summaryrefslogtreecommitdiff
path: root/libs/assimp/code/AssetLib/AMF/AMFImporter_Postprocess.cpp
blob: a65f9260ed5f8624895080257545966cdc09132d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
/*
---------------------------------------------------------------------------
Open Asset Import Library (assimp)
---------------------------------------------------------------------------

Copyright (c) 2006-2022, assimp team

All rights reserved.

Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the following
conditions are met:

* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.

* Neither the name of the assimp team, nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission of the assimp team.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------
*/

/// \file AMFImporter_Postprocess.cpp
/// \brief Convert built scenegraph and objects to Assimp scenegraph.
/// \date 2016
/// \author smal.root@gmail.com

#ifndef ASSIMP_BUILD_NO_AMF_IMPORTER

#include "AMFImporter.hpp"

#include <assimp/SceneCombiner.h>
#include <assimp/StandardShapes.h>
#include <assimp/StringUtils.h>

#include <iterator>

namespace Assimp {

aiColor4D AMFImporter::SPP_Material::GetColor(const float /*pX*/, const float /*pY*/, const float /*pZ*/) const {
    aiColor4D tcol;

    // Check if stored data are supported.
    if (!Composition.empty()) {
        throw DeadlyImportError("IME. GetColor for composition");
    }

    if (Color->Composed) {
        throw DeadlyImportError("IME. GetColor, composed color");
    }

    tcol = Color->Color;

    // Check if default color must be used
    if ((tcol.r == 0) && (tcol.g == 0) && (tcol.b == 0) && (tcol.a == 0)) {
        tcol.r = 0.5f;
        tcol.g = 0.5f;
        tcol.b = 0.5f;
        tcol.a = 1;
    }

    return tcol;
}

void AMFImporter::PostprocessHelper_CreateMeshDataArray(const AMFMesh &nodeElement, std::vector<aiVector3D> &vertexCoordinateArray,
        std::vector<AMFColor *> &pVertexColorArray) const {
    AMFVertices  *vn = nullptr;
    size_t col_idx;

    // All data stored in "vertices", search for it.
    for (AMFNodeElementBase *ne_child : nodeElement.Child) {
        if (ne_child->Type == AMFNodeElementBase::ENET_Vertices) {
            vn = (AMFVertices*)ne_child;
        }
    }

    // If "vertices" not found then no work for us.
    if (vn == nullptr) {
        return;
    }

    // all coordinates stored as child and we need to reserve space for future push_back's.
    vertexCoordinateArray.reserve(vn->Child.size());

    // colors count equal vertices count.
    pVertexColorArray.resize(vn->Child.size());
    col_idx = 0;

    // Inside vertices collect all data and place to arrays
    for (AMFNodeElementBase *vn_child : vn->Child) {
        // vertices, colors
        if (vn_child->Type == AMFNodeElementBase::ENET_Vertex) {
            // by default clear color for current vertex
            pVertexColorArray[col_idx] = nullptr;

            for (AMFNodeElementBase *vtx : vn_child->Child) {
                if (vtx->Type == AMFNodeElementBase::ENET_Coordinates) {
                    vertexCoordinateArray.push_back(((AMFCoordinates *)vtx)->Coordinate);
                    continue;
                }

                if (vtx->Type == AMFNodeElementBase::ENET_Color) {
                    pVertexColorArray[col_idx] = (AMFColor *)vtx;
                    continue;
                }
            }

            ++col_idx;
        }
    }
}

size_t AMFImporter::PostprocessHelper_GetTextureID_Or_Create(const std::string &r, const std::string &g, const std::string &b, const std::string &a) {
    if (r.empty() && g.empty() && b.empty() && a.empty()) {
        throw DeadlyImportError("PostprocessHelper_GetTextureID_Or_Create. At least one texture ID must be defined.");
    }

    std::string TextureConverted_ID = r + "_" + g + "_" + b + "_" + a;
    size_t TextureConverted_Index = 0;
    for (const SPP_Texture &tex_convd : mTexture_Converted) {
        if (tex_convd.ID == TextureConverted_ID) {
            return TextureConverted_Index;
        } else {
            ++TextureConverted_Index;
        }
    }

    // Converted texture not found, create it.
    AMFTexture *src_texture[4] {
        nullptr
    };
    std::vector<AMFTexture *> src_texture_4check;
    SPP_Texture converted_texture;

    { // find all specified source textures
        AMFNodeElementBase *t_tex = nullptr;

        // R
        if (!r.empty()) {
            if (!Find_NodeElement(r, AMFNodeElementBase::EType::ENET_Texture, &t_tex)) {
                Throw_ID_NotFound(r);
            }

            src_texture[0] = (AMFTexture *)t_tex;
            src_texture_4check.push_back((AMFTexture *)t_tex);
        } else {
            src_texture[0] = nullptr;
        }

        // G
        if (!g.empty()) {
            if (!Find_NodeElement(g, AMFNodeElementBase::ENET_Texture, &t_tex)) {
                Throw_ID_NotFound(g);
            }

            src_texture[1] = (AMFTexture *)t_tex;
            src_texture_4check.push_back((AMFTexture *)t_tex);
        } else {
            src_texture[1] = nullptr;
        }

        // B
        if (!b.empty()) {
            if (!Find_NodeElement(b, AMFNodeElementBase::ENET_Texture, &t_tex)) {
                Throw_ID_NotFound(b);
            }

            src_texture[2] = (AMFTexture *)t_tex;
            src_texture_4check.push_back((AMFTexture *)t_tex);
        } else {
            src_texture[2] = nullptr;
        }

        // A
        if (!a.empty()) {
            if (!Find_NodeElement(a, AMFNodeElementBase::ENET_Texture, &t_tex)) {
                Throw_ID_NotFound(a);
            }

            src_texture[3] = (AMFTexture *)t_tex;
            src_texture_4check.push_back((AMFTexture *)t_tex);
        } else {
            src_texture[3] = nullptr;
        }
    } // END: find all specified source textures

    // check that all textures has same size
    if (src_texture_4check.size() > 1) {
        for (size_t i = 0, i_e = (src_texture_4check.size() - 1); i < i_e; i++) {
            if ((src_texture_4check[i]->Width != src_texture_4check[i + 1]->Width) || (src_texture_4check[i]->Height != src_texture_4check[i + 1]->Height) ||
                    (src_texture_4check[i]->Depth != src_texture_4check[i + 1]->Depth)) {
                throw DeadlyImportError("PostprocessHelper_GetTextureID_Or_Create. Source texture must has the same size.");
            }
        }
    } // if(src_texture_4check.size() > 1)

    // set texture attributes
    converted_texture.Width = src_texture_4check[0]->Width;
    converted_texture.Height = src_texture_4check[0]->Height;
    converted_texture.Depth = src_texture_4check[0]->Depth;
    // if one of source texture is tiled then converted texture is tiled too.
    converted_texture.Tiled = false;
    for (uint8_t i = 0; i < src_texture_4check.size(); ++i) {
        converted_texture.Tiled |= src_texture_4check[i]->Tiled;
    }

    // Create format hint.
    strcpy(converted_texture.FormatHint, "rgba0000"); // copy initial string.
    if (!r.empty()) converted_texture.FormatHint[4] = '8';
    if (!g.empty()) converted_texture.FormatHint[5] = '8';
    if (!b.empty()) converted_texture.FormatHint[6] = '8';
    if (!a.empty()) converted_texture.FormatHint[7] = '8';

    // Сopy data of textures.
    size_t tex_size = 0;
    size_t step = 0;
    size_t off_g = 0;
    size_t off_b = 0;

    // Calculate size of the target array and rule how data will be copied.
    if (!r.empty() && nullptr != src_texture[0]) {
        tex_size += src_texture[0]->Data.size();
        step++, off_g++, off_b++;
    }
    if (!g.empty() && nullptr != src_texture[1]) {
        tex_size += src_texture[1]->Data.size();
        step++, off_b++;
    }
    if (!b.empty() && nullptr != src_texture[2]) {
        tex_size += src_texture[2]->Data.size();
        step++;
    }
    if (!a.empty() && nullptr != src_texture[3]) {
        tex_size += src_texture[3]->Data.size();
        step++;
    }

    // Create target array.
    converted_texture.Data = new uint8_t[tex_size];
    // And copy data
    auto CopyTextureData = [&](const std::string &pID, const size_t pOffset, const size_t pStep, const uint8_t pSrcTexNum) -> void {
        if (!pID.empty()) {
            for (size_t idx_target = pOffset, idx_src = 0; idx_target < tex_size; idx_target += pStep, idx_src++) {
                AMFTexture *tex = src_texture[pSrcTexNum];
                ai_assert(tex);
                converted_texture.Data[idx_target] = tex->Data.at(idx_src);
            }
        }
    }; // auto CopyTextureData = [&](const size_t pOffset, const size_t pStep, const uint8_t pSrcTexNum) -> void

    CopyTextureData(r, 0, step, 0);
    CopyTextureData(g, off_g, step, 1);
    CopyTextureData(b, off_b, step, 2);
    CopyTextureData(a, step - 1, step, 3);

    // Store new converted texture ID
    converted_texture.ID = TextureConverted_ID;
    // Store new converted texture
    mTexture_Converted.push_back(converted_texture);

    return TextureConverted_Index;
}

void AMFImporter::PostprocessHelper_SplitFacesByTextureID(std::list<SComplexFace> &pInputList, std::list<std::list<SComplexFace>> &pOutputList_Separated) {
    auto texmap_is_equal = [](const AMFTexMap *pTexMap1, const AMFTexMap *pTexMap2) -> bool {
        if ((pTexMap1 == nullptr) && (pTexMap2 == nullptr)) return true;
        if (pTexMap1 == nullptr) return false;
        if (pTexMap2 == nullptr) return false;

        if (pTexMap1->TextureID_R != pTexMap2->TextureID_R) return false;
        if (pTexMap1->TextureID_G != pTexMap2->TextureID_G) return false;
        if (pTexMap1->TextureID_B != pTexMap2->TextureID_B) return false;
        if (pTexMap1->TextureID_A != pTexMap2->TextureID_A) return false;

        return true;
    };

    pOutputList_Separated.clear();
    if (pInputList.empty()) return;

    do {
        SComplexFace face_start = pInputList.front();
        std::list<SComplexFace> face_list_cur;

        for (std::list<SComplexFace>::iterator it = pInputList.begin(), it_end = pInputList.end(); it != it_end;) {
            if (texmap_is_equal(face_start.TexMap, it->TexMap)) {
                auto it_old = it;

                ++it;
                face_list_cur.push_back(*it_old);
                pInputList.erase(it_old);
            } else {
                ++it;
            }
        }

        if (!face_list_cur.empty()) pOutputList_Separated.push_back(face_list_cur);

    } while (!pInputList.empty());
}

void AMFImporter::Postprocess_AddMetadata(const AMFMetaDataArray &metadataList, aiNode &sceneNode) const {
    if (metadataList.empty()) {
        return;
    }

    if (sceneNode.mMetaData != nullptr) {
        throw DeadlyImportError("Postprocess. MetaData member in node are not nullptr. Something went wrong.");
    }

    // copy collected metadata to output node.
    sceneNode.mMetaData = aiMetadata::Alloc(static_cast<unsigned int>(metadataList.size()));
    size_t meta_idx(0);

    for (const AMFMetadata *metadata : metadataList) {
        sceneNode.mMetaData->Set(static_cast<unsigned int>(meta_idx++), metadata->Type, aiString(metadata->Value));
    }
}

void AMFImporter::Postprocess_BuildNodeAndObject(const AMFObject &pNodeElement, MeshArray &meshList, aiNode **pSceneNode) {
    AMFColor *object_color = nullptr;

    // create new aiNode and set name as <object> has.
    *pSceneNode = new aiNode;
    (*pSceneNode)->mName = pNodeElement.ID;
    // read mesh and color
    for (const AMFNodeElementBase *ne_child : pNodeElement.Child) {
        std::vector<aiVector3D> vertex_arr;
        std::vector<AMFColor *> color_arr;

        // color for object
        if (ne_child->Type == AMFNodeElementBase::ENET_Color) {
            object_color = (AMFColor *) ne_child;
        }

        if (ne_child->Type == AMFNodeElementBase::ENET_Mesh) {
            // Create arrays from children of mesh: vertices.
            PostprocessHelper_CreateMeshDataArray(*((AMFMesh *)ne_child), vertex_arr, color_arr);
            // Use this arrays as a source when creating every aiMesh
            Postprocess_BuildMeshSet(*((AMFMesh *)ne_child), vertex_arr, color_arr, object_color, meshList, **pSceneNode);
        }
    } // for(const CAMFImporter_NodeElement* ne_child: pNodeElement)
}

void AMFImporter::Postprocess_BuildMeshSet(const AMFMesh &pNodeElement, const std::vector<aiVector3D> &pVertexCoordinateArray,
        const std::vector<AMFColor *> &pVertexColorArray, const AMFColor *pObjectColor, MeshArray &pMeshList, aiNode &pSceneNode) {
    std::list<unsigned int> mesh_idx;

    // all data stored in "volume", search for it.
    for (const AMFNodeElementBase *ne_child : pNodeElement.Child) {
        const AMFColor *ne_volume_color = nullptr;
        const SPP_Material *cur_mat = nullptr;

        if (ne_child->Type == AMFNodeElementBase::ENET_Volume) {
            /******************* Get faces *******************/
            const AMFVolume *ne_volume = reinterpret_cast<const AMFVolume *>(ne_child);

            std::list<SComplexFace> complex_faces_list; // List of the faces of the volume.
            std::list<std::list<SComplexFace>> complex_faces_toplist; // List of the face list for every mesh.

            // check if volume use material
            if (!ne_volume->MaterialID.empty()) {
                if (!Find_ConvertedMaterial(ne_volume->MaterialID, &cur_mat)) {
                    Throw_ID_NotFound(ne_volume->MaterialID);
                }
            }

            // inside "volume" collect all data and place to arrays or create new objects
            for (const AMFNodeElementBase *ne_volume_child : ne_volume->Child) {
                // color for volume
                if (ne_volume_child->Type == AMFNodeElementBase::ENET_Color) {
                    ne_volume_color = reinterpret_cast<const AMFColor *>(ne_volume_child);
                } else if (ne_volume_child->Type == AMFNodeElementBase::ENET_Triangle) // triangles, triangles colors
                {
                    const AMFTriangle &tri_al = *reinterpret_cast<const AMFTriangle *>(ne_volume_child);

                    SComplexFace complex_face;

                    // initialize pointers
                    complex_face.Color = nullptr;
                    complex_face.TexMap = nullptr;
                    // get data from triangle children: color, texture coordinates.
                    if (tri_al.Child.size()) {
                        for (const AMFNodeElementBase *ne_triangle_child : tri_al.Child) {
                            if (ne_triangle_child->Type == AMFNodeElementBase::ENET_Color)
                                complex_face.Color = reinterpret_cast<const AMFColor *>(ne_triangle_child);
                            else if (ne_triangle_child->Type == AMFNodeElementBase::ENET_TexMap)
                                complex_face.TexMap = reinterpret_cast<const AMFTexMap *>(ne_triangle_child);
                        }
                    } // if(tri_al.Child.size())

                    // create new face and store it.
                    complex_face.Face.mNumIndices = 3;
                    complex_face.Face.mIndices = new unsigned int[3];
                    complex_face.Face.mIndices[0] = static_cast<unsigned int>(tri_al.V[0]);
                    complex_face.Face.mIndices[1] = static_cast<unsigned int>(tri_al.V[1]);
                    complex_face.Face.mIndices[2] = static_cast<unsigned int>(tri_al.V[2]);
                    complex_faces_list.push_back(complex_face);
                }
            } // for(const CAMFImporter_NodeElement* ne_volume_child: ne_volume->Child)

            /**** Split faces list: one list per mesh ****/
            PostprocessHelper_SplitFacesByTextureID(complex_faces_list, complex_faces_toplist);

            /***** Create mesh for every faces list ******/
            for (std::list<SComplexFace> &face_list_cur : complex_faces_toplist) {
                auto VertexIndex_GetMinimal = [](const std::list<SComplexFace> &pFaceList, const size_t *pBiggerThan) -> size_t {
                    size_t rv = 0;

                    if (pBiggerThan != nullptr) {
                        bool found = false;
                        const size_t biggerThan = *pBiggerThan;
                        for (const SComplexFace &face : pFaceList) {
                            for (size_t idx_vert = 0; idx_vert < face.Face.mNumIndices; idx_vert++) {
                                if (face.Face.mIndices[idx_vert] > biggerThan) {
                                    rv = face.Face.mIndices[idx_vert];
                                    found = true;
                                    break;
                                }
                            }

                            if (found) {
                                break;
                            }
                        }

                        if (!found) {
                            return *pBiggerThan;
                        }
                    } else {
                        rv = pFaceList.front().Face.mIndices[0];
                    } // if(pBiggerThan != nullptr) else

                    for (const SComplexFace &face : pFaceList) {
                        for (size_t vi = 0; vi < face.Face.mNumIndices; vi++) {
                            if (face.Face.mIndices[vi] < rv) {
                                if (pBiggerThan != nullptr) {
                                    if (face.Face.mIndices[vi] > *pBiggerThan) rv = face.Face.mIndices[vi];
                                } else {
                                    rv = face.Face.mIndices[vi];
                                }
                            }
                        }
                    } // for(const SComplexFace& face: pFaceList)

                    return rv;
                }; // auto VertexIndex_GetMinimal = [](const std::list<SComplexFace>& pFaceList, const size_t* pBiggerThan) -> size_t

                auto VertexIndex_Replace = [](std::list<SComplexFace> &pFaceList, const size_t pIdx_From, const size_t pIdx_To) -> void {
                    for (const SComplexFace &face : pFaceList) {
                        for (size_t vi = 0; vi < face.Face.mNumIndices; vi++) {
                            if (face.Face.mIndices[vi] == pIdx_From) face.Face.mIndices[vi] = static_cast<unsigned int>(pIdx_To);
                        }
                    }
                }; // auto VertexIndex_Replace = [](std::list<SComplexFace>& pFaceList, const size_t pIdx_From, const size_t pIdx_To) -> void

                auto Vertex_CalculateColor = [&](const size_t pIdx) -> aiColor4D {
                    // Color priorities(In descending order):
                    // 1. triangle color;
                    // 2. vertex color;
                    // 3. volume color;
                    // 4. object color;
                    // 5. material;
                    // 6. default - invisible coat.
                    //
                    // Fill vertices colors in color priority list above that's points from 1 to 6.
                    if ((pIdx < pVertexColorArray.size()) && (pVertexColorArray[pIdx] != nullptr)) // check for vertex color
                    {
                        if (pVertexColorArray[pIdx]->Composed)
                            throw DeadlyImportError("IME: vertex color composed");
                        else
                            return pVertexColorArray[pIdx]->Color;
                    } else if (ne_volume_color != nullptr) // check for volume color
                    {
                        if (ne_volume_color->Composed)
                            throw DeadlyImportError("IME: volume color composed");
                        else
                            return ne_volume_color->Color;
                    } else if (pObjectColor != nullptr) // check for object color
                    {
                        if (pObjectColor->Composed)
                            throw DeadlyImportError("IME: object color composed");
                        else
                            return pObjectColor->Color;
                    } else if (cur_mat != nullptr) // check for material
                    {
                        return cur_mat->GetColor(pVertexCoordinateArray.at(pIdx).x, pVertexCoordinateArray.at(pIdx).y, pVertexCoordinateArray.at(pIdx).z);
                    } else // set default color.
                    {
                        return { 0, 0, 0, 0 };
                    } // if((vi < pVertexColorArray.size()) && (pVertexColorArray[vi] != nullptr)) else
                }; // auto Vertex_CalculateColor = [&](const size_t pIdx) -> aiColor4D

                aiMesh *tmesh = new aiMesh;

                tmesh->mPrimitiveTypes = aiPrimitiveType_TRIANGLE; // Only triangles is supported by AMF.
                //
                // set geometry and colors (vertices)
                //
                // copy faces/triangles
                tmesh->mNumFaces = static_cast<unsigned int>(face_list_cur.size());
                tmesh->mFaces = new aiFace[tmesh->mNumFaces];

                // Create vertices list and optimize indices. Optimization mean following.In AMF all volumes use one big list of vertices. And one volume
                // can use only part of vertices list, for example: vertices list contain few thousands of vertices and volume use vertices 1, 3, 10.
                // Do you need all this thousands of garbage? Of course no. So, optimization step transform sparse indices set to continuous.
                size_t VertexCount_Max = tmesh->mNumFaces * 3; // 3 - triangles.
                std::vector<aiVector3D> vert_arr, texcoord_arr;
                std::vector<aiColor4D> col_arr;

                vert_arr.reserve(VertexCount_Max * 2); // "* 2" - see below TODO.
                col_arr.reserve(VertexCount_Max * 2);

                { // fill arrays
                    size_t vert_idx_from, vert_idx_to;

                    // first iteration.
                    vert_idx_to = 0;
                    vert_idx_from = VertexIndex_GetMinimal(face_list_cur, nullptr);
                    vert_arr.push_back(pVertexCoordinateArray.at(vert_idx_from));
                    col_arr.push_back(Vertex_CalculateColor(vert_idx_from));
                    if (vert_idx_from != vert_idx_to) VertexIndex_Replace(face_list_cur, vert_idx_from, vert_idx_to);

                    // rest iterations
                    do {
                        vert_idx_from = VertexIndex_GetMinimal(face_list_cur, &vert_idx_to);
                        if (vert_idx_from == vert_idx_to) break; // all indices are transferred,

                        vert_arr.push_back(pVertexCoordinateArray.at(vert_idx_from));
                        col_arr.push_back(Vertex_CalculateColor(vert_idx_from));
                        vert_idx_to++;
                        if (vert_idx_from != vert_idx_to) VertexIndex_Replace(face_list_cur, vert_idx_from, vert_idx_to);

                    } while (true);
                } // fill arrays. END.

                //
                // check if triangle colors are used and create additional faces if needed.
                //
                for (const SComplexFace &face_cur : face_list_cur) {
                    if (face_cur.Color != nullptr) {
                        aiColor4D face_color;
                        size_t vert_idx_new = vert_arr.size();

                        if (face_cur.Color->Composed)
                            throw DeadlyImportError("IME: face color composed");
                        else
                            face_color = face_cur.Color->Color;

                        for (size_t idx_ind = 0; idx_ind < face_cur.Face.mNumIndices; idx_ind++) {
                            vert_arr.push_back(vert_arr.at(face_cur.Face.mIndices[idx_ind]));
                            col_arr.push_back(face_color);
                            face_cur.Face.mIndices[idx_ind] = static_cast<unsigned int>(vert_idx_new++);
                        }
                    } // if(face_cur.Color != nullptr)
                } // for(const SComplexFace& face_cur: face_list_cur)

                //
                // if texture is used then copy texture coordinates too.
                //
                if (face_list_cur.front().TexMap != nullptr) {
                    size_t idx_vert_new = vert_arr.size();
                    ///TODO: clean unused vertices. "* 2": in certain cases - mesh full of triangle colors - vert_arr will contain duplicated vertices for
                    /// colored triangles and initial vertices (for colored vertices) which in real became unused. This part need more thinking about
                    /// optimization.
                    bool *idx_vert_used;

                    idx_vert_used = new bool[VertexCount_Max * 2];
                    for (size_t i = 0, i_e = VertexCount_Max * 2; i < i_e; i++)
                        idx_vert_used[i] = false;

                    // This ID's will be used when set materials ID in scene.
                    tmesh->mMaterialIndex = static_cast<unsigned int>(PostprocessHelper_GetTextureID_Or_Create(face_list_cur.front().TexMap->TextureID_R,
                            face_list_cur.front().TexMap->TextureID_G,
                            face_list_cur.front().TexMap->TextureID_B,
                            face_list_cur.front().TexMap->TextureID_A));
                    texcoord_arr.resize(VertexCount_Max * 2);
                    for (const SComplexFace &face_cur : face_list_cur) {
                        for (size_t idx_ind = 0; idx_ind < face_cur.Face.mNumIndices; idx_ind++) {
                            const size_t idx_vert = face_cur.Face.mIndices[idx_ind];

                            if (!idx_vert_used[idx_vert]) {
                                texcoord_arr.at(idx_vert) = face_cur.TexMap->TextureCoordinate[idx_ind];
                                idx_vert_used[idx_vert] = true;
                            } else if (texcoord_arr.at(idx_vert) != face_cur.TexMap->TextureCoordinate[idx_ind]) {
                                // in that case one vertex is shared with many texture coordinates. We need to duplicate vertex with another texture
                                // coordinates.
                                vert_arr.push_back(vert_arr.at(idx_vert));
                                col_arr.push_back(col_arr.at(idx_vert));
                                texcoord_arr.at(idx_vert_new) = face_cur.TexMap->TextureCoordinate[idx_ind];
                                face_cur.Face.mIndices[idx_ind] = static_cast<unsigned int>(idx_vert_new++);
                            }
                        } // for(size_t idx_ind = 0; idx_ind < face_cur.Face.mNumIndices; idx_ind++)
                    } // for(const SComplexFace& face_cur: face_list_cur)

                    delete[] idx_vert_used;
                    // shrink array
                    texcoord_arr.resize(idx_vert_new);
                } // if(face_list_cur.front().TexMap != nullptr)

                //
                // copy collected data to mesh
                //
                tmesh->mNumVertices = static_cast<unsigned int>(vert_arr.size());
                tmesh->mVertices = new aiVector3D[tmesh->mNumVertices];
                tmesh->mColors[0] = new aiColor4D[tmesh->mNumVertices];

                memcpy(tmesh->mVertices, vert_arr.data(), tmesh->mNumVertices * sizeof(aiVector3D));
                memcpy(tmesh->mColors[0], col_arr.data(), tmesh->mNumVertices * sizeof(aiColor4D));
                if (texcoord_arr.size() > 0) {
                    tmesh->mTextureCoords[0] = new aiVector3D[tmesh->mNumVertices];
                    memcpy(tmesh->mTextureCoords[0], texcoord_arr.data(), tmesh->mNumVertices * sizeof(aiVector3D));
                    tmesh->mNumUVComponents[0] = 2; // U and V stored in "x", "y" of aiVector3D.
                }

                size_t idx_face = 0;
                for (const SComplexFace &face_cur : face_list_cur)
                    tmesh->mFaces[idx_face++] = face_cur.Face;

                // store new aiMesh
                mesh_idx.push_back(static_cast<unsigned int>(pMeshList.size()));
                pMeshList.push_back(tmesh);
            } // for(const std::list<SComplexFace>& face_list_cur: complex_faces_toplist)
        } // if(ne_child->Type == CAMFImporter_NodeElement::ENET_Volume)
    } // for(const CAMFImporter_NodeElement* ne_child: pNodeElement.Child)

    // if meshes was created then assign new indices with current aiNode
    if (!mesh_idx.empty()) {
        std::list<unsigned int>::const_iterator mit = mesh_idx.begin();

        pSceneNode.mNumMeshes = static_cast<unsigned int>(mesh_idx.size());
        pSceneNode.mMeshes = new unsigned int[pSceneNode.mNumMeshes];
        for (size_t i = 0; i < pSceneNode.mNumMeshes; i++)
            pSceneNode.mMeshes[i] = *mit++;
    } // if(mesh_idx.size() > 0)
}

void AMFImporter::Postprocess_BuildMaterial(const AMFMaterial &pMaterial) {
    SPP_Material new_mat;

    new_mat.ID = pMaterial.ID;
    for (const AMFNodeElementBase *mat_child : pMaterial.Child) {
        if (mat_child->Type == AMFNodeElementBase::ENET_Color) {
            new_mat.Color = (AMFColor*)mat_child;
        } else if (mat_child->Type == AMFNodeElementBase::ENET_Metadata) {
            new_mat.Metadata.push_back((AMFMetadata *)mat_child);
        }
    } // for(const CAMFImporter_NodeElement* mat_child; pMaterial.Child)

    // place converted material to special list
    mMaterial_Converted.push_back(new_mat);
}

void AMFImporter::Postprocess_BuildConstellation(AMFConstellation &pConstellation, NodeArray &nodeArray) const {
    aiNode *con_node;
    std::list<aiNode *> ch_node;

    // We will build next hierarchy:
    // aiNode as parent (<constellation>) for set of nodes as a children
    //  |- aiNode for transformation (<instance> -> <delta...>, <r...>) - aiNode for pointing to object ("objectid")
    //  ...
    //  \_ aiNode for transformation (<instance> -> <delta...>, <r...>) - aiNode for pointing to object ("objectid")
    con_node = new aiNode;
    con_node->mName = pConstellation.ID;
    // Walk through children and search for instances of another objects, constellations.
    for (const AMFNodeElementBase *ne : pConstellation.Child) {
        aiMatrix4x4 tmat;
        aiNode *t_node;
        aiNode *found_node;

        if (ne->Type == AMFNodeElementBase::ENET_Metadata) continue;
        if (ne->Type != AMFNodeElementBase::ENET_Instance) throw DeadlyImportError("Only <instance> nodes can be in <constellation>.");

        // create alias for convenience
        AMFInstance &als = *((AMFInstance *)ne);
        // find referenced object
        if (!Find_ConvertedNode(als.ObjectID, nodeArray, &found_node)) Throw_ID_NotFound(als.ObjectID);

        // create node for applying transformation
        t_node = new aiNode;
        t_node->mParent = con_node;
        // apply transformation
        aiMatrix4x4::Translation(als.Delta, tmat), t_node->mTransformation *= tmat;
        aiMatrix4x4::RotationX(als.Rotation.x, tmat), t_node->mTransformation *= tmat;
        aiMatrix4x4::RotationY(als.Rotation.y, tmat), t_node->mTransformation *= tmat;
        aiMatrix4x4::RotationZ(als.Rotation.z, tmat), t_node->mTransformation *= tmat;
        // create array for one child node
        t_node->mNumChildren = 1;
        t_node->mChildren = new aiNode *[t_node->mNumChildren];
        SceneCombiner::Copy(&t_node->mChildren[0], found_node);
        t_node->mChildren[0]->mParent = t_node;
        ch_node.push_back(t_node);
    } // for(const CAMFImporter_NodeElement* ne: pConstellation.Child)

    // copy found aiNode's as children
    if (ch_node.empty()) throw DeadlyImportError("<constellation> must have at least one <instance>.");

    size_t ch_idx = 0;

    con_node->mNumChildren = static_cast<unsigned int>(ch_node.size());
    con_node->mChildren = new aiNode *[con_node->mNumChildren];
    for (aiNode *node : ch_node)
        con_node->mChildren[ch_idx++] = node;

    // and place "root" of <constellation> node to node list
    nodeArray.push_back(con_node);
}

void AMFImporter::Postprocess_BuildScene(aiScene *pScene) {
    NodeArray nodeArray;
    MeshArray mesh_list;
    AMFMetaDataArray meta_list;

    //
    // Because for AMF "material" is just complex colors mixing so aiMaterial will not be used.
    // For building aiScene we are must to do few steps:
    // at first creating root node for aiScene.
    pScene->mRootNode = new aiNode;
    pScene->mRootNode->mParent = nullptr;
    pScene->mFlags |= AI_SCENE_FLAGS_ALLOW_SHARED;
    // search for root(<amf>) element
    AMFNodeElementBase *root_el = nullptr;

    for (AMFNodeElementBase *ne : mNodeElement_List) {
        if (ne->Type != AMFNodeElementBase::ENET_Root) {
            continue;
        }

        root_el = ne;
        break;
    } // for(const CAMFImporter_NodeElement* ne: mNodeElement_List)

    // Check if root element are found.
    if (root_el == nullptr) {
        throw DeadlyImportError("Root(<amf>) element not found.");
    }

    // after that walk through children of root and collect data. Five types of nodes can be placed at top level - in <amf>: <object>, <material>, <texture>,
    // <constellation> and <metadata>. But at first we must read <material> and <texture> because they will be used in <object>. <metadata> can be read
    // at any moment.
    //
    // 1. <material>
    // 2. <texture> will be converted later when processing triangles list. \sa Postprocess_BuildMeshSet
    for (const AMFNodeElementBase *root_child : root_el->Child) {
        if (root_child->Type == AMFNodeElementBase::ENET_Material) {
            Postprocess_BuildMaterial(*((AMFMaterial *)root_child));
        }
    }

    // After "appearance" nodes we must read <object> because it will be used in <constellation> -> <instance>.
    //
    // 3. <object>
    for (const AMFNodeElementBase *root_child : root_el->Child) {
        if (root_child->Type == AMFNodeElementBase::ENET_Object) {
            aiNode *tnode = nullptr;

            // for <object> mesh and node must be built: object ID assigned to aiNode name and will be used in future for <instance>
            Postprocess_BuildNodeAndObject(*((AMFObject *)root_child), mesh_list, &tnode);
            if (tnode != nullptr) {
                nodeArray.push_back(tnode);
            }
        }
    } // for(const CAMFImporter_NodeElement* root_child: root_el->Child)

    // And finally read rest of nodes.
    //
    for (const AMFNodeElementBase *root_child : root_el->Child) {
        // 4. <constellation>
        if (root_child->Type == AMFNodeElementBase::ENET_Constellation) {
            // <object> and <constellation> at top of self abstraction use aiNode. So we can use only aiNode list for creating new aiNode's.
            Postprocess_BuildConstellation(*((AMFConstellation *)root_child), nodeArray);
        }

        // 5, <metadata>
        if (root_child->Type == AMFNodeElementBase::ENET_Metadata) meta_list.push_back((AMFMetadata *)root_child);
    } // for(const CAMFImporter_NodeElement* root_child: root_el->Child)

    // at now we can add collected metadata to root node
    Postprocess_AddMetadata(meta_list, *pScene->mRootNode);
    //
    // Check constellation children
    //
    // As said in specification:
    // "When multiple objects and constellations are defined in a single file, only the top level objects and constellations are available for printing."
    // What that means? For example: if some object is used in constellation then you must show only constellation but not original object.
    // And at this step we are checking that relations.
nl_clean_loop:

    if (nodeArray.size() > 1) {
        // walk through all nodes
        for (NodeArray::iterator nl_it = nodeArray.begin(); nl_it != nodeArray.end(); ++nl_it) {
            // and try to find them in another top nodes.
            NodeArray::const_iterator next_it = nl_it;

            ++next_it;
            for (; next_it != nodeArray.end(); ++next_it) {
                if ((*next_it)->FindNode((*nl_it)->mName) != nullptr) {
                    // if current top node(nl_it) found in another top node then erase it from node_list and restart search loop.
                    nodeArray.erase(nl_it);

                    goto nl_clean_loop;
                }
            } // for(; next_it != node_list.end(); next_it++)
        } // for(std::list<aiNode*>::const_iterator nl_it = node_list.begin(); nl_it != node_list.end(); nl_it++)
    }

    //
    // move created objects to aiScene
    //
    //
    // Nodes
    if (!nodeArray.empty()) {
        NodeArray::const_iterator nl_it = nodeArray.begin();

        pScene->mRootNode->mNumChildren = static_cast<unsigned int>(nodeArray.size());
        pScene->mRootNode->mChildren = new aiNode *[pScene->mRootNode->mNumChildren];
        for (size_t i = 0; i < pScene->mRootNode->mNumChildren; i++) {
            // Objects and constellation that must be showed placed at top of hierarchy in <amf> node. So all aiNode's in node_list must have
            // mRootNode only as parent.
            (*nl_it)->mParent = pScene->mRootNode;
            pScene->mRootNode->mChildren[i] = *nl_it++;
        }
    } // if(node_list.size() > 0)

    //
    // Meshes
    if (!mesh_list.empty()) {
        MeshArray::const_iterator ml_it = mesh_list.begin();

        pScene->mNumMeshes = static_cast<unsigned int>(mesh_list.size());
        pScene->mMeshes = new aiMesh *[pScene->mNumMeshes];
        for (size_t i = 0; i < pScene->mNumMeshes; i++)
            pScene->mMeshes[i] = *ml_it++;
    } // if(mesh_list.size() > 0)

    //
    // Textures
    pScene->mNumTextures = static_cast<unsigned int>(mTexture_Converted.size());
    if (pScene->mNumTextures > 0) {
        size_t idx;

        idx = 0;
        pScene->mTextures = new aiTexture *[pScene->mNumTextures];
        for (const SPP_Texture &tex_convd : mTexture_Converted) {
            pScene->mTextures[idx] = new aiTexture;
            pScene->mTextures[idx]->mWidth = static_cast<unsigned int>(tex_convd.Width);
            pScene->mTextures[idx]->mHeight = static_cast<unsigned int>(tex_convd.Height);
            pScene->mTextures[idx]->pcData = (aiTexel *)tex_convd.Data;
            // texture format description.
            strcpy(pScene->mTextures[idx]->achFormatHint, tex_convd.FormatHint);
            idx++;
        } // for(const SPP_Texture& tex_convd: mTexture_Converted)

        // Create materials for embedded textures.
        idx = 0;
        pScene->mNumMaterials = static_cast<unsigned int>(mTexture_Converted.size());
        pScene->mMaterials = new aiMaterial *[pScene->mNumMaterials];
        for (const SPP_Texture &tex_convd : mTexture_Converted) {
            const aiString texture_id(AI_EMBEDDED_TEXNAME_PREFIX + ai_to_string(idx));
            const int mode = aiTextureOp_Multiply;
            const int repeat = tex_convd.Tiled ? 1 : 0;

            pScene->mMaterials[idx] = new aiMaterial;
            pScene->mMaterials[idx]->AddProperty(&texture_id, AI_MATKEY_TEXTURE_DIFFUSE(0));
            pScene->mMaterials[idx]->AddProperty(&mode, 1, AI_MATKEY_TEXOP_DIFFUSE(0));
            pScene->mMaterials[idx]->AddProperty(&repeat, 1, AI_MATKEY_MAPPINGMODE_U_DIFFUSE(0));
            pScene->mMaterials[idx]->AddProperty(&repeat, 1, AI_MATKEY_MAPPINGMODE_V_DIFFUSE(0));
            idx++;
        }
    } // if(pScene->mNumTextures > 0)
} // END: after that walk through children of root and collect data

} // namespace Assimp

#endif // !ASSIMP_BUILD_NO_AMF_IMPORTER