summaryrefslogtreecommitdiff
path: root/libs/assimp/code/AssetLib/NFF/NFFLoader.cpp
blob: 48271d1373bfee6edbb406cd560c4250b5ce16de (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
/*
---------------------------------------------------------------------------
Open Asset Import Library (assimp)
---------------------------------------------------------------------------

Copyright (c) 2006-2022, assimp team

All rights reserved.

Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the following
conditions are met:

* Redistributions of source code must retain the above
  copyright notice, this list of conditions and the
  following disclaimer.

* Redistributions in binary form must reproduce the above
  copyright notice, this list of conditions and the
  following disclaimer in the documentation and/or other
  materials provided with the distribution.

* Neither the name of the assimp team, nor the names of its
  contributors may be used to endorse or promote products
  derived from this software without specific prior
  written permission of the assimp team.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------
*/

/** @file Implementation of the STL importer class */

#ifndef ASSIMP_BUILD_NO_NFF_IMPORTER

// internal headers
#include "NFFLoader.h"
#include <assimp/ParsingUtils.h>
#include <assimp/RemoveComments.h>
#include <assimp/StandardShapes.h>
#include <assimp/fast_atof.h>
#include <assimp/importerdesc.h>
#include <assimp/qnan.h>
#include <assimp/scene.h>
#include <assimp/DefaultLogger.hpp>
#include <assimp/IOSystem.hpp>
#include <memory>

using namespace Assimp;

static const aiImporterDesc desc = {
    "Neutral File Format Importer",
    "",
    "",
    "",
    aiImporterFlags_SupportBinaryFlavour,
    0,
    0,
    0,
    0,
    "enff nff"
};

// ------------------------------------------------------------------------------------------------
// Constructor to be privately used by Importer
NFFImporter::NFFImporter() {}

// ------------------------------------------------------------------------------------------------
// Destructor, private as well
NFFImporter::~NFFImporter() {}

// ------------------------------------------------------------------------------------------------
// Returns whether the class can handle the format of the given file.
bool NFFImporter::CanRead(const std::string & pFile, IOSystem * /*pIOHandler*/, bool /*checkSig*/) const {
    return SimpleExtensionCheck(pFile, "nff", "enff");
}

// ------------------------------------------------------------------------------------------------
// Get the list of all supported file extensions
const aiImporterDesc *NFFImporter::GetInfo() const {
    return &desc;
}

// ------------------------------------------------------------------------------------------------
#define AI_NFF_PARSE_FLOAT(f) \
    SkipSpaces(&sz);          \
    if (!::IsLineEnd(*sz)) sz = fast_atoreal_move<ai_real>(sz, (ai_real &)f);

// ------------------------------------------------------------------------------------------------
#define AI_NFF_PARSE_TRIPLE(v) \
    AI_NFF_PARSE_FLOAT(v[0])   \
    AI_NFF_PARSE_FLOAT(v[1])   \
    AI_NFF_PARSE_FLOAT(v[2])

// ------------------------------------------------------------------------------------------------
#define AI_NFF_PARSE_SHAPE_INFORMATION()                     \
    aiVector3D center, radius(1.0f, get_qnan(), get_qnan()); \
    AI_NFF_PARSE_TRIPLE(center);                             \
    AI_NFF_PARSE_TRIPLE(radius);                             \
    if (is_qnan(radius.z)) radius.z = radius.x;              \
    if (is_qnan(radius.y)) radius.y = radius.x;              \
    curMesh.radius = radius;                                 \
    curMesh.center = center;

// ------------------------------------------------------------------------------------------------
#define AI_NFF2_GET_NEXT_TOKEN()                                            \
    do {                                                                    \
        if (!GetNextLine(buffer, line)) {                                   \
            ASSIMP_LOG_WARN("NFF2: Unexpected EOF, can't read next token"); \
            break;                                                          \
        }                                                                   \
        SkipSpaces(line, &sz);                                              \
    } while (IsLineEnd(*sz))

// ------------------------------------------------------------------------------------------------
// Loads the material table for the NFF2 file format from an external file
void NFFImporter::LoadNFF2MaterialTable(std::vector<ShadingInfo> &output,
        const std::string &path, IOSystem *pIOHandler) {
    std::unique_ptr<IOStream> file(pIOHandler->Open(path, "rb"));

    // Check whether we can read from the file
    if (!file.get()) {
        ASSIMP_LOG_ERROR("NFF2: Unable to open material library ", path, ".");
        return;
    }

    // get the size of the file
    const unsigned int m = (unsigned int)file->FileSize();

    // allocate storage and copy the contents of the file to a memory buffer
    // (terminate it with zero)
    std::vector<char> mBuffer2(m + 1);
    TextFileToBuffer(file.get(), mBuffer2);
    const char *buffer = &mBuffer2[0];

    // First of all: remove all comments from the file
    CommentRemover::RemoveLineComments("//", &mBuffer2[0]);

    // The file should start with the magic sequence "mat"
    if (!TokenMatch(buffer, "mat", 3)) {
        ASSIMP_LOG_ERROR("NFF2: Not a valid material library ", path, ".");
        return;
    }

    ShadingInfo *curShader = nullptr;

    // No read the file line per line
    char line[4096];
    const char *sz;
    while (GetNextLine(buffer, line)) {
        SkipSpaces(line, &sz);

        // 'version' defines the version of the file format
        if (TokenMatch(sz, "version", 7)) {
            ASSIMP_LOG_INFO("NFF (Sense8) material library file format: ", std::string(sz));
        }
        // 'matdef' starts a new material in the file
        else if (TokenMatch(sz, "matdef", 6)) {
            // add a new material to the list
            output.push_back(ShadingInfo());
            curShader = &output.back();

            // parse the name of the material
        } else if (!TokenMatch(sz, "valid", 5)) {
            // check whether we have an active material at the moment
            if (!IsLineEnd(*sz)) {
                if (!curShader) {
                    ASSIMP_LOG_ERROR("NFF2 material library: Found element ", sz, "but there is no active material");
                    continue;
                }
            } else
                continue;

            // now read the material property and determine its type
            aiColor3D c;
            if (TokenMatch(sz, "ambient", 7)) {
                AI_NFF_PARSE_TRIPLE(c);
                curShader->ambient = c;
            } else if (TokenMatch(sz, "diffuse", 7) || TokenMatch(sz, "ambientdiffuse", 14) /* correct? */) {
                AI_NFF_PARSE_TRIPLE(c);
                curShader->diffuse = curShader->ambient = c;
            } else if (TokenMatch(sz, "specular", 8)) {
                AI_NFF_PARSE_TRIPLE(c);
                curShader->specular = c;
            } else if (TokenMatch(sz, "emission", 8)) {
                AI_NFF_PARSE_TRIPLE(c);
                curShader->emissive = c;
            } else if (TokenMatch(sz, "shininess", 9)) {
                AI_NFF_PARSE_FLOAT(curShader->shininess);
            } else if (TokenMatch(sz, "opacity", 7)) {
                AI_NFF_PARSE_FLOAT(curShader->opacity);
            }
        }
    }
}

// ------------------------------------------------------------------------------------------------
// Imports the given file into the given scene structure.
void NFFImporter::InternReadFile(const std::string &pFile,
        aiScene *pScene, IOSystem *pIOHandler) {
    std::unique_ptr<IOStream> file(pIOHandler->Open(pFile, "rb"));

    // Check whether we can read from the file
    if (!file.get())
        throw DeadlyImportError("Failed to open NFF file ", pFile, ".");

    // allocate storage and copy the contents of the file to a memory buffer
    // (terminate it with zero)
    std::vector<char> mBuffer2;
    TextFileToBuffer(file.get(), mBuffer2);
    const char *buffer = &mBuffer2[0];

    // mesh arrays - separate here to make the handling of the pointers below easier.
    std::vector<MeshInfo> meshes;
    std::vector<MeshInfo> meshesWithNormals;
    std::vector<MeshInfo> meshesWithUVCoords;
    std::vector<MeshInfo> meshesLocked;

    char line[4096];
    const char *sz;

    // camera parameters
    aiVector3D camPos, camUp(0.f, 1.f, 0.f), camLookAt(0.f, 0.f, 1.f);
    ai_real angle = 45.f;
    aiVector2D resolution;

    bool hasCam = false;

    MeshInfo *currentMeshWithNormals = nullptr;
    MeshInfo *currentMesh = nullptr;
    MeshInfo *currentMeshWithUVCoords = nullptr;

    ShadingInfo s; // current material info

    // degree of tessellation
    unsigned int iTesselation = 4;

    // some temporary variables we need to parse the file
    unsigned int sphere = 0,
                 cylinder = 0,
                 cone = 0,
                 numNamed = 0,
                 dodecahedron = 0,
                 octahedron = 0,
                 tetrahedron = 0,
                 hexahedron = 0;

    // lights imported from the file
    std::vector<Light> lights;

    // check whether this is the NFF2 file format
    if (TokenMatch(buffer, "nff", 3)) {
        const ai_real qnan = get_qnan();
        const aiColor4D cQNAN = aiColor4D(qnan, 0.f, 0.f, 1.f);
        const aiVector3D vQNAN = aiVector3D(qnan, 0.f, 0.f);

        // another NFF file format ... just a raw parser has been implemented
        // no support for further details, I don't think it is worth the effort
        // http://ozviz.wasp.uwa.edu.au/~pbourke/dataformats/nff/nff2.html
        // http://www.netghost.narod.ru/gff/graphics/summary/sense8.htm

        // First of all: remove all comments from the file
        CommentRemover::RemoveLineComments("//", &mBuffer2[0]);

        while (GetNextLine(buffer, line)) {
            SkipSpaces(line, &sz);
            if (TokenMatch(sz, "version", 7)) {
                ASSIMP_LOG_INFO("NFF (Sense8) file format: ", sz);
            } else if (TokenMatch(sz, "viewpos", 7)) {
                AI_NFF_PARSE_TRIPLE(camPos);
                hasCam = true;
            } else if (TokenMatch(sz, "viewdir", 7)) {
                AI_NFF_PARSE_TRIPLE(camLookAt);
                hasCam = true;
            }
            // This starts a new object section
            else if (!IsSpaceOrNewLine(*sz)) {
                unsigned int subMeshIdx = 0;

                // read the name of the object, skip all spaces
                // at the end of it.
                const char *sz3 = sz;
                while (!IsSpaceOrNewLine(*sz))
                    ++sz;
                std::string objectName = std::string(sz3, (unsigned int)(sz - sz3));

                const unsigned int objStart = (unsigned int)meshes.size();

                // There could be a material table in a separate file
                std::vector<ShadingInfo> materialTable;
                while (true) {
                    AI_NFF2_GET_NEXT_TOKEN();

                    // material table - an external file
                    if (TokenMatch(sz, "mtable", 6)) {
                        SkipSpaces(&sz);
                        sz3 = sz;
                        while (!IsSpaceOrNewLine(*sz))
                            ++sz;
                        const unsigned int diff = (unsigned int)(sz - sz3);
                        if (!diff)
                            ASSIMP_LOG_WARN("NFF2: Found empty mtable token");
                        else {
                            // The material table has the file extension .mat.
                            // If it is not there, we need to append it
                            std::string path = std::string(sz3, diff);
                            if (std::string::npos == path.find_last_of(".mat")) {
                                path.append(".mat");
                            }

                            // Now extract the working directory from the path to
                            // this file and append the material library filename
                            // to it.
                            std::string::size_type sepPos;
                            if ((std::string::npos == (sepPos = path.find_last_of('\\')) || !sepPos) &&
                                    (std::string::npos == (sepPos = path.find_last_of('/')) || !sepPos)) {
                                sepPos = pFile.find_last_of('\\');
                                if (std::string::npos == sepPos) {
                                    sepPos = pFile.find_last_of('/');
                                }
                                if (std::string::npos != sepPos) {
                                    path = pFile.substr(0, sepPos + 1) + path;
                                }
                            }
                            LoadNFF2MaterialTable(materialTable, path, pIOHandler);
                        }
                    } else
                        break;
                }

                // read the numbr of vertices
                unsigned int num = ::strtoul10(sz, &sz);

                // temporary storage
                std::vector<aiColor4D> tempColors;
                std::vector<aiVector3D> tempPositions, tempTextureCoords, tempNormals;

                bool hasNormals = false, hasUVs = false, hasColor = false;

                tempPositions.reserve(num);
                tempColors.reserve(num);
                tempNormals.reserve(num);
                tempTextureCoords.reserve(num);
                for (unsigned int i = 0; i < num; ++i) {
                    AI_NFF2_GET_NEXT_TOKEN();
                    aiVector3D v;
                    AI_NFF_PARSE_TRIPLE(v);
                    tempPositions.push_back(v);

                    // parse all other attributes in the line
                    while (true) {
                        SkipSpaces(&sz);
                        if (IsLineEnd(*sz)) break;

                        // color definition
                        if (TokenMatch(sz, "0x", 2)) {
                            hasColor = true;
                            unsigned int numIdx = ::strtoul16(sz, &sz);
                            aiColor4D clr;
                            clr.a = 1.f;

                            // 0xRRGGBB
                            clr.r = ((numIdx >> 16u) & 0xff) / 255.f;
                            clr.g = ((numIdx >> 8u) & 0xff) / 255.f;
                            clr.b = ((numIdx)&0xff) / 255.f;
                            tempColors.push_back(clr);
                        }
                        // normal vector
                        else if (TokenMatch(sz, "norm", 4)) {
                            hasNormals = true;
                            AI_NFF_PARSE_TRIPLE(v);
                            tempNormals.push_back(v);
                        }
                        // UV coordinate
                        else if (TokenMatch(sz, "uv", 2)) {
                            hasUVs = true;
                            AI_NFF_PARSE_FLOAT(v.x);
                            AI_NFF_PARSE_FLOAT(v.y);
                            v.z = 0.f;
                            tempTextureCoords.push_back(v);
                        }
                    }

                    // fill in dummies for all attributes that have not been set
                    if (tempNormals.size() != tempPositions.size())
                        tempNormals.push_back(vQNAN);

                    if (tempTextureCoords.size() != tempPositions.size())
                        tempTextureCoords.push_back(vQNAN);

                    if (tempColors.size() != tempPositions.size())
                        tempColors.push_back(cQNAN);
                }

                AI_NFF2_GET_NEXT_TOKEN();
                if (!num) throw DeadlyImportError("NFF2: There are zero vertices");
                num = ::strtoul10(sz, &sz);

                std::vector<unsigned int> tempIdx;
                tempIdx.reserve(10);
                for (unsigned int i = 0; i < num; ++i) {
                    AI_NFF2_GET_NEXT_TOKEN();
                    SkipSpaces(line, &sz);
                    unsigned int numIdx = ::strtoul10(sz, &sz);

                    // read all faces indices
                    if (numIdx) {
                        // mesh.faces.push_back(numIdx);
                        // tempIdx.erase(tempIdx.begin(),tempIdx.end());
                        tempIdx.resize(numIdx);

                        for (unsigned int a = 0; a < numIdx; ++a) {
                            SkipSpaces(sz, &sz);
                            unsigned int m = ::strtoul10(sz, &sz);
                            if (m >= (unsigned int)tempPositions.size()) {
                                ASSIMP_LOG_ERROR("NFF2: Vertex index overflow");
                                m = 0;
                            }
                            // mesh.vertices.push_back (tempPositions[idx]);
                            tempIdx[a] = m;
                        }
                    }

                    // build a temporary shader object for the face.
                    ShadingInfo shader;
                    unsigned int matIdx = 0;

                    // white material color - we have vertex colors
                    shader.color = aiColor3D(1.f, 1.f, 1.f);
                    aiColor4D c = aiColor4D(1.f, 1.f, 1.f, 1.f);
                    while (true) {
                        SkipSpaces(sz, &sz);
                        if (IsLineEnd(*sz)) break;

                        // per-polygon colors
                        if (TokenMatch(sz, "0x", 2)) {
                            hasColor = true;
                            const char *sz2 = sz;
                            numIdx = ::strtoul16(sz, &sz);
                            const unsigned int diff = (unsigned int)(sz - sz2);

                            // 0xRRGGBB
                            if (diff > 3) {
                                c.r = ((numIdx >> 16u) & 0xff) / 255.f;
                                c.g = ((numIdx >> 8u) & 0xff) / 255.f;
                                c.b = ((numIdx)&0xff) / 255.f;
                            }
                            // 0xRGB
                            else {
                                c.r = ((numIdx >> 8u) & 0xf) / 16.f;
                                c.g = ((numIdx >> 4u) & 0xf) / 16.f;
                                c.b = ((numIdx)&0xf) / 16.f;
                            }
                        }
                        // TODO - implement texture mapping here
#if 0
                        // mirror vertex texture coordinate?
                        else if (TokenMatch(sz,"mirror",6))
                        {
                        }
                        // texture coordinate scaling
                        else if (TokenMatch(sz,"scale",5))
                        {
                        }
                        // texture coordinate translation
                        else if (TokenMatch(sz,"trans",5))
                        {
                        }
                        // texture coordinate rotation angle
                        else if (TokenMatch(sz,"rot",3))
                        {
                        }
#endif

                        // texture file name for this polygon + mapping information
                        else if ('_' == sz[0]) {
                            // get mapping information
                            switch (sz[1]) {
                                case 'v':
                                case 'V':

                                    shader.shaded = false;
                                    break;

                                case 't':
                                case 'T':
                                case 'u':
                                case 'U':

                                    ASSIMP_LOG_WARN("Unsupported NFF2 texture attribute: trans");
                            };
                            if (!sz[1] || '_' != sz[2]) {
                                ASSIMP_LOG_WARN("NFF2: Expected underscore after texture attributes");
                                continue;
                            }
                            const char *sz2 = sz + 3;
                            while (!IsSpaceOrNewLine(*sz))
                                ++sz;
                            const unsigned int diff = (unsigned int)(sz - sz2);
                            if (diff) shader.texFile = std::string(sz2, diff);
                        }

                        // Two-sided material?
                        else if (TokenMatch(sz, "both", 4)) {
                            shader.twoSided = true;
                        }

                        // Material ID?
                        else if (!materialTable.empty() && TokenMatch(sz, "matid", 5)) {
                            SkipSpaces(&sz);
                            matIdx = ::strtoul10(sz, &sz);
                            if (matIdx >= materialTable.size()) {
                                ASSIMP_LOG_ERROR("NFF2: Material index overflow.");
                                matIdx = 0;
                            }

                            // now combine our current shader with the shader we
                            // read from the material table.
                            ShadingInfo &mat = materialTable[matIdx];
                            shader.ambient = mat.ambient;
                            shader.diffuse = mat.diffuse;
                            shader.emissive = mat.emissive;
                            shader.opacity = mat.opacity;
                            shader.specular = mat.specular;
                            shader.shininess = mat.shininess;
                        } else
                            SkipToken(sz);
                    }

                    // search the list of all shaders we have for this object whether
                    // there is an identical one. In this case, we append our mesh
                    // data to it.
                    MeshInfo *mesh = nullptr;
                    for (std::vector<MeshInfo>::iterator it = meshes.begin() + objStart, end = meshes.end();
                            it != end; ++it) {
                        if ((*it).shader == shader && (*it).matIndex == matIdx) {
                            // we have one, we can append our data to it
                            mesh = &(*it);
                        }
                    }
                    if (!mesh) {
                        meshes.push_back(MeshInfo(PatchType_Simple, false));
                        mesh = &meshes.back();
                        mesh->matIndex = matIdx;

                        // We need to add a new mesh to the list. We assign
                        // an unique name to it to make sure the scene will
                        // pass the validation step for the moment.
                        // TODO: fix naming of objects in the scenegraph later
                        if (objectName.length()) {
                            ::strcpy(mesh->name, objectName.c_str());
                            ASSIMP_itoa10(&mesh->name[objectName.length()], 30, subMeshIdx++);
                        }

                        // copy the shader to the mesh.
                        mesh->shader = shader;
                    }

                    // fill the mesh with data
                    if (!tempIdx.empty()) {
                        mesh->faces.push_back((unsigned int)tempIdx.size());
                        for (std::vector<unsigned int>::const_iterator it = tempIdx.begin(), end = tempIdx.end();
                                it != end; ++it) {
                            unsigned int m = *it;

                            // copy colors -vertex color specifications override polygon color specifications
                            if (hasColor) {
                                const aiColor4D &clr = tempColors[m];
                                mesh->colors.push_back((is_qnan(clr.r) ? c : clr));
                            }

                            // positions should always be there
                            mesh->vertices.push_back(tempPositions[m]);

                            // copy normal vectors
                            if (hasNormals)
                                mesh->normals.push_back(tempNormals[m]);

                            // copy texture coordinates
                            if (hasUVs)
                                mesh->uvs.push_back(tempTextureCoords[m]);
                        }
                    }
                }
                if (!num) throw DeadlyImportError("NFF2: There are zero faces");
            }
        }
        camLookAt = camLookAt + camPos;
    } else // "Normal" Neutral file format that is quite more common
    {
        while (GetNextLine(buffer, line)) {
            sz = line;
            if ('p' == line[0] || TokenMatch(sz, "tpp", 3)) {
                MeshInfo *out = nullptr;

                // 'tpp' - texture polygon patch primitive
                if ('t' == line[0]) {
                    currentMeshWithUVCoords = nullptr;
                    for (auto &mesh : meshesWithUVCoords) {
                        if (mesh.shader == s) {
                            currentMeshWithUVCoords = &mesh;
                            break;
                        }
                    }

                    if (!currentMeshWithUVCoords) {
                        meshesWithUVCoords.push_back(MeshInfo(PatchType_UVAndNormals));
                        currentMeshWithUVCoords = &meshesWithUVCoords.back();
                        currentMeshWithUVCoords->shader = s;
                    }
                    out = currentMeshWithUVCoords;
                }
                // 'pp' - polygon patch primitive
                else if ('p' == line[1]) {
                    currentMeshWithNormals = nullptr;
                    for (auto &mesh : meshesWithNormals) {
                        if (mesh.shader == s) {
                            currentMeshWithNormals = &mesh;
                            break;
                        }
                    }

                    if (!currentMeshWithNormals) {
                        meshesWithNormals.push_back(MeshInfo(PatchType_Normals));
                        currentMeshWithNormals = &meshesWithNormals.back();
                        currentMeshWithNormals->shader = s;
                    }
                    sz = &line[2];
                    out = currentMeshWithNormals;
                }
                // 'p' - polygon primitive
                else {
                    currentMesh = nullptr;
                    for (auto &mesh : meshes) {
                        if (mesh.shader == s) {
                            currentMesh = &mesh;
                            break;
                        }
                    }

                    if (!currentMesh) {
                        meshes.push_back(MeshInfo(PatchType_Simple));
                        currentMesh = &meshes.back();
                        currentMesh->shader = s;
                    }
                    sz = &line[1];
                    out = currentMesh;
                }
                SkipSpaces(sz, &sz);
                unsigned int m = strtoul10(sz);

                // ---- flip the face order
                out->vertices.resize(out->vertices.size() + m);
                if (out != currentMesh) {
                    out->normals.resize(out->vertices.size());
                }
                if (out == currentMeshWithUVCoords) {
                    out->uvs.resize(out->vertices.size());
                }
                for (unsigned int n = 0; n < m; ++n) {
                    if (!GetNextLine(buffer, line)) {
                        ASSIMP_LOG_ERROR("NFF: Unexpected EOF was encountered. Patch definition incomplete");
                        continue;
                    }

                    aiVector3D v;
                    sz = &line[0];
                    AI_NFF_PARSE_TRIPLE(v);
                    out->vertices[out->vertices.size() - n - 1] = v;

                    if (out != currentMesh) {
                        AI_NFF_PARSE_TRIPLE(v);
                        out->normals[out->vertices.size() - n - 1] = v;
                    }
                    if (out == currentMeshWithUVCoords) {
                        // FIX: in one test file this wraps over multiple lines
                        SkipSpaces(&sz);
                        if (IsLineEnd(*sz)) {
                            GetNextLine(buffer, line);
                            sz = line;
                        }
                        AI_NFF_PARSE_FLOAT(v.x);
                        SkipSpaces(&sz);
                        if (IsLineEnd(*sz)) {
                            GetNextLine(buffer, line);
                            sz = line;
                        }
                        AI_NFF_PARSE_FLOAT(v.y);
                        v.y = 1.f - v.y;
                        out->uvs[out->vertices.size() - n - 1] = v;
                    }
                }
                out->faces.push_back(m);
            }
            // 'f' - shading information block
            else if (TokenMatch(sz, "f", 1)) {
                ai_real d;

                // read the RGB colors
                AI_NFF_PARSE_TRIPLE(s.color);

                // read the other properties
                AI_NFF_PARSE_FLOAT(s.diffuse.r);
                AI_NFF_PARSE_FLOAT(s.specular.r);
                AI_NFF_PARSE_FLOAT(d); // skip shininess and transmittance
                AI_NFF_PARSE_FLOAT(d);
                AI_NFF_PARSE_FLOAT(s.refracti);

                // NFF2 uses full colors here so we need to use them too
                // although NFF uses simple scaling factors
                s.diffuse.g = s.diffuse.b = s.diffuse.r;
                s.specular.g = s.specular.b = s.specular.r;

                // if the next one is NOT a number we assume it is a texture file name
                // this feature is used by some NFF files on the internet and it has
                // been implemented as it can be really useful
                SkipSpaces(&sz);
                if (!IsNumeric(*sz)) {
                    // TODO: Support full file names with spaces and quotation marks ...
                    const char *p = sz;
                    while (!IsSpaceOrNewLine(*sz))
                        ++sz;

                    unsigned int diff = (unsigned int)(sz - p);
                    if (diff) {
                        s.texFile = std::string(p, diff);
                    }
                } else {
                    AI_NFF_PARSE_FLOAT(s.ambient); // optional
                }
            }
            // 'shader' - other way to specify a texture
            else if (TokenMatch(sz, "shader", 6)) {
                SkipSpaces(&sz);
                const char *old = sz;
                while (!IsSpaceOrNewLine(*sz))
                    ++sz;
                s.texFile = std::string(old, (uintptr_t)sz - (uintptr_t)old);
            }
            // 'l' - light source
            else if (TokenMatch(sz, "l", 1)) {
                lights.push_back(Light());
                Light &light = lights.back();

                AI_NFF_PARSE_TRIPLE(light.position);
                AI_NFF_PARSE_FLOAT(light.intensity);
                AI_NFF_PARSE_TRIPLE(light.color);
            }
            // 's' - sphere
            else if (TokenMatch(sz, "s", 1)) {
                meshesLocked.push_back(MeshInfo(PatchType_Simple, true));
                MeshInfo &curMesh = meshesLocked.back();
                curMesh.shader = s;
                curMesh.shader.mapping = aiTextureMapping_SPHERE;

                AI_NFF_PARSE_SHAPE_INFORMATION();

                // we don't need scaling or translation here - we do it in the node's transform
                StandardShapes::MakeSphere(iTesselation, curMesh.vertices);
                curMesh.faces.resize(curMesh.vertices.size() / 3, 3);

                // generate a name for the mesh
                ::ai_snprintf(curMesh.name, MeshInfo::MaxNameLen, "sphere_%i", sphere++);
            }
            // 'dod' - dodecahedron
            else if (TokenMatch(sz, "dod", 3)) {
                meshesLocked.push_back(MeshInfo(PatchType_Simple, true));
                MeshInfo &curMesh = meshesLocked.back();
                curMesh.shader = s;
                curMesh.shader.mapping = aiTextureMapping_SPHERE;

                AI_NFF_PARSE_SHAPE_INFORMATION();

                // we don't need scaling or translation here - we do it in the node's transform
                StandardShapes::MakeDodecahedron(curMesh.vertices);
                curMesh.faces.resize(curMesh.vertices.size() / 3, 3);

                // generate a name for the mesh
                ::ai_snprintf(curMesh.name, 128, "dodecahedron_%i", dodecahedron++);
            }

            // 'oct' - octahedron
            else if (TokenMatch(sz, "oct", 3)) {
                meshesLocked.push_back(MeshInfo(PatchType_Simple, true));
                MeshInfo &curMesh = meshesLocked.back();
                curMesh.shader = s;
                curMesh.shader.mapping = aiTextureMapping_SPHERE;

                AI_NFF_PARSE_SHAPE_INFORMATION();

                // we don't need scaling or translation here - we do it in the node's transform
                StandardShapes::MakeOctahedron(curMesh.vertices);
                curMesh.faces.resize(curMesh.vertices.size() / 3, 3);

                // generate a name for the mesh
                ::ai_snprintf(curMesh.name, MeshInfo::MaxNameLen, "octahedron_%i", octahedron++);
            }

            // 'tet' - tetrahedron
            else if (TokenMatch(sz, "tet", 3)) {
                meshesLocked.push_back(MeshInfo(PatchType_Simple, true));
                MeshInfo &curMesh = meshesLocked.back();
                curMesh.shader = s;
                curMesh.shader.mapping = aiTextureMapping_SPHERE;

                AI_NFF_PARSE_SHAPE_INFORMATION();

                // we don't need scaling or translation here - we do it in the node's transform
                StandardShapes::MakeTetrahedron(curMesh.vertices);
                curMesh.faces.resize(curMesh.vertices.size() / 3, 3);

                // generate a name for the mesh
                ::ai_snprintf(curMesh.name, MeshInfo::MaxNameLen, "tetrahedron_%i", tetrahedron++);
            }

            // 'hex' - hexahedron
            else if (TokenMatch(sz, "hex", 3)) {
                meshesLocked.push_back(MeshInfo(PatchType_Simple, true));
                MeshInfo &curMesh = meshesLocked.back();
                curMesh.shader = s;
                curMesh.shader.mapping = aiTextureMapping_BOX;

                AI_NFF_PARSE_SHAPE_INFORMATION();

                // we don't need scaling or translation here - we do it in the node's transform
                StandardShapes::MakeHexahedron(curMesh.vertices);
                curMesh.faces.resize(curMesh.vertices.size() / 3, 3);

                // generate a name for the mesh
                ::ai_snprintf(curMesh.name, MeshInfo::MaxNameLen, "hexahedron_%i", hexahedron++);
            }
            // 'c' - cone
            else if (TokenMatch(sz, "c", 1)) {
                meshesLocked.push_back(MeshInfo(PatchType_Simple, true));
                MeshInfo &curMesh = meshesLocked.back();
                curMesh.shader = s;
                curMesh.shader.mapping = aiTextureMapping_CYLINDER;

                if (!GetNextLine(buffer, line)) {
                    ASSIMP_LOG_ERROR("NFF: Unexpected end of file (cone definition not complete)");
                    break;
                }
                sz = line;

                // read the two center points and the respective radii
                aiVector3D center1, center2;
                ai_real radius1 = 0.f, radius2 = 0.f;
                AI_NFF_PARSE_TRIPLE(center1);
                AI_NFF_PARSE_FLOAT(radius1);

                if (!GetNextLine(buffer, line)) {
                    ASSIMP_LOG_ERROR("NFF: Unexpected end of file (cone definition not complete)");
                    break;
                }
                sz = line;

                AI_NFF_PARSE_TRIPLE(center2);
                AI_NFF_PARSE_FLOAT(radius2);

                // compute the center point of the cone/cylinder -
                // it is its local transformation origin
                curMesh.dir = center2 - center1;
                curMesh.center = center1 + curMesh.dir / (ai_real)2.0;

                ai_real f;
                if ((f = curMesh.dir.Length()) < 10e-3f) {
                    ASSIMP_LOG_ERROR("NFF: Cone height is close to zero");
                    continue;
                }
                curMesh.dir /= f; // normalize

                // generate the cone - it consists of simple triangles
                StandardShapes::MakeCone(f, radius1, radius2,
                        integer_pow(4, iTesselation), curMesh.vertices);

                // MakeCone() returns tris
                curMesh.faces.resize(curMesh.vertices.size() / 3, 3);

                // generate a name for the mesh. 'cone' if it a cone,
                // 'cylinder' if it is a cylinder. Funny, isn't it?
                if (radius1 != radius2) {
                    ::ai_snprintf(curMesh.name, MeshInfo::MaxNameLen, "cone_%i", cone++);
                } else {
                    ::ai_snprintf(curMesh.name, MeshInfo::MaxNameLen, "cylinder_%i", cylinder++);
                }
            }
            // 'tess' - tessellation
            else if (TokenMatch(sz, "tess", 4)) {
                SkipSpaces(&sz);
                iTesselation = strtoul10(sz);
            }
            // 'from' - camera position
            else if (TokenMatch(sz, "from", 4)) {
                AI_NFF_PARSE_TRIPLE(camPos);
                hasCam = true;
            }
            // 'at' - camera look-at vector
            else if (TokenMatch(sz, "at", 2)) {
                AI_NFF_PARSE_TRIPLE(camLookAt);
                hasCam = true;
            }
            // 'up' - camera up vector
            else if (TokenMatch(sz, "up", 2)) {
                AI_NFF_PARSE_TRIPLE(camUp);
                hasCam = true;
            }
            // 'angle' - (half?) camera field of view
            else if (TokenMatch(sz, "angle", 5)) {
                AI_NFF_PARSE_FLOAT(angle);
                hasCam = true;
            }
            // 'resolution' - used to compute the screen aspect
            else if (TokenMatch(sz, "resolution", 10)) {
                AI_NFF_PARSE_FLOAT(resolution.x);
                AI_NFF_PARSE_FLOAT(resolution.y);
                hasCam = true;
            }
            // 'pb' - bezier patch. Not supported yet
            else if (TokenMatch(sz, "pb", 2)) {
                ASSIMP_LOG_ERROR("NFF: Encountered unsupported ID: bezier patch");
            }
            // 'pn' - NURBS. Not supported yet
            else if (TokenMatch(sz, "pn", 2) || TokenMatch(sz, "pnn", 3)) {
                ASSIMP_LOG_ERROR("NFF: Encountered unsupported ID: NURBS");
            }
            // '' - comment
            else if ('#' == line[0]) {
                const char *space;
                SkipSpaces(&line[1], &space);
                if (!IsLineEnd(*space)) {
                    ASSIMP_LOG_INFO(space);
                }
            }
        }
    }

    // copy all arrays into one large
    meshes.reserve(meshes.size() + meshesLocked.size() + meshesWithNormals.size() + meshesWithUVCoords.size());
    meshes.insert(meshes.end(), meshesLocked.begin(), meshesLocked.end());
    meshes.insert(meshes.end(), meshesWithNormals.begin(), meshesWithNormals.end());
    meshes.insert(meshes.end(), meshesWithUVCoords.begin(), meshesWithUVCoords.end());

    // now generate output meshes. first find out how many meshes we'll need
    std::vector<MeshInfo>::const_iterator it = meshes.begin(), end = meshes.end();
    for (; it != end; ++it) {
        if (!(*it).faces.empty()) {
            ++pScene->mNumMeshes;
            if ((*it).name[0]) ++numNamed;
        }
    }

    // generate a dummy root node - assign all unnamed elements such
    // as polygons and polygon patches to the root node and generate
    // sub nodes for named objects such as spheres and cones.
    aiNode *const root = new aiNode();
    root->mName.Set("<NFF_Root>");
    root->mNumChildren = numNamed + (hasCam ? 1 : 0) + (unsigned int)lights.size();
    root->mNumMeshes = pScene->mNumMeshes - numNamed;

    aiNode **ppcChildren = nullptr;
    unsigned int *pMeshes = nullptr;
    if (root->mNumMeshes)
        pMeshes = root->mMeshes = new unsigned int[root->mNumMeshes];
    if (root->mNumChildren)
        ppcChildren = root->mChildren = new aiNode *[root->mNumChildren];

    // generate the camera
    if (hasCam) {
        ai_assert(ppcChildren);
        aiNode *nd = new aiNode();
        *ppcChildren = nd;
        nd->mName.Set("<NFF_Camera>");
        nd->mParent = root;

        // allocate the camera in the scene
        pScene->mNumCameras = 1;
        pScene->mCameras = new aiCamera *[1];
        aiCamera *c = pScene->mCameras[0] = new aiCamera;

        c->mName = nd->mName; // make sure the names are identical
        c->mHorizontalFOV = AI_DEG_TO_RAD(angle);
        c->mLookAt = camLookAt - camPos;
        c->mPosition = camPos;
        c->mUp = camUp;

        // If the resolution is not specified in the file, we
        // need to set 1.0 as aspect.
        c->mAspect = (!resolution.y ? 0.f : resolution.x / resolution.y);
        ++ppcChildren;
    }

    // generate light sources
    if (!lights.empty()) {
        ai_assert(ppcChildren);
        pScene->mNumLights = (unsigned int)lights.size();
        pScene->mLights = new aiLight *[pScene->mNumLights];
        for (unsigned int i = 0; i < pScene->mNumLights; ++i, ++ppcChildren) {
            const Light &l = lights[i];

            aiNode *nd = new aiNode();
            *ppcChildren = nd;
            nd->mParent = root;

            nd->mName.length = ::ai_snprintf(nd->mName.data, 1024, "<NFF_Light%u>", i);

            // allocate the light in the scene data structure
            aiLight *out = pScene->mLights[i] = new aiLight();
            out->mName = nd->mName; // make sure the names are identical
            out->mType = aiLightSource_POINT;
            out->mColorDiffuse = out->mColorSpecular = l.color * l.intensity;
            out->mPosition = l.position;
        }
    }

    if (!pScene->mNumMeshes) throw DeadlyImportError("NFF: No meshes loaded");
    pScene->mMeshes = new aiMesh *[pScene->mNumMeshes];
    pScene->mMaterials = new aiMaterial *[pScene->mNumMaterials = pScene->mNumMeshes];
    unsigned int m = 0;
    for (it = meshes.begin(); it != end; ++it) {
        if ((*it).faces.empty()) continue;

        const MeshInfo &src = *it;
        aiMesh *const mesh = pScene->mMeshes[m] = new aiMesh();
        mesh->mNumVertices = (unsigned int)src.vertices.size();
        mesh->mNumFaces = (unsigned int)src.faces.size();

        // Generate sub nodes for named meshes
        if (src.name[0] && nullptr != ppcChildren) {
            aiNode *const node = *ppcChildren = new aiNode();
            node->mParent = root;
            node->mNumMeshes = 1;
            node->mMeshes = new unsigned int[1];
            node->mMeshes[0] = m;
            node->mName.Set(src.name);

            // setup the transformation matrix of the node
            aiMatrix4x4::FromToMatrix(aiVector3D(0.f, 1.f, 0.f),
                    src.dir, node->mTransformation);

            aiMatrix4x4 &mat = node->mTransformation;
            mat.a1 *= src.radius.x;
            mat.b1 *= src.radius.x;
            mat.c1 *= src.radius.x;
            mat.a2 *= src.radius.y;
            mat.b2 *= src.radius.y;
            mat.c2 *= src.radius.y;
            mat.a3 *= src.radius.z;
            mat.b3 *= src.radius.z;
            mat.c3 *= src.radius.z;
            mat.a4 = src.center.x;
            mat.b4 = src.center.y;
            mat.c4 = src.center.z;

            ++ppcChildren;
        } else {
            *pMeshes++ = m;
        }

        // copy vertex positions
        mesh->mVertices = new aiVector3D[mesh->mNumVertices];
        ::memcpy(mesh->mVertices, &src.vertices[0],
                sizeof(aiVector3D) * mesh->mNumVertices);

        // NFF2: there could be vertex colors
        if (!src.colors.empty()) {
            ai_assert(src.colors.size() == src.vertices.size());

            // copy vertex colors
            mesh->mColors[0] = new aiColor4D[mesh->mNumVertices];
            ::memcpy(mesh->mColors[0], &src.colors[0],
                    sizeof(aiColor4D) * mesh->mNumVertices);
        }

        if (!src.normals.empty()) {
            ai_assert(src.normals.size() == src.vertices.size());

            // copy normal vectors
            mesh->mNormals = new aiVector3D[mesh->mNumVertices];
            ::memcpy(mesh->mNormals, &src.normals[0],
                    sizeof(aiVector3D) * mesh->mNumVertices);
        }

        if (!src.uvs.empty()) {
            ai_assert(src.uvs.size() == src.vertices.size());

            // copy texture coordinates
            mesh->mTextureCoords[0] = new aiVector3D[mesh->mNumVertices];
            ::memcpy(mesh->mTextureCoords[0], &src.uvs[0],
                    sizeof(aiVector3D) * mesh->mNumVertices);
        }

        // generate faces
        unsigned int p = 0;
        aiFace *pFace = mesh->mFaces = new aiFace[mesh->mNumFaces];
        for (std::vector<unsigned int>::const_iterator it2 = src.faces.begin(),
                                                       end2 = src.faces.end();
                it2 != end2; ++it2, ++pFace) {
            pFace->mIndices = new unsigned int[pFace->mNumIndices = *it2];
            for (unsigned int o = 0; o < pFace->mNumIndices; ++o)
                pFace->mIndices[o] = p++;
        }

        // generate a material for the mesh
        aiMaterial *pcMat = (aiMaterial *)(pScene->mMaterials[m] = new aiMaterial());

        mesh->mMaterialIndex = m++;

        aiString matName;
        matName.Set(AI_DEFAULT_MATERIAL_NAME);
        pcMat->AddProperty(&matName, AI_MATKEY_NAME);

        // FIX: Ignore diffuse == 0
        aiColor3D c = src.shader.color * (src.shader.diffuse.r ? src.shader.diffuse : aiColor3D(1.f, 1.f, 1.f));
        pcMat->AddProperty(&c, 1, AI_MATKEY_COLOR_DIFFUSE);
        c = src.shader.color * src.shader.specular;
        pcMat->AddProperty(&c, 1, AI_MATKEY_COLOR_SPECULAR);

        // NFF2 - default values for NFF
        pcMat->AddProperty(&src.shader.ambient, 1, AI_MATKEY_COLOR_AMBIENT);
        pcMat->AddProperty(&src.shader.emissive, 1, AI_MATKEY_COLOR_EMISSIVE);
        pcMat->AddProperty(&src.shader.opacity, 1, AI_MATKEY_OPACITY);

        // setup the first texture layer, if existing
        if (src.shader.texFile.length()) {
            matName.Set(src.shader.texFile);
            pcMat->AddProperty(&matName, AI_MATKEY_TEXTURE_DIFFUSE(0));

            if (aiTextureMapping_UV != src.shader.mapping) {

                aiVector3D v(0.f, -1.f, 0.f);
                pcMat->AddProperty(&v, 1, AI_MATKEY_TEXMAP_AXIS_DIFFUSE(0));
                pcMat->AddProperty((int *)&src.shader.mapping, 1, AI_MATKEY_MAPPING_DIFFUSE(0));
            }
        }

        // setup the name of the material
        if (src.shader.name.length()) {
            matName.Set(src.shader.texFile);
            pcMat->AddProperty(&matName, AI_MATKEY_NAME);
        }

        // setup some more material properties that are specific to NFF2
        int i;
        if (src.shader.twoSided) {
            i = 1;
            pcMat->AddProperty(&i, 1, AI_MATKEY_TWOSIDED);
        }
        i = (src.shader.shaded ? aiShadingMode_Gouraud : aiShadingMode_NoShading);
        if (src.shader.shininess) {
            i = aiShadingMode_Phong;
            pcMat->AddProperty(&src.shader.shininess, 1, AI_MATKEY_SHININESS);
        }
        pcMat->AddProperty(&i, 1, AI_MATKEY_SHADING_MODEL);
    }
    pScene->mRootNode = root;
}

#endif // !! ASSIMP_BUILD_NO_NFF_IMPORTER