/PyAssimp/scripts/fixed_pipeline_3d_viewer.py
deleted file mode 100755
index c2f6ceb..0000000
--- a/src/mesh/assimp-master/port/PyAssimp/scripts/fixed_pipeline_3d_viewer.py
+++ /dev/null
@@ -1,372 +0,0 @@
-#!/usr/bin/env python
-#-*- coding: UTF-8 -*-
-
-""" This program demonstrates the use of pyassimp to load and
-render objects with OpenGL.
-
-'c' cycles between cameras (if any available)
-'q' to quit
-
-This example mixes 'old' OpenGL fixed-function pipeline with
-Vertex Buffer Objects.
-
-Materials are supported but textures are currently ignored.
-
-For a more advanced example (with shaders + keyboard/mouse
-controls), check scripts/sdl_viewer.py
-
-Author: Séverin Lemaignan, 2012
-
-This sample is based on several sources, including:
- - http://www.lighthouse3d.com/tutorials
- - http://www.songho.ca/opengl/gl_transform.html
- - http://code.activestate.com/recipes/325391/
- - ASSIMP's C++ SimpleOpenGL viewer
-"""
-
-import sys
-from OpenGL.GLUT import *
-from OpenGL.GLU import *
-from OpenGL.GL import *
-
-import logging
-logger = logging.getLogger("pyassimp_opengl")
-logging.basicConfig(level=logging.INFO)
-
-import math
-import numpy
-
-import pyassimp
-from pyassimp.postprocess import *
-from pyassimp.helper import *
-
-
-name = 'pyassimp OpenGL viewer'
-height = 600
-width = 900
-
-class GLRenderer():
- def __init__(self):
-
- self.scene = None
-
- self.using_fixed_cam = False
- self.current_cam_index = 0
-
- # store the global scene rotation
- self.angle = 0.
-
- # for FPS calculation
- self.prev_time = 0
- self.prev_fps_time = 0
- self.frames = 0
-
- def prepare_gl_buffers(self, mesh):
- """ Creates 3 buffer objets for each mesh,
- to store the vertices, the normals, and the faces
- indices.
- """
-
- mesh.gl = {}
-
- # Fill the buffer for vertex positions
- mesh.gl["vertices"] = glGenBuffers(1)
- glBindBuffer(GL_ARRAY_BUFFER, mesh.gl["vertices"])
- glBufferData(GL_ARRAY_BUFFER,
- mesh.vertices,
- GL_STATIC_DRAW)
-
- # Fill the buffer for normals
- mesh.gl["normals"] = glGenBuffers(1)
- glBindBuffer(GL_ARRAY_BUFFER, mesh.gl["normals"])
- glBufferData(GL_ARRAY_BUFFER,
- mesh.normals,
- GL_STATIC_DRAW)
-
-
- # Fill the buffer for vertex positions
- mesh.gl["triangles"] = glGenBuffers(1)
- glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, mesh.gl["triangles"])
- glBufferData(GL_ELEMENT_ARRAY_BUFFER,
- mesh.faces,
- GL_STATIC_DRAW)
-
- # Unbind buffers
- glBindBuffer(GL_ARRAY_BUFFER,0)
- glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,0)
-
- def load_model(self, path, postprocess = None):
- logger.info("Loading model:" + path + "...")
-
- if postprocess:
- self.scene = pyassimp.load(path, processing=postprocess)
- else:
- self.scene = pyassimp.load(path)
- logger.info("Done.")
-
- scene = self.scene
- #log some statistics
- logger.info(" meshes: %d" % len(scene.meshes))
- logger.info(" total faces: %d" % sum([len(mesh.faces) for mesh in scene.meshes]))
- logger.info(" materials: %d" % len(scene.materials))
- self.bb_min, self.bb_max = get_bounding_box(self.scene)
- logger.info(" bounding box:" + str(self.bb_min) + " - " + str(self.bb_max))
-
- self.scene_center = [(a + b) / 2. for a, b in zip(self.bb_min, self.bb_max)]
-
- for index, mesh in enumerate(scene.meshes):
- self.prepare_gl_buffers(mesh)
-
- # Finally release the model
- pyassimp.release(scene)
-
- def cycle_cameras(self):
- self.current_cam_index
- if not self.scene.cameras:
- return None
- self.current_cam_index = (self.current_cam_index + 1) % len(self.scene.cameras)
- cam = self.scene.cameras[self.current_cam_index]
- logger.info("Switched to camera " + str(cam))
- return cam
-
- def set_default_camera(self):
-
- if not self.using_fixed_cam:
- glLoadIdentity()
-
- gluLookAt(0.,0.,3.,
- 0.,0.,-5.,
- 0.,1.,0.)
-
-
-
- def set_camera(self, camera):
-
- if not camera:
- return
-
- self.using_fixed_cam = True
-
- znear = camera.clipplanenear
- zfar = camera.clipplanefar
- aspect = camera.aspect
- fov = camera.horizontalfov
-
- glMatrixMode(GL_PROJECTION)
- glLoadIdentity()
-
- # Compute gl frustrum
- tangent = math.tan(fov/2.)
- h = znear * tangent
- w = h * aspect
-
- # params: left, right, bottom, top, near, far
- glFrustum(-w, w, -h, h, znear, zfar)
- # equivalent to:
- #gluPerspective(fov * 180/math.pi, aspect, znear, zfar)
-
- glMatrixMode(GL_MODELVIEW)
- glLoadIdentity()
-
- cam = transform(camera.position, camera.transformation)
- at = transform(camera.lookat, camera.transformation)
- gluLookAt(cam[0], cam[2], -cam[1],
- at[0], at[2], -at[1],
- 0, 1, 0)
-
- def fit_scene(self, restore = False):
- """ Compute a scale factor and a translation to fit and center
- the whole geometry on the screen.
- """
-
- x_max = self.bb_max[0] - self.bb_min[0]
- y_max = self.bb_max[1] - self.bb_min[1]
- tmp = max(x_max, y_max)
- z_max = self.bb_max[2] - self.bb_min[2]
- tmp = max(z_max, tmp)
-
- if not restore:
- tmp = 1. / tmp
-
- logger.info("Scaling the scene by %.03f" % tmp)
- glScalef(tmp, tmp, tmp)
-
- # center the model
- direction = -1 if not restore else 1
- glTranslatef( direction * self.scene_center[0],
- direction * self.scene_center[1],
- direction * self.scene_center[2] )
-
- return x_max, y_max, z_max
-
- def apply_material(self, mat):
- """ Apply an OpenGL, using one OpenGL display list per material to cache
- the operation.
- """
-
- if not hasattr(mat, "gl_mat"): # evaluate once the mat properties, and cache the values in a glDisplayList.
- diffuse = numpy.array(mat.properties.get("diffuse", [0.8, 0.8, 0.8, 1.0]))
- specular = numpy.array(mat.properties.get("specular", [0., 0., 0., 1.0]))
- ambient = numpy.array(mat.properties.get("ambient", [0.2, 0.2, 0.2, 1.0]))
- emissive = numpy.array(mat.properties.get("emissive", [0., 0., 0., 1.0]))
- shininess = min(mat.properties.get("shininess", 1.0), 128)
- wireframe = mat.properties.get("wireframe", 0)
- twosided = mat.properties.get("twosided", 1)
-
- setattr(mat, "gl_mat", glGenLists(1))
- glNewList(mat.gl_mat, GL_COMPILE)
-
- glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, diffuse)
- glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, specular)
- glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, ambient)
- glMaterialfv(GL_FRONT_AND_BACK, GL_EMISSION, emissive)
- glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, shininess)
- glPolygonMode(GL_FRONT_AND_BACK, GL_LINE if wireframe else GL_FILL)
- glDisable(GL_CULL_FACE) if twosided else glEnable(GL_CULL_FACE)
-
- glEndList()
-
- glCallList(mat.gl_mat)
-
-
-
- def do_motion(self):
-
- gl_time = glutGet(GLUT_ELAPSED_TIME)
-
- self.angle = (gl_time - self.prev_time) * 0.1
-
- self.prev_time = gl_time
-
- # Compute FPS
- self.frames += 1
- if gl_time - self.prev_fps_time >= 1000:
- current_fps = self.frames * 1000 / (gl_time - self.prev_fps_time)
- logger.info('%.0f fps' % current_fps)
- self.frames = 0
- self.prev_fps_time = gl_time
-
- glutPostRedisplay()
-
- def recursive_render(self, node):
- """ Main recursive rendering method.
- """
-
- # save model matrix and apply node transformation
- glPushMatrix()
- m = node.transformation.transpose() # OpenGL row major
- glMultMatrixf(m)
-
- for mesh in node.meshes:
- self.apply_material(mesh.material)
-
- glBindBuffer(GL_ARRAY_BUFFER, mesh.gl["vertices"])
- glEnableClientState(GL_VERTEX_ARRAY)
- glVertexPointer(3, GL_FLOAT, 0, None)
-
- glBindBuffer(GL_ARRAY_BUFFER, mesh.gl["normals"])
- glEnableClientState(GL_NORMAL_ARRAY)
- glNormalPointer(GL_FLOAT, 0, None)
-
- glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, mesh.gl["triangles"])
- glDrawElements(GL_TRIANGLES,len(mesh.faces) * 3, GL_UNSIGNED_INT, None)
-
- glDisableClientState(GL_VERTEX_ARRAY)
- glDisableClientState(GL_NORMAL_ARRAY)
-
- glBindBuffer(GL_ARRAY_BUFFER, 0)
- glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0)
-
- for child in node.children:
- self.recursive_render(child)
-
- glPopMatrix()
-
-
- def display(self):
- """ GLUT callback to redraw OpenGL surface
- """
- glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT)
-
- glRotatef(self.angle,0.,1.,0.)
- self.recursive_render(self.scene.rootnode)
-
- glutSwapBuffers()
- self.do_motion()
- return
-
- ####################################################################
- ## GLUT keyboard and mouse callbacks ##
- ####################################################################
- def onkeypress(self, key, x, y):
- if key == 'c':
- self.fit_scene(restore = True)
- self.set_camera(self.cycle_cameras())
- if key == 'q':
- sys.exit(0)
-
- def render(self, filename=None, fullscreen = False, autofit = True, postprocess = None):
- """
-
- :param autofit: if true, scale the scene to fit the whole geometry
- in the viewport.
- """
-
- # First initialize the openGL context
- glutInit(sys.argv)
- glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH)
- if not fullscreen:
- glutInitWindowSize(width, height)
- glutCreateWindow(name)
- else:
- glutGameModeString("1024x768")
- if glutGameModeGet(GLUT_GAME_MODE_POSSIBLE):
- glutEnterGameMode()
- else:
- print("Fullscreen mode not available!")
- sys.exit(1)
-
- self.load_model(filename, postprocess = postprocess)
-
-
- glClearColor(0.1,0.1,0.1,1.)
- #glShadeModel(GL_SMOOTH)
-
- glEnable(GL_LIGHTING)
-
- glEnable(GL_CULL_FACE)
- glEnable(GL_DEPTH_TEST)
-
- glLightModeli(GL_LIGHT_MODEL_TWO_SIDE, GL_TRUE)
- glEnable(GL_NORMALIZE)
- glEnable(GL_LIGHT0)
-
- glutDisplayFunc(self.display)
-
-
- glMatrixMode(GL_PROJECTION)
- glLoadIdentity()
- gluPerspective(35.0, width/float(height) , 0.10, 100.0)
- glMatrixMode(GL_MODELVIEW)
- self.set_default_camera()
-
- if autofit:
- # scale the whole asset to fit into our view frustum·
- self.fit_scene()
-
- glPushMatrix()
-
- glutKeyboardFunc(self.onkeypress)
- glutIgnoreKeyRepeat(1)
-
- glutMainLoop()
-
-
-if __name__ == '__main__':
- if not len(sys.argv) > 1:
- print("Usage: " + __file__ + " <model>")
- sys.exit(0)
-
- glrender = GLRenderer()
- glrender.render(sys.argv[1], fullscreen = False, postprocess = aiProcessPreset_TargetRealtime_MaxQuality)
-
diff --git a/src/mesh/assimp-master/port/PyAssimp/scripts/quicktest.py b/src/mesh/assimp-master/port/PyAssimp/scripts/quicktest.py
deleted file mode 100755
index cbeccb4..0000000
--- a/src/mesh/assimp-master/port/PyAssimp/scripts/quicktest.py
+++ /dev/null
@@ -1,53 +0,0 @@
-#!/usr/bin/env python
-#-*- coding: UTF-8 -*-
-
-"""
-This module uses the sample.py script to load all test models it finds.
-
-Note: this is not an exhaustive test suite, it does not check the
-data structures in detail. It just verifies whether basic
-loading and querying of 3d models using pyassimp works.
-"""
-
-import os
-import sys
-
-# Make the development (ie. GIT repo) version of PyAssimp available for import.
-sys.path.insert(0, '..')
-
-import sample
-from pyassimp import errors
-
-# Paths to model files.
-basepaths = [os.path.join('..', '..', '..', 'test', 'models'),
- os.path.join('..', '..', '..', 'test', 'models-nonbsd')]
-
-# Valid extensions for 3D model files.
-extensions = ['.3ds', '.x', '.lwo', '.obj', '.md5mesh', '.dxf', '.ply', '.stl',
- '.dae', '.md5anim', '.lws', '.irrmesh', '.nff', '.off', '.blend']
-
-
-def run_tests():
- ok, err = 0, 0
- for path in basepaths:
- print("Looking for models in %s..." % path)
- for root, dirs, files in os.walk(path):
- for afile in files:
- base, ext = os.path.splitext(afile)
- if ext in extensions:
- try:
- sample.main(os.path.join(root, afile))
- ok += 1
- except errors.AssimpError as error:
- # Assimp error is fine; this is a controlled case.
- print(error)
- err += 1
- except Exception:
- print("Error encountered while loading <%s>"
- % os.path.join(root, afile))
- print('** Loaded %s models, got controlled errors for %s files'
- % (ok, err))
-
-
-if __name__ == '__main__':
- run_tests()
diff --git a/src/mesh/assimp-master/port/PyAssimp/scripts/sample.py b/src/mesh/assimp-master/port/PyAssimp/scripts/sample.py
deleted file mode 100755
index 3cd4b3e..0000000
--- a/src/mesh/assimp-master/port/PyAssimp/scripts/sample.py
+++ /dev/null
@@ -1,89 +0,0 @@
-#!/usr/bin/env python
-#-*- coding: UTF-8 -*-
-
-"""
-This module demonstrates the functionality of PyAssimp.
-"""
-
-import sys
-import logging
-logging.basicConfig(level=logging.INFO)
-
-import pyassimp
-import pyassimp.postprocess
-
-def recur_node(node,level = 0):
- print(" " + "\t" * level + "- " + str(node))
- for child in node.children:
- recur_node(child, level + 1)
-
-
-def main(filename=None):
-
- scene = pyassimp.load(filename, processing=pyassimp.postprocess.aiProcess_Triangulate)
-
- #the model we load
- print("MODEL:" + filename)
- print
-
- #write some statistics
- print("SCENE:")
- print(" meshes:" + str(len(scene.meshes)))
- print(" materials:" + str(len(scene.materials)))
- print(" textures:" + str(len(scene.textures)))
- print
-
- print("NODES:")
- recur_node(scene.rootnode)
-
- print
- print("MESHES:")
- for index, mesh in enumerate(scene.meshes):
- print(" MESH" + str(index+1))
- print(" material id:" + str(mesh.materialindex+1))
- print(" vertices:" + str(len(mesh.vertices)))
- print(" first 3 verts:\n" + str(mesh.vertices[:3]))
- if mesh.normals.any():
- print(" first 3 normals:\n" + str(mesh.normals[:3]))
- else:
- print(" no normals")
- print(" colors:" + str(len(mesh.colors)))
- tcs = mesh.texturecoords
- if tcs.any():
- for tc_index, tc in enumerate(tcs):
- print(" texture-coords "+ str(tc_index) + ":" + str(len(tcs[tc_index])) + "first3:" + str(tcs[tc_index][:3]))
-
- else:
- print(" no texture coordinates")
- print(" uv-component-count:" + str(len(mesh.numuvcomponents)))
- print(" faces:" + str(len(mesh.faces)) + " -> first:\n" + str(mesh.faces[:3]))
- print(" bones:" + str(len(mesh.bones)) + " -> first:" + str([str(b) for b in mesh.bones[:3]]))
- print
-
- print("MATERIALS:")
- for index, material in enumerate(scene.materials):
- print(" MATERIAL (id:" + str(index+1) + ")")
- for key, value in material.properties.items():
- print(" %s: %s" % (key, value))
- print
-
- print("TEXTURES:")
- for index, texture in enumerate(scene.textures):
- print(" TEXTURE" + str(index+1))
- print(" width:" + str(texture.width))
- print(" height:" + str(texture.height))
- print(" hint:" + str(texture.achformathint))
- print(" data (size):" + str(len(texture.data)))
-
- # Finally release the model
- pyassimp.release(scene)
-
-def usage():
- print("Usage: sample.py <3d model>")
-
-if __name__ == "__main__":
-
- if len(sys.argv) != 2:
- usage()
- else:
- main(sys.argv[1])
diff --git a/src/mesh/assimp-master/port/PyAssimp/scripts/transformations.py b/src/mesh/assimp-master/port/PyAssimp/scripts/transformations.py
deleted file mode 100644
index bf0cac9..0000000
--- a/src/mesh/assimp-master/port/PyAssimp/scripts/transformations.py
+++ /dev/null
@@ -1,1705 +0,0 @@
-# -*- coding: utf-8 -*-
-# transformations.py
-
-# Copyright (c) 2006, Christoph Gohlke
-# Copyright (c) 2006-2009, The Regents of the University of California
-# All rights reserved.
-#
-# Redistribution and use in source and binary forms, with or without
-# modification, are permitted provided that the following conditions are met:
-#
-# * Redistributions of source code must retain the above copyright
-# notice, this list of conditions and the following disclaimer.
-# * Redistributions in binary form must reproduce the above copyright
-# notice, this list of conditions and the following disclaimer in the
-# documentation and/or other materials provided with the distribution.
-# * Neither the name of the copyright holders nor the names of any
-# contributors may be used to endorse or promote products derived
-# from this software without specific prior written permission.
-#
-# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-# POSSIBILITY OF SUCH DAMAGE.
-
-"""Homogeneous Transformation Matrices and Quaternions.
-
-A library for calculating 4x4 matrices for translating, rotating, reflecting,
-scaling, shearing, projecting, orthogonalizing, and superimposing arrays of
-3D homogeneous coordinates as well as for converting between rotation matrices,
-Euler angles, and quaternions. Also includes an Arcball control object and
-functions to decompose transformation matrices.
-
-:Authors:
- `Christoph Gohlke <http://www.lfd.uci.edu/~gohlke/>`__,
- Laboratory for Fluorescence Dynamics, University of California, Irvine
-
-:Version: 20090418
-
-Requirements
-------------
-
-* `Python 2.6 <http://www.python.org>`__
-* `Numpy 1.3 <http://numpy.scipy.org>`__
-* `transformations.c 20090418 <http://www.lfd.uci.edu/~gohlke/>`__
- (optional implementation of some functions in C)
-
-Notes
------
-
-Matrices (M) can be inverted using numpy.linalg.inv(M), concatenated using
-numpy.dot(M0, M1), or used to transform homogeneous coordinates (v) using
-numpy.dot(M, v) for shape (4, \*) "point of arrays", respectively
-numpy.dot(v, M.T) for shape (\*, 4) "array of points".
-
-Calculations are carried out with numpy.float64 precision.
-
-This Python implementation is not optimized for speed.
-
-Vector, point, quaternion, and matrix function arguments are expected to be
-"array like", i.e. tuple, list, or numpy arrays.
-
-Return types are numpy arrays unless specified otherwise.
-
-Angles are in radians unless specified otherwise.
-
-Quaternions ix+jy+kz+w are represented as [x, y, z, w].
-
-Use the transpose of transformation matrices for OpenGL glMultMatrixd().
-
-A triple of Euler angles can be applied/interpreted in 24 ways, which can
-be specified using a 4 character string or encoded 4-tuple:
-
- *Axes 4-string*: e.g. 'sxyz' or 'ryxy'
-
- - first character : rotations are applied to 's'tatic or 'r'otating frame
- - remaining characters : successive rotation axis 'x', 'y', or 'z'
-
- *Axes 4-tuple*: e.g. (0, 0, 0, 0) or (1, 1, 1, 1)
-
- - inner axis: code of axis ('x':0, 'y':1, 'z':2) of rightmost matrix.
- - parity : even (0) if inner axis 'x' is followed by 'y', 'y' is followed
- by 'z', or 'z' is followed by 'x'. Otherwise odd (1).
- - repetition : first and last axis are same (1) or different (0).
- - frame : rotations are applied to static (0) or rotating (1) frame.
-
-References
-----------
-
-(1) Matrices and transformations. Ronald Goldman.
- In "Graphics Gems I", pp 472-475. Morgan Kaufmann, 1990.
-(2) More matrices and transformations: shear and pseudo-perspective.
- Ronald Goldman. In "Graphics Gems II", pp 320-323. Morgan Kaufmann, 1991.
-(3) Decomposing a matrix into simple transformations. Spencer Thomas.
- In "Graphics Gems II", pp 320-323. Morgan Kaufmann, 1991.
-(4) Recovering the data from the transformation matrix. Ronald Goldman.
- In "Graphics Gems II", pp 324-331. Morgan Kaufmann, 1991.
-(5) Euler angle conversion. Ken Shoemake.
- In "Graphics Gems IV", pp 222-229. Morgan Kaufmann, 1994.
-(6) Arcball rotation control. Ken Shoemake.
- In "Graphics Gems IV", pp 175-192. Morgan Kaufmann, 1994.
-(7) Representing attitude: Euler angles, unit quaternions, and rotation
- vectors. James Diebel. 2006.
-(8) A discussion of the solution for the best rotation to relate two sets
- of vectors. W Kabsch. Acta Cryst. 1978. A34, 827-828.
-(9) Closed-form solution of absolute orientation using unit quaternions.
- BKP Horn. J Opt Soc Am A. 1987. 4(4), 629-642.
-(10) Quaternions. Ken Shoemake.
- http://www.sfu.ca/~jwa3/cmpt461/files/quatut.pdf
-(11) From quaternion to matrix and back. JMP van Waveren. 2005.
- http://www.intel.com/cd/ids/developer/asmo-na/eng/293748.htm
-(12) Uniform random rotations. Ken Shoemake.
- In "Graphics Gems III", pp 124-132. Morgan Kaufmann, 1992.
-
-
-Examples
---------
-
->>> alpha, beta, gamma = 0.123, -1.234, 2.345
->>> origin, xaxis, yaxis, zaxis = (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)
->>> I = identity_matrix()
->>> Rx = rotation_matrix(alpha, xaxis)
->>> Ry = rotation_matrix(beta, yaxis)
->>> Rz = rotation_matrix(gamma, zaxis)
->>> R = concatenate_matrices(Rx, Ry, Rz)
->>> euler = euler_from_matrix(R, 'rxyz')
->>> numpy.allclose([alpha, beta, gamma], euler)
-True
->>> Re = euler_matrix(alpha, beta, gamma, 'rxyz')
->>> is_same_transform(R, Re)
-True
->>> al, be, ga = euler_from_matrix(Re, 'rxyz')
->>> is_same_transform(Re, euler_matrix(al, be, ga, 'rxyz'))
-True
->>> qx = quaternion_about_axis(alpha, xaxis)
->>> qy = quaternion_about_axis(beta, yaxis)
->>> qz = quaternion_about_axis(gamma, zaxis)
->>> q = quaternion_multiply(qx, qy)
->>> q = quaternion_multiply(q, qz)
->>> Rq = quaternion_matrix(q)
->>> is_same_transform(R, Rq)
-True
->>> S = scale_matrix(1.23, origin)
->>> T = translation_matrix((1, 2, 3))
->>> Z = shear_matrix(beta, xaxis, origin, zaxis)
->>> R = random_rotation_matrix(numpy.random.rand(3))
->>> M = concatenate_matrices(T, R, Z, S)
->>> scale, shear, angles, trans, persp = decompose_matrix(M)
->>> numpy.allclose(scale, 1.23)
-True
->>> numpy.allclose(trans, (1, 2, 3))
-True
->>> numpy.allclose(shear, (0, math.tan(beta), 0))
-True
->>> is_same_transform(R, euler_matrix(axes='sxyz', *angles))
-True
->>> M1 = compose_matrix(scale, shear, angles, trans, persp)
->>> is_same_transform(M, M1)
-True
-
-"""
-
-from __future__ import division
-
-import warnings
-import math
-
-import numpy
-
-# Documentation in HTML format can be generated with Epydoc
-__docformat__ = "restructuredtext en"
-
-
-def identity_matrix():
- """Return 4x4 identity/unit matrix.
-
- >>> I = identity_matrix()
- >>> numpy.allclose(I, numpy.dot(I, I))
- True
- >>> numpy.sum(I), numpy.trace(I)
- (4.0, 4.0)
- >>> numpy.allclose(I, numpy.identity(4, dtype=numpy.float64))
- True
-
- """
- return numpy.identity(4, dtype=numpy.float64)
-
-
-def translation_matrix(direction):
- """Return matrix to translate by direction vector.
-
- >>> v = numpy.random.random(3) - 0.5
- >>> numpy.allclose(v, translation_matrix(v)[:3, 3])
- True
-
- """
- M = numpy.identity(4)
- M[:3, 3] = direction[:3]
- return M
-
-
-def translation_from_matrix(matrix):
- """Return translation vector from translation matrix.
-
- >>> v0 = numpy.random.random(3) - 0.5
- >>> v1 = translation_from_matrix(translation_matrix(v0))
- >>> numpy.allclose(v0, v1)
- True
-
- """
- return numpy.array(matrix, copy=False)[:3, 3].copy()
-
-
-def reflection_matrix(point, normal):
- """Return matrix to mirror at plane defined by point and normal vector.
-
- >>> v0 = numpy.random.random(4) - 0.5
- >>> v0[3] = 1.0
- >>> v1 = numpy.random.random(3) - 0.5
- >>> R = reflection_matrix(v0, v1)
- >>> numpy.allclose(2., numpy.trace(R))
- True
- >>> numpy.allclose(v0, numpy.dot(R, v0))
- True
- >>> v2 = v0.copy()
- >>> v2[:3] += v1
- >>> v3 = v0.copy()
- >>> v2[:3] -= v1
- >>> numpy.allclose(v2, numpy.dot(R, v3))
- True
-
- """
- normal = unit_vector(normal[:3])
- M = numpy.identity(4)
- M[:3, :3] -= 2.0 * numpy.outer(normal, normal)
- M[:3, 3] = (2.0 * numpy.dot(point[:3], normal)) * normal
- return M
-
-
-def reflection_from_matrix(matrix):
- """Return mirror plane point and normal vector from reflection matrix.
-
- >>> v0 = numpy.random.random(3) - 0.5
- >>> v1 = numpy.random.random(3) - 0.5
- >>> M0 = reflection_matrix(v0, v1)
- >>> point, normal = reflection_from_matrix(M0)
- >>> M1 = reflection_matrix(point, normal)
- >>> is_same_transform(M0, M1)
- True
-
- """
- M = numpy.array(matrix, dtype=numpy.float64, copy=False)
- # normal: unit eigenvector corresponding to eigenvalue -1
- l, V = numpy.linalg.eig(M[:3, :3])
- i = numpy.where(abs(numpy.real(l) + 1.0) < 1e-8)[0]
- if not len(i):
- raise ValueError("no unit eigenvector corresponding to eigenvalue -1")
- normal = numpy.real(V[:, i[0]]).squeeze()
- # point: any unit eigenvector corresponding to eigenvalue 1
- l, V = numpy.linalg.eig(M)
- i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0]
- if not len(i):
- raise ValueError("no unit eigenvector corresponding to eigenvalue 1")
- point = numpy.real(V[:, i[-1]]).squeeze()
- point /= point[3]
- return point, normal
-
-
-def rotation_matrix(angle, direction, point=None):
- """Return matrix to rotate about axis defined by point and direction.
-
- >>> angle = (random.random() - 0.5) * (2*math.pi)
- >>> direc = numpy.random.random(3) - 0.5
- >>> point = numpy.random.random(3) - 0.5
- >>> R0 = rotation_matrix(angle, direc, point)
- >>> R1 = rotation_matrix(angle-2*math.pi, direc, point)
- >>> is_same_transform(R0, R1)
- True
- >>> R0 = rotation_matrix(angle, direc, point)
- >>> R1 = rotation_matrix(-angle, -direc, point)
- >>> is_same_transform(R0, R1)
- True
- >>> I = numpy.identity(4, numpy.float64)
- >>> numpy.allclose(I, rotation_matrix(math.pi*2, direc))
- True
- >>> numpy.allclose(2., numpy.trace(rotation_matrix(math.pi/2,
- ... direc, point)))
- True
-
- """
- sina = math.sin(angle)
- cosa = math.cos(angle)
- direction = unit_vector(direction[:3])
- # rotation matrix around unit vector
- R = numpy.array(((cosa, 0.0, 0.0),
- (0.0, cosa, 0.0),
- (0.0, 0.0, cosa)), dtype=numpy.float64)
- R += numpy.outer(direction, direction) * (1.0 - cosa)
- direction *= sina
- R += numpy.array((( 0.0, -direction[2], direction[1]),
- ( direction[2], 0.0, -direction[0]),
- (-direction[1], direction[0], 0.0)),
- dtype=numpy.float64)
- M = numpy.identity(4)
- M[:3, :3] = R
- if point is not None:
- # rotation not around origin
- point = numpy.array(point[:3], dtype=numpy.float64, copy=False)
- M[:3, 3] = point - numpy.dot(R, point)
- return M
-
-
-def rotation_from_matrix(matrix):
- """Return rotation angle and axis from rotation matrix.
-
- >>> angle = (random.random() - 0.5) * (2*math.pi)
- >>> direc = numpy.random.random(3) - 0.5
- >>> point = numpy.random.random(3) - 0.5
- >>> R0 = rotation_matrix(angle, direc, point)
- >>> angle, direc, point = rotation_from_matrix(R0)
- >>> R1 = rotation_matrix(angle, direc, point)
- >>> is_same_transform(R0, R1)
- True
-
- """
- R = numpy.array(matrix, dtype=numpy.float64, copy=False)
- R33 = R[:3, :3]
- # direction: unit eigenvector of R33 corresponding to eigenvalue of 1
- l, W = numpy.linalg.eig(R33.T)
- i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0]
- if not len(i):
- raise ValueError("no unit eigenvector corresponding to eigenvalue 1")
- direction = numpy.real(W[:, i[-1]]).squeeze()
- # point: unit eigenvector of R33 corresponding to eigenvalue of 1
- l, Q = numpy.linalg.eig(R)
- i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0]
- if not len(i):
- raise ValueError("no unit eigenvector corresponding to eigenvalue 1")
- point = numpy.real(Q[:, i[-1]]).squeeze()
- point /= point[3]
- # rotation angle depending on direction
- cosa = (numpy.trace(R33) - 1.0) / 2.0
- if abs(direction[2]) > 1e-8:
- sina = (R[1, 0] + (cosa-1.0)*direction[0]*direction[1]) / direction[2]
- elif abs(direction[1]) > 1e-8:
- sina = (R[0, 2] + (cosa-1.0)*direction[0]*direction[2]) / direction[1]
- else:
- sina = (R[2, 1] + (cosa-1.0)*direction[1]*direction[2]) / direction[0]
- angle = math.atan2(sina, cosa)
- return angle, direction, point
-
-
-def scale_matrix(factor, origin=None, direction=None):
- """Return matrix to scale by factor around origin in direction.
-
- Use factor -1 for point symmetry.
-
- >>> v = (numpy.random.rand(4, 5) - 0.5) * 20.0
- >>> v[3] = 1.0
- >>> S = scale_matrix(-1.234)
- >>> numpy.allclose(numpy.dot(S, v)[:3], -1.234*v[:3])
- True
- >>> factor = random.random() * 10 - 5
- >>> origin = numpy.random.random(3) - 0.5
- >>> direct = numpy.random.random(3) - 0.5
- >>> S = scale_matrix(factor, origin)
- >>> S = scale_matrix(factor, origin, direct)
-
- """
- if direction is None:
- # uniform scaling
- M = numpy.array(((factor, 0.0, 0.0, 0.0),
- (0.0, factor, 0.0, 0.0),
- (0.0, 0.0, factor, 0.0),
- (0.0, 0.0, 0.0, 1.0)), dtype=numpy.float64)
- if origin is not None:
- M[:3, 3] = origin[:3]
- M[:3, 3] *= 1.0 - factor
- else:
- # nonuniform scaling
- direction = unit_vector(direction[:3])
- factor = 1.0 - factor
- M = numpy.identity(4)
- M[:3, :3] -= factor * numpy.outer(direction, direction)
- if origin is not None:
- M[:3, 3] = (factor * numpy.dot(origin[:3], direction)) * direction
- return M
-
-
-def scale_from_matrix(matrix):
- """Return scaling factor, origin and direction from scaling matrix.
-
- >>> factor = random.random() * 10 - 5
- >>> origin = numpy.random.random(3) - 0.5
- >>> direct = numpy.random.random(3) - 0.5
- >>> S0 = scale_matrix(factor, origin)
- >>> factor, origin, direction = scale_from_matrix(S0)
- >>> S1 = scale_matrix(factor, origin, direction)
- >>> is_same_transform(S0, S1)
- True
- >>> S0 = scale_matrix(factor, origin, direct)
- >>> factor, origin, direction = scale_from_matrix(S0)
- >>> S1 = scale_matrix(factor, origin, direction)
- >>> is_same_transform(S0, S1)
- True
-
- """
- M = numpy.array(matrix, dtype=numpy.float64, copy=False)
- M33 = M[:3, :3]
- factor = numpy.trace(M33) - 2.0
- try:
- # direction: unit eigenvector corresponding to eigenvalue factor
- l, V = numpy.linalg.eig(M33)
- i = numpy.where(abs(numpy.real(l) - factor) < 1e-8)[0][0]
- direction = numpy.real(V[:, i]).squeeze()
- direction /= vector_norm(direction)
- except IndexError:
- # uniform scaling
- factor = (factor + 2.0) / 3.0
- direction = None
- # origin: any eigenvector corresponding to eigenvalue 1
- l, V = numpy.linalg.eig(M)
- i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0]
- if not len(i):
- raise ValueError("no eigenvector corresponding to eigenvalue 1")
- origin = numpy.real(V[:, i[-1]]).squeeze()
- origin /= origin[3]
- return factor, origin, direction
-
-
-def projection_matrix(point, normal, direction=None,
- perspective=None, pseudo=False):
- """Return matrix to project onto plane defined by point and normal.
-
- Using either perspective point, projection direction, or none of both.
-
- If pseudo is True, perspective projections will preserve relative depth
- such that Perspective = dot(Orthogonal, PseudoPerspective).
-
- >>> P = projection_matrix((0, 0, 0), (1, 0, 0))
- >>> numpy.allclose(P[1:, 1:], numpy.identity(4)[1:, 1:])
- True
- >>> point = numpy.random.random(3) - 0.5
- >>> normal = numpy.random.random(3) - 0.5
- >>> direct = numpy.random.random(3) - 0.5
- >>> persp = numpy.random.random(3) - 0.5
- >>> P0 = projection_matrix(point, normal)
- >>> P1 = projection_matrix(point, normal, direction=direct)
- >>> P2 = projection_matrix(point, normal, perspective=persp)
- >>> P3 = projection_matrix(point, normal, perspective=persp, pseudo=True)
- >>> is_same_transform(P2, numpy.dot(P0, P3))
- True
- >>> P = projection_matrix((3, 0, 0), (1, 1, 0), (1, 0, 0))
- >>> v0 = (numpy.random.rand(4, 5) - 0.5) * 20.0
- >>> v0[3] = 1.0
- >>> v1 = numpy.dot(P, v0)
- >>> numpy.allclose(v1[1], v0[1])
- True
- >>> numpy.allclose(v1[0], 3.0-v1[1])
- True
-
- """
- M = numpy.identity(4)
- point = numpy.array(point[:3], dtype=numpy.float64, copy=False)
- normal = unit_vector(normal[:3])
- if perspective is not None:
- # perspective projection
- perspective = numpy.array(perspective[:3], dtype=numpy.float64,
- copy=False)
- M[0, 0] = M[1, 1] = M[2, 2] = numpy.dot(perspective-point, normal)
- M[:3, :3] -= numpy.outer(perspective, normal)
- if pseudo:
- # preserve relative depth
- M[:3, :3] -= numpy.outer(normal, normal)
- M[:3, 3] = numpy.dot(point, normal) * (perspective+normal)
- else:
- M[:3, 3] = numpy.dot(point, normal) * perspective
- M[3, :3] = -normal
- M[3, 3] = numpy.dot(perspective, normal)
- elif direction is not None:
- # parallel projection
- direction = numpy.array(direction[:3], dtype=numpy.float64, copy=False)
- scale = numpy.dot(direction, normal)
- M[:3, :3] -= numpy.outer(direction, normal) / scale
- M[:3, 3] = direction * (numpy.dot(point, normal) / scale)
- else:
- # orthogonal projection
- M[:3, :3] -= numpy.outer(normal, normal)
- M[:3, 3] = numpy.dot(point, normal) * normal
- return M
-
-
-def projection_from_matrix(matrix, pseudo=False):
- """Return projection plane and perspective point from projection matrix.
-
- Return values are same as arguments for projection_matrix function:
- point, normal, direction, perspective, and pseudo.
-
- >>> point = numpy.random.random(3) - 0.5
- >>> normal = numpy.random.random(3) - 0.5
- >>> direct = numpy.random.random(3) - 0.5
- >>> persp = numpy.random.random(3) - 0.5
- >>> P0 = projection_matrix(point, normal)
- >>> result = projection_from_matrix(P0)
- >>> P1 = projection_matrix(*result)
- >>> is_same_transform(P0, P1)
- True
- >>> P0 = projection_matrix(point, normal, direct)
- >>> result = projection_from_matrix(P0)
- >>> P1 = projection_matrix(*result)
- >>> is_same_transform(P0, P1)
- True
- >>> P0 = projection_matrix(point, normal, perspective=persp, pseudo=False)
- >>> result = projection_from_matrix(P0, pseudo=False)
- >>> P1 = projection_matrix(*result)
- >>> is_same_transform(P0, P1)
- True
- >>> P0 = projection_matrix(point, normal, perspective=persp, pseudo=True)
- >>> result = projection_from_matrix(P0, pseudo=True)
- >>> P1 = projection_matrix(*result)
- >>> is_same_transform(P0, P1)
- True
-
- """
- M = numpy.array(matrix, dtype=numpy.float64, copy=False)
- M33 = M[:3, :3]
- l, V = numpy.linalg.eig(M)
- i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0]
- if not pseudo and len(i):
- # point: any eigenvector corresponding to eigenvalue 1
- point = numpy.real(V[:, i[-1]]).squeeze()
- point /= point[3]
- # direction: unit eigenvector corresponding to eigenvalue 0
- l, V = numpy.linalg.eig(M33)
- i = numpy.where(abs(numpy.real(l)) < 1e-8)[0]
- if not len(i):
- raise ValueError("no eigenvector corresponding to eigenvalue 0")
- direction = numpy.real(V[:, i[0]]).squeeze()
- direction /= vector_norm(direction)
- # normal: unit eigenvector of M33.T corresponding to eigenvalue 0
- l, V = numpy.linalg.eig(M33.T)
- i = numpy.where(abs(numpy.real(l)) < 1e-8)[0]
- if len(i):
- # parallel projection
- normal = numpy.real(V[:, i[0]]).squeeze()
- normal /= vector_norm(normal)
- return point, normal, direction, None, False
- else:
- # orthogonal projection, where normal equals direction vector
- return point, direction, None, None, False
- else:
- # perspective projection
- i = numpy.where(abs(numpy.real(l)) > 1e-8)[0]
- if not len(i):
- raise ValueError(
- "no eigenvector not corresponding to eigenvalue 0")
- point = numpy.real(V[:, i[-1]]).squeeze()
- point /= point[3]
- normal = - M[3, :3]
- perspective = M[:3, 3] / numpy.dot(point[:3], normal)
- if pseudo:
- perspective -= normal
- return point, normal, None, perspective, pseudo
-
-
-def clip_matrix(left, right, bottom, top, near, far, perspective=False):
- """Return matrix to obtain normalized device coordinates from frustrum.
-
- The frustrum bounds are axis-aligned along x (left, right),
- y (bottom, top) and z (near, far).
-
- Normalized device coordinates are in range [-1, 1] if coordinates are
- inside the frustrum.
-
- If perspective is True the frustrum is a truncated pyramid with the
- perspective point at origin and direction along z axis, otherwise an
- orthographic canonical view volume (a box).
-
- Homogeneous coordinates transformed by the perspective clip matrix
- need to be dehomogenized (divided by w coordinate).
-
- >>> frustrum = numpy.random.rand(6)
- >>> frustrum[1] += frustrum[0]
- >>> frustrum[3] += frustrum[2]
- >>> frustrum[5] += frustrum[4]
- >>> M = clip_matrix(*frustrum, perspective=False)
- >>> numpy.dot(M, [frustrum[0], frustrum[2], frustrum[4], 1.0])
- array([-1., -1., -1., 1.])
- >>> numpy.dot(M, [frustrum[1], frustrum[3], frustrum[5], 1.0])
- array([ 1., 1., 1., 1.])
- >>> M = clip_matrix(*frustrum, perspective=True)
- >>> v = numpy.dot(M, [frustrum[0], frustrum[2], frustrum[4], 1.0])
- >>> v / v[3]
- array([-1., -1., -1., 1.])
- >>> v = numpy.dot(M, [frustrum[1], frustrum[3], frustrum[4], 1.0])
- >>> v / v[3]
- array([ 1., 1., -1., 1.])
-
- """
- if left >= right or bottom >= top or near >= far:
- raise ValueError("invalid frustrum")
- if perspective:
- if near <= _EPS:
- raise ValueError("invalid frustrum: near <= 0")
- t = 2.0 * near
- M = ((-t/(right-left), 0.0, (right+left)/(right-left), 0.0),
- (0.0, -t/(top-bottom), (top+bottom)/(top-bottom), 0.0),
- (0.0, 0.0, -(far+near)/(far-near), t*far/(far-near)),
- (0.0, 0.0, -1.0, 0.0))
- else:
- M = ((2.0/(right-left), 0.0, 0.0, (right+left)/(left-right)),
- (0.0, 2.0/(top-bottom), 0.0, (top+bottom)/(bottom-top)),
- (0.0, 0.0, 2.0/(far-near), (far+near)/(near-far)),
- (0.0, 0.0, 0.0, 1.0))
- return numpy.array(M, dtype=numpy.float64)
-
-
-def shear_matrix(angle, direction, point, normal):
- """Return matrix to shear by angle along direction vector on shear plane.
-
- The shear plane is defined by a point and normal vector. The direction
- vector must be orthogonal to the plane's normal vector.
-
- A point P is transformed by the shear matrix into P" such that
- the vector P-P" is parallel to the direction vector and its extent is
- given by the angle of P-P'-P", where P' is the orthogonal projection
- of P onto the shear plane.
-
- >>> angle = (random.random() - 0.5) * 4*math.pi
- >>> direct = numpy.random.random(3) - 0.5
- >>> point = numpy.random.random(3) - 0.5
- >>> normal = numpy.cross(direct, numpy.random.random(3))
- >>> S = shear_matrix(angle, direct, point, normal)
- >>> numpy.allclose(1.0, numpy.linalg.det(S))
- True
-
- """
- normal = unit_vector(normal[:3])
- direction = unit_vector(direction[:3])
- if abs(numpy.dot(normal, direction)) > 1e-6:
- raise ValueError("direction and normal vectors are not orthogonal")
- angle = math.tan(angle)
- M = numpy.identity(4)
- M[:3, :3] += angle * numpy.outer(direction, normal)
- M[:3, 3] = -angle * numpy.dot(point[:3], normal) * direction
- return M
-
-
-def shear_from_matrix(matrix):
- """Return shear angle, direction and plane from shear matrix.
-
- >>> angle = (random.random() - 0.5) * 4*math.pi
- >>> direct = numpy.random.random(3) - 0.5
- >>> point = numpy.random.random(3) - 0.5
- >>> normal = numpy.cross(direct, numpy.random.random(3))
- >>> S0 = shear_matrix(angle, direct, point, normal)
- >>> angle, direct, point, normal = shear_from_matrix(S0)
- >>> S1 = shear_matrix(angle, direct, point, normal)
- >>> is_same_transform(S0, S1)
- True
-
- """
- M = numpy.array(matrix, dtype=numpy.float64, copy=False)
- M33 = M[:3, :3]
- # normal: cross independent eigenvectors corresponding to the eigenvalue 1
- l, V = numpy.linalg.eig(M33)
- i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-4)[0]
- if len(i) < 2:
- raise ValueError("No two linear independent eigenvectors found %s" % l)
- V = numpy.real(V[:, i]).squeeze().T
- lenorm = -1.0
- for i0, i1 in ((0, 1), (0, 2), (1, 2)):
- n = numpy.cross(V[i0], V[i1])
- l = vector_norm(n)
- if l > lenorm:
- lenorm = l
- normal = n
- normal /= lenorm
- # direction and angle
- direction = numpy.dot(M33 - numpy.identity(3), normal)
- angle = vector_norm(direction)
- direction /= angle
- angle = math.atan(angle)
- # point: eigenvector corresponding to eigenvalue 1
- l, V = numpy.linalg.eig(M)
- i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0]
- if not len(i):
- raise ValueError("no eigenvector corresponding to eigenvalue 1")
- point = numpy.real(V[:, i[-1]]).squeeze()
- point /= point[3]
- return angle, direction, point, normal
-
-
-def decompose_matrix(matrix):
- """Return sequence of transformations from transformation matrix.
-
- matrix : array_like
- Non-degenerative homogeneous transformation matrix
-
- Return tuple of:
- scale : vector of 3 scaling factors
- shear : list of shear factors for x-y, x-z, y-z axes
- angles : list of Euler angles about static x, y, z axes
- translate : translation vector along x, y, z axes
- perspective : perspective partition of matrix
-
- Raise ValueError if matrix is of wrong type or degenerative.
-
- >>> T0 = translation_matrix((1, 2, 3))
- >>> scale, shear, angles, trans, persp = decompose_matrix(T0)
- >>> T1 = translation_matrix(trans)
- >>> numpy.allclose(T0, T1)
- True
- >>> S = scale_matrix(0.123)
- >>> scale, shear, angles, trans, persp = decompose_matrix(S)
- >>> scale[0]
- 0.123
- >>> R0 = euler_matrix(1, 2, 3)
- >>> scale, shear, angles, trans, persp = decompose_matrix(R0)
- >>> R1 = euler_matrix(*angles)
- >>> numpy.allclose(R0, R1)
- True
-
- """
- M = numpy.array(matrix, dtype=numpy.float64, copy=True).T
- if abs(M[3, 3]) < _EPS:
- raise ValueError("M[3, 3] is zero")
- M /= M[3, 3]
- P = M.copy()
- P[:, 3] = 0, 0, 0, 1
- if not numpy.linalg.det(P):
- raise ValueError("Matrix is singular")
-
- scale = numpy.zeros((3, ), dtype=numpy.float64)
- shear = [0, 0, 0]
- angles = [0, 0, 0]
-
- if any(abs(M[:3, 3]) > _EPS):
- perspective = numpy.dot(M[:, 3], numpy.linalg.inv(P.T))
- M[:, 3] = 0, 0, 0, 1
- else:
- perspective = numpy.array((0, 0, 0, 1), dtype=numpy.float64)
-
- translate = M[3, :3].copy()
- M[3, :3] = 0
-
- row = M[:3, :3].copy()
- scale[0] = vector_norm(row[0])
- row[0] /= scale[0]
- shear[0] = numpy.dot(row[0], row[1])
- row[1] -= row[0] * shear[0]
- scale[1] = vector_norm(row[1])
- row[1] /= scale[1]
- shear[0] /= scale[1]
- shear[1] = numpy.dot(row[0], row[2])
- row[2] -= row[0] * shear[1]
- shear[2] = numpy.dot(row[1], row[2])
- row[2] -= row[1] * shear[2]
- scale[2] = vector_norm(row[2])
- row[2] /= scale[2]
- shear[1:] /= scale[2]
-
- if numpy.dot(row[0], numpy.cross(row[1], row[2])) < 0:
- scale *= -1
- row *= -1
-
- angles[1] = math.asin(-row[0, 2])
- if math.cos(angles[1]):
- angles[0] = math.atan2(row[1, 2], row[2, 2])
- angles[2] = math.atan2(row[0, 1], row[0, 0])
- else:
- #angles[0] = math.atan2(row[1, 0], row[1, 1])
- angles[0] = math.atan2(-row[2, 1], row[1, 1])
- angles[2] = 0.0
-
- return scale, shear, angles, translate, perspective
-
-
-def compose_matrix(scale=None, shear=None, angles=None, translate=None,
- perspective=None):
- """Return transformation matrix from sequence of transformations.
-
- This is the inverse of the decompose_matrix function.
-
- Sequence of transformations:
- scale : vector of 3 scaling factors
- shear : list of shear factors for x-y, x-z, y-z axes
- angles : list of Euler angles about static x, y, z axes
- translate : translation vector along x, y, z axes
- perspective : perspective partition of matrix
-
- >>> scale = numpy.random.random(3) - 0.5
- >>> shear = numpy.random.random(3) - 0.5
- >>> angles = (numpy.random.random(3) - 0.5) * (2*math.pi)
- >>> trans = numpy.random.random(3) - 0.5
- >>> persp = numpy.random.random(4) - 0.5
- >>> M0 = compose_matrix(scale, shear, angles, trans, persp)
- >>> result = decompose_matrix(M0)
- >>> M1 = compose_matrix(*result)
- >>> is_same_transform(M0, M1)
- True
-
- """
- M = numpy.identity(4)
- if perspective is not None:
- P = numpy.identity(4)
- P[3, :] = perspective[:4]
- M = numpy.dot(M, P)
- if translate is not None:
- T = numpy.identity(4)
- T[:3, 3] = translate[:3]
- M = numpy.dot(M, T)
- if angles is not None:
- R = euler_matrix(angles[0], angles[1], angles[2], 'sxyz')
- M = numpy.dot(M, R)
- if shear is not None:
- Z = numpy.identity(4)
- Z[1, 2] = shear[2]
- Z[0, 2] = shear[1]
- Z[0, 1] = shear[0]
- M = numpy.dot(M, Z)
- if scale is not None:
- S = numpy.identity(4)
- S[0, 0] = scale[0]
- S[1, 1] = scale[1]
- S[2, 2] = scale[2]
- M = numpy.dot(M, S)
- M /= M[3, 3]
- return M
-
-
-def orthogonalization_matrix(lengths, angles):
- """Return orthogonalization matrix for crystallographic cell coordinates.
-
- Angles are expected in degrees.
-
- The de-orthogonalization matrix is the inverse.
-
- >>> O = orthogonalization_matrix((10., 10., 10.), (90., 90., 90.))
- >>> numpy.allclose(O[:3, :3], numpy.identity(3, float) * 10)
- True
- >>> O = orthogonalization_matrix([9.8, 12.0, 15.5], [87.2, 80.7, 69.7])
- >>> numpy.allclose(numpy.sum(O), 43.063229)
- True
-
- """
- a, b, c = lengths
- angles = numpy.radians(angles)
- sina, sinb, _ = numpy.sin(angles)
- cosa, cosb, cosg = numpy.cos(angles)
- co = (cosa * cosb - cosg) / (sina * sinb)
- return numpy.array((
- ( a*sinb*math.sqrt(1.0-co*co), 0.0, 0.0, 0.0),
- (-a*sinb*co, b*sina, 0.0, 0.0),
- ( a*cosb, b*cosa, c, 0.0),
- ( 0.0, 0.0, 0.0, 1.0)),
- dtype=numpy.float64)
-
-
-def superimposition_matrix(v0, v1, scaling=False, usesvd=True):
- """Return matrix to transform given vector set into second vector set.
-
- v0 and v1 are shape (3, \*) or (4, \*) arrays of at least 3 vectors.
-
- If usesvd is True, the weighted sum of squared deviations (RMSD) is
- minimized according to the algorithm by W. Kabsch [8]. Otherwise the
- quaternion based algorithm by B. Horn [9] is used (slower when using
- this Python implementation).
-
- The returned matrix performs rotation, translation and uniform scaling
- (if specified).
-
- >>> v0 = numpy.random.rand(3, 10)
- >>> M = superimposition_matrix(v0, v0)
- >>> numpy.allclose(M, numpy.identity(4))
- True
- >>> R = random_rotation_matrix(numpy.random.random(3))
- >>> v0 = ((1,0,0), (0,1,0), (0,0,1), (1,1,1))
- >>> v1 = numpy.dot(R, v0)
- >>> M = superimposition_matrix(v0, v1)
- >>> numpy.allclose(v1, numpy.dot(M, v0))
- True
- >>> v0 = (numpy.random.rand(4, 100) - 0.5) * 20.0
- >>> v0[3] = 1.0
- >>> v1 = numpy.dot(R, v0)
- >>> M = superimposition_matrix(v0, v1)
- >>> numpy.allclose(v1, numpy.dot(M, v0))
- True
- >>> S = scale_matrix(random.random())
- >>> T = translation_matrix(numpy.random.random(3)-0.5)
- >>> M = concatenate_matrices(T, R, S)
- >>> v1 = numpy.dot(M, v0)
- >>> v0[:3] += numpy.random.normal(0.0, 1e-9, 300).reshape(3, -1)
- >>> M = superimposition_matrix(v0, v1, scaling=True)
- >>> numpy.allclose(v1, numpy.dot(M, v0))
- True
- >>> M = superimposition_matrix(v0, v1, scaling=True, usesvd=False)
- >>> numpy.allclose(v1, numpy.dot(M, v0))
- True
- >>> v = numpy.empty((4, 100, 3), dtype=numpy.float64)
- >>> v[:, :, 0] = v0
- >>> M = superimposition_matrix(v0, v1, scaling=True, usesvd=False)
- >>> numpy.allclose(v1, numpy.dot(M, v[:, :, 0]))
- True
-
- """
- v0 = numpy.array(v0, dtype=numpy.float64, copy=False)[:3]
- v1 = numpy.array(v1, dtype=numpy.float64, copy=False)[:3]
-
- if v0.shape != v1.shape or v0.shape[1] < 3:
- raise ValueError("Vector sets are of wrong shape or type.")
-
- # move centroids to origin
- t0 = numpy.mean(v0, axis=1)
- t1 = numpy.mean(v1, axis=1)
- v0 = v0 - t0.reshape(3, 1)
- v1 = v1 - t1.reshape(3, 1)
-
- if usesvd:
- # Singular Value Decomposition of covariance matrix
- u, s, vh = numpy.linalg.svd(numpy.dot(v1, v0.T))
- # rotation matrix from SVD orthonormal bases
- R = numpy.dot(u, vh)
- if numpy.linalg.det(R) < 0.0:
- # R does not constitute right handed system
- R -= numpy.outer(u[:, 2], vh[2, :]*2.0)
- s[-1] *= -1.0
- # homogeneous transformation matrix
- M = numpy.identity(4)
- M[:3, :3] = R
- else:
- # compute symmetric matrix N
- xx, yy, zz = numpy.sum(v0 * v1, axis=1)
- xy, yz, zx = numpy.sum(v0 * numpy.roll(v1, -1, axis=0), axis=1)
- xz, yx, zy = numpy.sum(v0 * numpy.roll(v1, -2, axis=0), axis=1)
- N = ((xx+yy+zz, yz-zy, zx-xz, xy-yx),
- (yz-zy, xx-yy-zz, xy+yx, zx+xz),
- (zx-xz, xy+yx, -xx+yy-zz, yz+zy),
- (xy-yx, zx+xz, yz+zy, -xx-yy+zz))
- # quaternion: eigenvector corresponding to most positive eigenvalue
- l, V = numpy.linalg.eig(N)
- q = V[:, numpy.argmax(l)]
- q /= vector_norm(q) # unit quaternion
- q = numpy.roll(q, -1) # move w component to end
- # homogeneous transformation matrix
- M = quaternion_matrix(q)
-
- # scale: ratio of rms deviations from centroid
- if scaling:
- v0 *= v0
- v1 *= v1
- M[:3, :3] *= math.sqrt(numpy.sum(v1) / numpy.sum(v0))
-
- # translation
- M[:3, 3] = t1
- T = numpy.identity(4)
- T[:3, 3] = -t0
- M = numpy.dot(M, T)
- return M
-
-
-def euler_matrix(ai, aj, ak, axes='sxyz'):
- """Return homogeneous rotation matrix from Euler angles and axis sequence.
-
- ai, aj, ak : Euler's roll, pitch and yaw angles
- axes : One of 24 axis sequences as string or encoded tuple
-
- >>> R = euler_matrix(1, 2, 3, 'syxz')
- >>> numpy.allclose(numpy.sum(R[0]), -1.34786452)
- True
- >>> R = euler_matrix(1, 2, 3, (0, 1, 0, 1))
- >>> numpy.allclose(numpy.sum(R[0]), -0.383436184)
- True
- >>> ai, aj, ak = (4.0*math.pi) * (numpy.random.random(3) - 0.5)
- >>> for axes in _AXES2TUPLE.keys():
- ... R = euler_matrix(ai, aj, ak, axes)
- >>> for axes in _TUPLE2AXES.keys():
- ... R = euler_matrix(ai, aj, ak, axes)
-
- """
- try:
- firstaxis, parity, repetition, frame = _AXES2TUPLE[axes]
- except (AttributeError, KeyError):
- _ = _TUPLE2AXES[axes]
- firstaxis, parity, repetition, frame = axes
-
- i = firstaxis
- j = _NEXT_AXIS[i+parity]
- k = _NEXT_AXIS[i-parity+1]
-
- if frame:
- ai, ak = ak, ai
- if parity:
- ai, aj, ak = -ai, -aj, -ak
-
- si, sj, sk = math.sin(ai), math.sin(aj), math.sin(ak)
- ci, cj, ck = math.cos(ai), math.cos(aj), math.cos(ak)
- cc, cs = ci*ck, ci*sk
- sc, ss = si*ck, si*sk
-
- M = numpy.identity(4)
- if repetition:
- M[i, i] = cj
- M[i, j] = sj*si
- M[i, k] = sj*ci
- M[j, i] = sj*sk
- M[j, j] = -cj*ss+cc
- M[j, k] = -cj*cs-sc
- M[k, i] = -sj*ck
- M[k, j] = cj*sc+cs
- M[k, k] = cj*cc-ss
- else:
- M[i, i] = cj*ck
- M[i, j] = sj*sc-cs
- M[i, k] = sj*cc+ss
- M[j, i] = cj*sk
- M[j, j] = sj*ss+cc
- M[j, k] = sj*cs-sc
- M[k, i] = -sj
- M[k, j] = cj*si
- M[k, k] = cj*ci
- return M
-
-
-def euler_from_matrix(matrix, axes='sxyz'):
- """Return Euler angles from rotation matrix for specified axis sequence.
-
- axes : One of 24 axis sequences as string or encoded tuple
-
- Note that many Euler angle triplets can describe one matrix.
-
- >>> R0 = euler_matrix(1, 2, 3, 'syxz')
- >>> al, be, ga = euler_from_matrix(R0, 'syxz')
- >>> R1 = euler_matrix(al, be, ga, 'syxz')
- >>> numpy.allclose(R0, R1)
- True
- >>> angles = (4.0*math.pi) * (numpy.random.random(3) - 0.5)
- >>> for axes in _AXES2TUPLE.keys():
- ... R0 = euler_matrix(axes=axes, *angles)
- ... R1 = euler_matrix(axes=axes, *euler_from_matrix(R0, axes))
- ... if not numpy.allclose(R0, R1): print axes, "failed"
-
- """
- try:
- firstaxis, parity, repetition, frame = _AXES2TUPLE[axes.lower()]
- except (AttributeError, KeyError):
- _ = _TUPLE2AXES[axes]
- firstaxis, parity, repetition, frame = axes
-
- i = firstaxis
- j = _NEXT_AXIS[i+parity]
- k = _NEXT_AXIS[i-parity+1]
-
- M = numpy.array(matrix, dtype=numpy.float64, copy=False)[:3, :3]
- if repetition:
- sy = math.sqrt(M[i, j]*M[i, j] + M[i, k]*M[i, k])
- if sy > _EPS:
- ax = math.atan2( M[i, j], M[i, k])
- ay = math.atan2( sy, M[i, i])
- az = math.atan2( M[j, i], -M[k, i])
- else:
- ax = math.atan2(-M[j, k], M[j, j])
- ay = math.atan2( sy, M[i, i])
- az = 0.0
- else:
- cy = math.sqrt(M[i, i]*M[i, i] + M[j, i]*M[j, i])
- if cy > _EPS:
- ax = math.atan2( M[k, j], M[k, k])
- ay = math.atan2(-M[k, i], cy)
- az = math.atan2( M[j, i], M[i, i])
- else:
- ax = math.atan2(-M[j, k], M[j, j])
- ay = math.atan2(-M[k, i], cy)
- az = 0.0
-
- if parity:
- ax, ay, az = -ax, -ay, -az
- if frame:
- ax, az = az, ax
- return ax, ay, az
-
-
-def euler_from_quaternion(quaternion, axes='sxyz'):
- """Return Euler angles from quaternion for specified axis sequence.
-
- >>> angles = euler_from_quaternion([0.06146124, 0, 0, 0.99810947])
- >>> numpy.allclose(angles, [0.123, 0, 0])
- True
-
- """
- return euler_from_matrix(quaternion_matrix(quaternion), axes)
-
-
-def quaternion_from_euler(ai, aj, ak, axes='sxyz'):
- """Return quaternion from Euler angles and axis sequence.
-
- ai, aj, ak : Euler's roll, pitch and yaw angles
- axes : One of 24 axis sequences as string or encoded tuple
-
- >>> q = quaternion_from_euler(1, 2, 3, 'ryxz')
- >>> numpy.allclose(q, [0.310622, -0.718287, 0.444435, 0.435953])
- True
-
- """
- try:
- firstaxis, parity, repetition, frame = _AXES2TUPLE[axes.lower()]
- except (AttributeError, KeyError):
- _ = _TUPLE2AXES[axes]
- firstaxis, parity, repetition, frame = axes
-
- i = firstaxis
- j = _NEXT_AXIS[i+parity]
- k = _NEXT_AXIS[i-parity+1]
-
- if frame:
- ai, ak = ak, ai
- if parity:
- aj = -aj
-
- ai /= 2.0
- aj /= 2.0
- ak /= 2.0
- ci = math.cos(ai)
- si = math.sin(ai)
- cj = math.cos(aj)
- sj = math.sin(aj)
- ck = math.cos(ak)
- sk = math.sin(ak)
- cc = ci*ck
- cs = ci*sk
- sc = si*ck
- ss = si*sk
-
- quaternion = numpy.empty((4, ), dtype=numpy.float64)
- if repetition:
- quaternion[i] = cj*(cs + sc)
- quaternion[j] = sj*(cc + ss)
- quaternion[k] = sj*(cs - sc)
- quaternion[3] = cj*(cc - ss)
- else:
- quaternion[i] = cj*sc - sj*cs
- quaternion[j] = cj*ss + sj*cc
- quaternion[k] = cj*cs - sj*sc
- quaternion[3] = cj*cc + sj*ss
- if parity:
- quaternion[j] *= -1
-
- return quaternion
-
-
-def quaternion_about_axis(angle, axis):
- """Return quaternion for rotation about axis.
-
- >>> q = quaternion_about_axis(0.123, (1, 0, 0))
- >>> numpy.allclose(q, [0.06146124, 0, 0, 0.99810947])
- True
-
- """
- quaternion = numpy.zeros((4, ), dtype=numpy.float64)
- quaternion[:3] = axis[:3]
- qlen = vector_norm(quaternion)
- if qlen > _EPS:
- quaternion *= math.sin(angle/2.0) / qlen
- quaternion[3] = math.cos(angle/2.0)
- return quaternion
-
-
-def quaternion_matrix(quaternion):
- """Return homogeneous rotation matrix from quaternion.
-
- >>> R = quaternion_matrix([0.06146124, 0, 0, 0.99810947])
- >>> numpy.allclose(R, rotation_matrix(0.123, (1, 0, 0)))
- True
-
- """
- q = numpy.array(quaternion[:4], dtype=numpy.float64, copy=True)
- nq = numpy.dot(q, q)
- if nq < _EPS:
- return numpy.identity(4)
- q *= math.sqrt(2.0 / nq)
- q = numpy.outer(q, q)
- return numpy.array((
- (1.0-q[1, 1]-q[2, 2], q[0, 1]-q[2, 3], q[0, 2]+q[1, 3], 0.0),
- ( q[0, 1]+q[2, 3], 1.0-q[0, 0]-q[2, 2], q[1, 2]-q[0, 3], 0.0),
- ( q[0, 2]-q[1, 3], q[1, 2]+q[0, 3], 1.0-q[0, 0]-q[1, 1], 0.0),
- ( 0.0, 0.0, 0.0, 1.0)
- ), dtype=numpy.float64)
-
-
-def quaternion_from_matrix(matrix):
- """Return quaternion from rotation matrix.
-
- >>> R = rotation_matrix(0.123, (1, 2, 3))
- >>> q = quaternion_from_matrix(R)
- >>> numpy.allclose(q, [0.0164262, 0.0328524, 0.0492786, 0.9981095])
- True
-
- """
- q = numpy.empty((4, ), dtype=numpy.float64)
- M = numpy.array(matrix, dtype=numpy.float64, copy=False)[:4, :4]
- t = numpy.trace(M)
- if t > M[3, 3]:
- q[3] = t
- q[2] = M[1, 0] - M[0, 1]
- q[1] = M[0, 2] - M[2, 0]
- q[0] = M[2, 1] - M[1, 2]
- else:
- i, j, k = 0, 1, 2
- if M[1, 1] > M[0, 0]:
- i, j, k = 1, 2, 0
- if M[2, 2] > M[i, i]:
- i, j, k = 2, 0, 1
- t = M[i, i] - (M[j, j] + M[k, k]) + M[3, 3]
- q[i] = t
- q[j] = M[i, j] + M[j, i]
- q[k] = M[k, i] + M[i, k]
- q[3] = M[k, j] - M[j, k]
- q *= 0.5 / math.sqrt(t * M[3, 3])
- return q
-
-
-def quaternion_multiply(quaternion1, quaternion0):
- """Return multiplication of two quaternions.
-
- >>> q = quaternion_multiply([1, -2, 3, 4], [-5, 6, 7, 8])
- >>> numpy.allclose(q, [-44, -14, 48, 28])
- True
-
- """
- x0, y0, z0, w0 = quaternion0
- x1, y1, z1, w1 = quaternion1
- return numpy.array((
- x1*w0 + y1*z0 - z1*y0 + w1*x0,
- -x1*z0 + y1*w0 + z1*x0 + w1*y0,
- x1*y0 - y1*x0 + z1*w0 + w1*z0,
- -x1*x0 - y1*y0 - z1*z0 + w1*w0), dtype=numpy.float64)
-
-
-def quaternion_conjugate(quaternion):
- """Return conjugate of quaternion.
-
- >>> q0 = random_quaternion()
- >>> q1 = quaternion_conjugate(q0)
- >>> q1[3] == q0[3] and all(q1[:3] == -q0[:3])
- True
-
- """
- return numpy.array((-quaternion[0], -quaternion[1],
- -quaternion[2], quaternion[3]), dtype=numpy.float64)
-
-
-def quaternion_inverse(quaternion):
- """Return inverse of quaternion.
-
- >>> q0 = random_quaternion()
- >>> q1 = quaternion_inverse(q0)
- >>> numpy.allclose(quaternion_multiply(q0, q1), [0, 0, 0, 1])
- True
-
- """
- return quaternion_conjugate(quaternion) / numpy.dot(quaternion, quaternion)
-
-
-def quaternion_slerp(quat0, quat1, fraction, spin=0, shortestpath=True):
- """Return spherical linear interpolation between two quaternions.
-
- >>> q0 = random_quaternion()
- >>> q1 = random_quaternion()
- >>> q = quaternion_slerp(q0, q1, 0.0)
- >>> numpy.allclose(q, q0)
- True
- >>> q = quaternion_slerp(q0, q1, 1.0, 1)
- >>> numpy.allclose(q, q1)
- True
- >>> q = quaternion_slerp(q0, q1, 0.5)
- >>> angle = math.acos(numpy.dot(q0, q))
- >>> numpy.allclose(2.0, math.acos(numpy.dot(q0, q1)) / angle) or \
- numpy.allclose(2.0, math.acos(-numpy.dot(q0, q1)) / angle)
- True
-
- """
- q0 = unit_vector(quat0[:4])
- q1 = unit_vector(quat1[:4])
- if fraction == 0.0:
- return q0
- elif fraction == 1.0:
- return q1
- d = numpy.dot(q0, q1)
- if abs(abs(d) - 1.0) < _EPS:
- return q0
- if shortestpath and d < 0.0:
- # invert rotation
- d = -d
- q1 *= -1.0
- angle = math.acos(d) + spin * math.pi
- if abs(angle) < _EPS:
- return q0
- isin = 1.0 / math.sin(angle)
- q0 *= math.sin((1.0 - fraction) * angle) * isin
- q1 *= math.sin(fraction * angle) * isin
- q0 += q1
- return q0
-
-
-def random_quaternion(rand=None):
- """Return uniform random unit quaternion.
-
- rand: array like or None
- Three independent random variables that are uniformly distributed
- between 0 and 1.
-
- >>> q = random_quaternion()
- >>> numpy.allclose(1.0, vector_norm(q))
- True
- >>> q = random_quaternion(numpy.random.random(3))
- >>> q.shape
- (4,)
-
- """
- if rand is None:
- rand = numpy.random.rand(3)
- else:
- assert len(rand) == 3
- r1 = numpy.sqrt(1.0 - rand[0])
- r2 = numpy.sqrt(rand[0])
- pi2 = math.pi * 2.0
- t1 = pi2 * rand[1]
- t2 = pi2 * rand[2]
- return numpy.array((numpy.sin(t1)*r1,
- numpy.cos(t1)*r1,
- numpy.sin(t2)*r2,
- numpy.cos(t2)*r2), dtype=numpy.float64)
-
-
-def random_rotation_matrix(rand=None):
- """Return uniform random rotation matrix.
-
- rnd: array like
- Three independent random variables that are uniformly distributed
- between 0 and 1 for each returned quaternion.
-
- >>> R = random_rotation_matrix()
- >>> numpy.allclose(numpy.dot(R.T, R), numpy.identity(4))
- True
-
- """
- return quaternion_matrix(random_quaternion(rand))
-
-
-class Arcball(object):
- """Virtual Trackball Control.
-
- >>> ball = Arcball()
- >>> ball = Arcball(initial=numpy.identity(4))
- >>> ball.place([320, 320], 320)
- >>> ball.down([500, 250])
- >>> ball.drag([475, 275])
- >>> R = ball.matrix()
- >>> numpy.allclose(numpy.sum(R), 3.90583455)
- True
- >>> ball = Arcball(initial=[0, 0, 0, 1])
- >>> ball.place([320, 320], 320)
- >>> ball.setaxes([1,1,0], [-1, 1, 0])
- >>> ball.setconstrain(True)
- >>> ball.down([400, 200])
- >>> ball.drag([200, 400])
- >>> R = ball.matrix()
- >>> numpy.allclose(numpy.sum(R), 0.2055924)
- True
- >>> ball.next()
-
- """
-
- def __init__(self, initial=None):
- """Initialize virtual trackball control.
-
- initial : quaternion or rotation matrix
-
- """
- self._axis = None
- self._axes = None
- self._radius = 1.0
- self._center = [0.0, 0.0]
- self._vdown = numpy.array([0, 0, 1], dtype=numpy.float64)
- self._constrain = False
-
- if initial is None:
- self._qdown = numpy.array([0, 0, 0, 1], dtype=numpy.float64)
- else:
- initial = numpy.array(initial, dtype=numpy.float64)
- if initial.shape == (4, 4):
- self._qdown = quaternion_from_matrix(initial)
- elif initial.shape == (4, ):
- initial /= vector_norm(initial)
- self._qdown = initial
- else:
- raise ValueError("initial not a quaternion or matrix.")
-
- self._qnow = self._qpre = self._qdown
-
- def place(self, center, radius):
- """Place Arcball, e.g. when window size changes.
-
- center : sequence[2]
- Window coordinates of trackball center.
- radius : float
- Radius of trackball in window coordinates.
-
- """
- self._radius = float(radius)
- self._center[0] = center[0]
- self._center[1] = center[1]
-
- def setaxes(self, *axes):
- """Set axes to constrain rotations."""
- if axes is None:
- self._axes = None
- else:
- self._axes = [unit_vector(axis) for axis in axes]
-
- def setconstrain(self, constrain):
- """Set state of constrain to axis mode."""
- self._constrain = constrain == True
-
- def getconstrain(self):
- """Return state of constrain to axis mode."""
- return self._constrain
-
- def down(self, point):
- """Set initial cursor window coordinates and pick constrain-axis."""
- self._vdown = arcball_map_to_sphere(point, self._center, self._radius)
- self._qdown = self._qpre = self._qnow
-
- if self._constrain and self._axes is not None:
- self._axis = arcball_nearest_axis(self._vdown, self._axes)
- self._vdown = arcball_constrain_to_axis(self._vdown, self._axis)
- else:
- self._axis = None
-
- def drag(self, point):
- """Update current cursor window coordinates."""
- vnow = arcball_map_to_sphere(point, self._center, self._radius)
-
- if self._axis is not None:
- vnow = arcball_constrain_to_axis(vnow, self._axis)
-
- self._qpre = self._qnow
-
- t = numpy.cross(self._vdown, vnow)
- if numpy.dot(t, t) < _EPS:
- self._qnow = self._qdown
- else:
- q = [t[0], t[1], t[2], numpy.dot(self._vdown, vnow)]
- self._qnow = quaternion_multiply(q, self._qdown)
-
- def next(self, acceleration=0.0):
- """Continue rotation in direction of last drag."""
- q = quaternion_slerp(self._qpre, self._qnow, 2.0+acceleration, False)
- self._qpre, self._qnow = self._qnow, q
-
- def matrix(self):
- """Return homogeneous rotation matrix."""
- return quaternion_matrix(self._qnow)
-
-
-def arcball_map_to_sphere(point, center, radius):
- """Return unit sphere coordinates from window coordinates."""
- v = numpy.array(((point[0] - center[0]) / radius,
- (center[1] - point[1]) / radius,
- 0.0), dtype=numpy.float64)
- n = v[0]*v[0] + v[1]*v[1]
- if n > 1.0:
- v /= math.sqrt(n) # position outside of sphere
- else:
- v[2] = math.sqrt(1.0 - n)
- return v
-
-
-def arcball_constrain_to_axis(point, axis):
- """Return sphere point perpendicular to axis."""
- v = numpy.array(point, dtype=numpy.float64, copy=True)
- a = numpy.array(axis, dtype=numpy.float64, copy=True)
- v -= a * numpy.dot(a, v) # on plane
- n = vector_norm(v)
- if n > _EPS:
- if v[2] < 0.0:
- v *= -1.0
- v /= n
- return v
- if a[2] == 1.0:
- return numpy.array([1, 0, 0], dtype=numpy.float64)
- return unit_vector([-a[1], a[0], 0])
-
-
-def arcball_nearest_axis(point, axes):
- """Return axis, which arc is nearest to point."""
- point = numpy.array(point, dtype=numpy.float64, copy=False)
- nearest = None
- mx = -1.0
- for axis in axes:
- t = numpy.dot(arcball_constrain_to_axis(point, axis), point)
- if t > mx:
- nearest = axis
- mx = t
- return nearest
-
-
-# epsilon for testing whether a number is close to zero
-_EPS = numpy.finfo(float).eps * 4.0
-
-# axis sequences for Euler angles
-_NEXT_AXIS = [1, 2, 0, 1]
-
-# map axes strings to/from tuples of inner axis, parity, repetition, frame
-_AXES2TUPLE = {
- 'sxyz': (0, 0, 0, 0), 'sxyx': (0, 0, 1, 0), 'sxzy': (0, 1, 0, 0),
- 'sxzx': (0, 1, 1, 0), 'syzx': (1, 0, 0, 0), 'syzy': (1, 0, 1, 0),
- 'syxz': (1, 1, 0, 0), 'syxy': (1, 1, 1, 0), 'szxy': (2, 0, 0, 0),
- 'szxz': (2, 0, 1, 0), 'szyx': (2, 1, 0, 0), 'szyz': (2, 1, 1, 0),
- 'rzyx': (0, 0, 0, 1), 'rxyx': (0, 0, 1, 1), 'ryzx': (0, 1, 0, 1),
- 'rxzx': (0, 1, 1, 1), 'rxzy': (1, 0, 0, 1), 'ryzy': (1, 0, 1, 1),
- 'rzxy': (1, 1, 0, 1), 'ryxy': (1, 1, 1, 1), 'ryxz': (2, 0, 0, 1),
- 'rzxz': (2, 0, 1, 1), 'rxyz': (2, 1, 0, 1), 'rzyz': (2, 1, 1, 1)}
-
-_TUPLE2AXES = dict((v, k) for k, v in _AXES2TUPLE.items())
-
-# helper functions
-
-def vector_norm(data, axis=None, out=None):
- """Return length, i.e. eucledian norm, of ndarray along axis.
-
- >>> v = numpy.random.random(3)
- >>> n = vector_norm(v)
- >>> numpy.allclose(n, numpy.linalg.norm(v))
- True
- >>> v = numpy.random.rand(6, 5, 3)
- >>> n = vector_norm(v, axis=-1)
- >>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=2)))
- True
- >>> n = vector_norm(v, axis=1)
- >>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=1)))
- True
- >>> v = numpy.random.rand(5, 4, 3)
- >>> n = numpy.empty((5, 3), dtype=numpy.float64)
- >>> vector_norm(v, axis=1, out=n)
- >>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=1)))
- True
- >>> vector_norm([])
- 0.0
- >>> vector_norm([1.0])
- 1.0
-
- """
- data = numpy.array(data, dtype=numpy.float64, copy=True)
- if out is None:
- if data.ndim == 1:
- return math.sqrt(numpy.dot(data, data))
- data *= data
- out = numpy.atleast_1d(numpy.sum(data, axis=axis))
- numpy.sqrt(out, out)
- return out
- else:
- data *= data
- numpy.sum(data, axis=axis, out=out)
- numpy.sqrt(out, out)
-
-
-def unit_vector(data, axis=None, out=None):
- """Return ndarray normalized by length, i.e. eucledian norm, along axis.
-
- >>> v0 = numpy.random.random(3)
- >>> v1 = unit_vector(v0)
- >>> numpy.allclose(v1, v0 / numpy.linalg.norm(v0))
- True
- >>> v0 = numpy.random.rand(5, 4, 3)
- >>> v1 = unit_vector(v0, axis=-1)
- >>> v2 = v0 / numpy.expand_dims(numpy.sqrt(numpy.sum(v0*v0, axis=2)), 2)
- >>> numpy.allclose(v1, v2)
- True
- >>> v1 = unit_vector(v0, axis=1)
- >>> v2 = v0 / numpy.expand_dims(numpy.sqrt(numpy.sum(v0*v0, axis=1)), 1)
- >>> numpy.allclose(v1, v2)
- True
- >>> v1 = numpy.empty((5, 4, 3), dtype=numpy.float64)
- >>> unit_vector(v0, axis=1, out=v1)
- >>> numpy.allclose(v1, v2)
- True
- >>> list(unit_vector([]))
- []
- >>> list(unit_vector([1.0]))
- [1.0]
-
- """
- if out is None:
- data = numpy.array(data, dtype=numpy.float64, copy=True)
- if data.ndim == 1:
- data /= math.sqrt(numpy.dot(data, data))
- return data
- else:
- if out is not data:
- out[:] = numpy.array(data, copy=False)
- data = out
- length = numpy.atleast_1d(numpy.sum(data*data, axis))
- numpy.sqrt(length, length)
- if axis is not None:
- length = numpy.expand_dims(length, axis)
- data /= length
- if out is None:
- return data
-
-
-def random_vector(size):
- """Return array of random doubles in the half-open interval [0.0, 1.0).
-
- >>> v = random_vector(10000)
- >>> numpy.all(v >= 0.0) and numpy.all(v < 1.0)
- True
- >>> v0 = random_vector(10)
- >>> v1 = random_vector(10)
- >>> numpy.any(v0 == v1)
- False
-
- """
- return numpy.random.random(size)
-
-
-def inverse_matrix(matrix):
- """Return inverse of square transformation matrix.
-
- >>> M0 = random_rotation_matrix()
- >>> M1 = inverse_matrix(M0.T)
- >>> numpy.allclose(M1, numpy.linalg.inv(M0.T))
- True
- >>> for size in range(1, 7):
- ... M0 = numpy.random.rand(size, size)
- ... M1 = inverse_matrix(M0)
- ... if not numpy.allclose(M1, numpy.linalg.inv(M0)): print size
-
- """
- return numpy.linalg.inv(matrix)
-
-
-def concatenate_matrices(*matrices):
- """Return concatenation of series of transformation matrices.
-
- >>> M = numpy.random.rand(16).reshape((4, 4)) - 0.5
- >>> numpy.allclose(M, concatenate_matrices(M))
- True
- >>> numpy.allclose(numpy.dot(M, M.T), concatenate_matrices(M, M.T))
- True
-
- """
- M = numpy.identity(4)
- for i in matrices:
- M = numpy.dot(M, i)
- return M
-
-
-def is_same_transform(matrix0, matrix1):
- """Return True if two matrices perform same transformation.
-
- >>> is_same_transform(numpy.identity(4), numpy.identity(4))
- True
- >>> is_same_transform(numpy.identity(4), random_rotation_matrix())
- False
-
- """
- matrix0 = numpy.array(matrix0, dtype=numpy.float64, copy=True)
- matrix0 /= matrix0[3, 3]
- matrix1 = numpy.array(matrix1, dtype=numpy.float64, copy=True)
- matrix1 /= matrix1[3, 3]
- return numpy.allclose(matrix0, matrix1)
-
-
-def _import_module(module_name, warn=True, prefix='_py_', ignore='_'):
- """Try import all public attributes from module into global namespace.
-
- Existing attributes with name clashes are renamed with prefix.
- Attributes starting with underscore are ignored by default.
-
- Return True on successful import.
-
- """
- try:
- module = __import__(module_name)
- except ImportError:
- if warn:
- warnings.warn("Failed to import module " + module_name)
- else:
- for attr in dir(module):
- if ignore and attr.startswith(ignore):
- continue
- if prefix:
- if attr in globals():
- globals()[prefix + attr] = globals()[attr]
- elif warn:
- warnings.warn("No Python implementation of " + attr)
- globals()[attr] = getattr(module, attr)
- return True
diff --git a/src/mesh/assimp-master/port/PyAssimp/setup.py b/src/mesh/assimp-master/port/PyAssimp/setup.py
deleted file mode 100644
index a3497d6..0000000
--- a/src/mesh/assimp-master/port/PyAssimp/setup.py
+++ /dev/null
@@ -1,26 +0,0 @@
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
-import os
-from distutils.core import setup
-
-def readme():
- with open('README.rst') as f:
- return f.read()
-
-setup(name='pyassimp',
- version='4.1.4',
- license='ISC',
- description='Python bindings for the Open Asset Import Library (ASSIMP)',
- long_description=readme(),
- url='https://github.com/assimp/assimp',
- author='ASSIMP developers',
- author_email='assimp-discussions@lists.sourceforge.net',
- maintainer='Séverin Lemaignan',
- maintainer_email='severin@guakamole.org',
- packages=['pyassimp'],
- data_files=[
- ('share/pyassimp', ['README.rst']),
- ('share/examples/pyassimp', ['scripts/' + f for f in os.listdir('scripts/')])
- ],
- requires=['numpy']
- )