1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
|
/*
---------------------------------------------------------------------------
Open Asset Import Library (assimp)
---------------------------------------------------------------------------
Copyright (c) 2006-2022, assimp team
All rights reserved.
Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the following
conditions are met:
* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.
* Neither the name of the assimp team, nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission of the assimp team.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------
*/
/** @file MakeLeftHandedProcess.cpp
* @brief Implementation of the post processing step to convert all
* imported data to a left-handed coordinate system.
*
* Face order & UV flip are also implemented here, for the sake of a
* better location.
*/
#include "ConvertToLHProcess.h"
#include <assimp/postprocess.h>
#include <assimp/scene.h>
#include <assimp/DefaultLogger.hpp>
using namespace Assimp;
#ifndef ASSIMP_BUILD_NO_MAKELEFTHANDED_PROCESS
namespace {
template <typename aiMeshType>
void flipUVs(aiMeshType *pMesh) {
if (pMesh == nullptr) {
return;
}
// mirror texture y coordinate
for (unsigned int tcIdx = 0; tcIdx < AI_MAX_NUMBER_OF_TEXTURECOORDS; tcIdx++) {
if (!pMesh->HasTextureCoords(tcIdx)) {
break;
}
for (unsigned int vIdx = 0; vIdx < pMesh->mNumVertices; vIdx++) {
pMesh->mTextureCoords[tcIdx][vIdx].y = 1.0f - pMesh->mTextureCoords[tcIdx][vIdx].y;
}
}
}
} // namespace
// ------------------------------------------------------------------------------------------------
// Constructor to be privately used by Importer
MakeLeftHandedProcess::MakeLeftHandedProcess() :
BaseProcess() {
// empty
}
// ------------------------------------------------------------------------------------------------
// Destructor, private as well
MakeLeftHandedProcess::~MakeLeftHandedProcess() {
// empty
}
// ------------------------------------------------------------------------------------------------
// Returns whether the processing step is present in the given flag field.
bool MakeLeftHandedProcess::IsActive(unsigned int pFlags) const {
return 0 != (pFlags & aiProcess_MakeLeftHanded);
}
// ------------------------------------------------------------------------------------------------
// Executes the post processing step on the given imported data.
void MakeLeftHandedProcess::Execute(aiScene *pScene) {
// Check for an existent root node to proceed
ai_assert(pScene->mRootNode != nullptr);
ASSIMP_LOG_DEBUG("MakeLeftHandedProcess begin");
// recursively convert all the nodes
ProcessNode(pScene->mRootNode, aiMatrix4x4());
// process the meshes accordingly
for (unsigned int a = 0; a < pScene->mNumMeshes; ++a) {
ProcessMesh(pScene->mMeshes[a]);
}
// process the materials accordingly
for (unsigned int a = 0; a < pScene->mNumMaterials; ++a) {
ProcessMaterial(pScene->mMaterials[a]);
}
// transform all animation channels as well
for (unsigned int a = 0; a < pScene->mNumAnimations; a++) {
aiAnimation *anim = pScene->mAnimations[a];
for (unsigned int b = 0; b < anim->mNumChannels; b++) {
aiNodeAnim *nodeAnim = anim->mChannels[b];
ProcessAnimation(nodeAnim);
}
}
ASSIMP_LOG_DEBUG("MakeLeftHandedProcess finished");
}
// ------------------------------------------------------------------------------------------------
// Recursively converts a node, all of its children and all of its meshes
void MakeLeftHandedProcess::ProcessNode(aiNode *pNode, const aiMatrix4x4 &pParentGlobalRotation) {
// mirror all base vectors at the local Z axis
pNode->mTransformation.c1 = -pNode->mTransformation.c1;
pNode->mTransformation.c2 = -pNode->mTransformation.c2;
pNode->mTransformation.c3 = -pNode->mTransformation.c3;
pNode->mTransformation.c4 = -pNode->mTransformation.c4;
// now invert the Z axis again to keep the matrix determinant positive.
// The local meshes will be inverted accordingly so that the result should look just fine again.
pNode->mTransformation.a3 = -pNode->mTransformation.a3;
pNode->mTransformation.b3 = -pNode->mTransformation.b3;
pNode->mTransformation.c3 = -pNode->mTransformation.c3;
pNode->mTransformation.d3 = -pNode->mTransformation.d3; // useless, but anyways...
// continue for all children
for (size_t a = 0; a < pNode->mNumChildren; ++a) {
ProcessNode(pNode->mChildren[a], pParentGlobalRotation * pNode->mTransformation);
}
}
// ------------------------------------------------------------------------------------------------
// Converts a single mesh to left handed coordinates.
void MakeLeftHandedProcess::ProcessMesh(aiMesh *pMesh) {
if (nullptr == pMesh) {
ASSIMP_LOG_ERROR("Nullptr to mesh found.");
return;
}
// mirror positions, normals and stuff along the Z axis
for (size_t a = 0; a < pMesh->mNumVertices; ++a) {
pMesh->mVertices[a].z *= -1.0f;
if (pMesh->HasNormals()) {
pMesh->mNormals[a].z *= -1.0f;
}
if (pMesh->HasTangentsAndBitangents()) {
pMesh->mTangents[a].z *= -1.0f;
pMesh->mBitangents[a].z *= -1.0f;
}
}
// mirror anim meshes positions, normals and stuff along the Z axis
for (size_t m = 0; m < pMesh->mNumAnimMeshes; ++m) {
for (size_t a = 0; a < pMesh->mAnimMeshes[m]->mNumVertices; ++a) {
pMesh->mAnimMeshes[m]->mVertices[a].z *= -1.0f;
if (pMesh->mAnimMeshes[m]->HasNormals()) {
pMesh->mAnimMeshes[m]->mNormals[a].z *= -1.0f;
}
if (pMesh->mAnimMeshes[m]->HasTangentsAndBitangents()) {
pMesh->mAnimMeshes[m]->mTangents[a].z *= -1.0f;
pMesh->mAnimMeshes[m]->mBitangents[a].z *= -1.0f;
}
}
}
// mirror offset matrices of all bones
for (size_t a = 0; a < pMesh->mNumBones; ++a) {
aiBone *bone = pMesh->mBones[a];
bone->mOffsetMatrix.a3 = -bone->mOffsetMatrix.a3;
bone->mOffsetMatrix.b3 = -bone->mOffsetMatrix.b3;
bone->mOffsetMatrix.d3 = -bone->mOffsetMatrix.d3;
bone->mOffsetMatrix.c1 = -bone->mOffsetMatrix.c1;
bone->mOffsetMatrix.c2 = -bone->mOffsetMatrix.c2;
bone->mOffsetMatrix.c4 = -bone->mOffsetMatrix.c4;
}
// mirror bitangents as well as they're derived from the texture coords
if (pMesh->HasTangentsAndBitangents()) {
for (unsigned int a = 0; a < pMesh->mNumVertices; a++)
pMesh->mBitangents[a] *= -1.0f;
}
}
// ------------------------------------------------------------------------------------------------
// Converts a single material to left handed coordinates.
void MakeLeftHandedProcess::ProcessMaterial(aiMaterial *_mat) {
if (nullptr == _mat) {
ASSIMP_LOG_ERROR("Nullptr to aiMaterial found.");
return;
}
aiMaterial *mat = (aiMaterial *)_mat;
for (unsigned int a = 0; a < mat->mNumProperties; ++a) {
aiMaterialProperty *prop = mat->mProperties[a];
// Mapping axis for UV mappings?
if (!::strcmp(prop->mKey.data, "$tex.mapaxis")) {
ai_assert(prop->mDataLength >= sizeof(aiVector3D)); // something is wrong with the validation if we end up here
aiVector3D *pff = (aiVector3D *)prop->mData;
pff->z *= -1.f;
}
}
}
// ------------------------------------------------------------------------------------------------
// Converts the given animation to LH coordinates.
void MakeLeftHandedProcess::ProcessAnimation(aiNodeAnim *pAnim) {
// position keys
for (unsigned int a = 0; a < pAnim->mNumPositionKeys; a++)
pAnim->mPositionKeys[a].mValue.z *= -1.0f;
// rotation keys
for (unsigned int a = 0; a < pAnim->mNumRotationKeys; a++) {
/* That's the safe version, but the float errors add up. So we try the short version instead
aiMatrix3x3 rotmat = pAnim->mRotationKeys[a].mValue.GetMatrix();
rotmat.a3 = -rotmat.a3; rotmat.b3 = -rotmat.b3;
rotmat.c1 = -rotmat.c1; rotmat.c2 = -rotmat.c2;
aiQuaternion rotquat( rotmat);
pAnim->mRotationKeys[a].mValue = rotquat;
*/
pAnim->mRotationKeys[a].mValue.x *= -1.0f;
pAnim->mRotationKeys[a].mValue.y *= -1.0f;
}
}
#endif // !! ASSIMP_BUILD_NO_MAKELEFTHANDED_PROCESS
#ifndef ASSIMP_BUILD_NO_FLIPUVS_PROCESS
// # FlipUVsProcess
// ------------------------------------------------------------------------------------------------
// Constructor to be privately used by Importer
FlipUVsProcess::FlipUVsProcess() {}
// ------------------------------------------------------------------------------------------------
// Destructor, private as well
FlipUVsProcess::~FlipUVsProcess() {}
// ------------------------------------------------------------------------------------------------
// Returns whether the processing step is present in the given flag field.
bool FlipUVsProcess::IsActive(unsigned int pFlags) const {
return 0 != (pFlags & aiProcess_FlipUVs);
}
// ------------------------------------------------------------------------------------------------
// Executes the post processing step on the given imported data.
void FlipUVsProcess::Execute(aiScene *pScene) {
ASSIMP_LOG_DEBUG("FlipUVsProcess begin");
for (unsigned int i = 0; i < pScene->mNumMeshes; ++i)
ProcessMesh(pScene->mMeshes[i]);
for (unsigned int i = 0; i < pScene->mNumMaterials; ++i)
ProcessMaterial(pScene->mMaterials[i]);
ASSIMP_LOG_DEBUG("FlipUVsProcess finished");
}
// ------------------------------------------------------------------------------------------------
// Converts a single material
void FlipUVsProcess::ProcessMaterial(aiMaterial *_mat) {
aiMaterial *mat = (aiMaterial *)_mat;
for (unsigned int a = 0; a < mat->mNumProperties; ++a) {
aiMaterialProperty *prop = mat->mProperties[a];
if (!prop) {
ASSIMP_LOG_VERBOSE_DEBUG("Property is null");
continue;
}
// UV transformation key?
if (!::strcmp(prop->mKey.data, "$tex.uvtrafo")) {
ai_assert(prop->mDataLength >= sizeof(aiUVTransform)); // something is wrong with the validation if we end up here
aiUVTransform *uv = (aiUVTransform *)prop->mData;
// just flip it, that's everything
uv->mTranslation.y *= -1.f;
uv->mRotation *= -1.f;
}
}
}
// ------------------------------------------------------------------------------------------------
// Converts a single mesh
void FlipUVsProcess::ProcessMesh(aiMesh *pMesh) {
flipUVs(pMesh);
for (unsigned int idx = 0; idx < pMesh->mNumAnimMeshes; idx++) {
flipUVs(pMesh->mAnimMeshes[idx]);
}
}
#endif // !ASSIMP_BUILD_NO_FLIPUVS_PROCESS
#ifndef ASSIMP_BUILD_NO_FLIPWINDING_PROCESS
// # FlipWindingOrderProcess
// ------------------------------------------------------------------------------------------------
// Constructor to be privately used by Importer
FlipWindingOrderProcess::FlipWindingOrderProcess() {}
// ------------------------------------------------------------------------------------------------
// Destructor, private as well
FlipWindingOrderProcess::~FlipWindingOrderProcess() {}
// ------------------------------------------------------------------------------------------------
// Returns whether the processing step is present in the given flag field.
bool FlipWindingOrderProcess::IsActive(unsigned int pFlags) const {
return 0 != (pFlags & aiProcess_FlipWindingOrder);
}
// ------------------------------------------------------------------------------------------------
// Executes the post processing step on the given imported data.
void FlipWindingOrderProcess::Execute(aiScene *pScene) {
ASSIMP_LOG_DEBUG("FlipWindingOrderProcess begin");
for (unsigned int i = 0; i < pScene->mNumMeshes; ++i)
ProcessMesh(pScene->mMeshes[i]);
ASSIMP_LOG_DEBUG("FlipWindingOrderProcess finished");
}
// ------------------------------------------------------------------------------------------------
// Converts a single mesh
void FlipWindingOrderProcess::ProcessMesh(aiMesh *pMesh) {
// invert the order of all faces in this mesh
for (unsigned int a = 0; a < pMesh->mNumFaces; a++) {
aiFace &face = pMesh->mFaces[a];
for (unsigned int b = 0; b < face.mNumIndices / 2; b++) {
std::swap(face.mIndices[b], face.mIndices[face.mNumIndices - 1 - b]);
}
}
// invert the order of all components in this mesh anim meshes
for (unsigned int m = 0; m < pMesh->mNumAnimMeshes; m++) {
aiAnimMesh *animMesh = pMesh->mAnimMeshes[m];
unsigned int numVertices = animMesh->mNumVertices;
if (animMesh->HasPositions()) {
for (unsigned int a = 0; a < numVertices; a++) {
std::swap(animMesh->mVertices[a], animMesh->mVertices[numVertices - 1 - a]);
}
}
if (animMesh->HasNormals()) {
for (unsigned int a = 0; a < numVertices; a++) {
std::swap(animMesh->mNormals[a], animMesh->mNormals[numVertices - 1 - a]);
}
}
for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; i++) {
if (animMesh->HasTextureCoords(i)) {
for (unsigned int a = 0; a < numVertices; a++) {
std::swap(animMesh->mTextureCoords[i][a], animMesh->mTextureCoords[i][numVertices - 1 - a]);
}
}
}
if (animMesh->HasTangentsAndBitangents()) {
for (unsigned int a = 0; a < numVertices; a++) {
std::swap(animMesh->mTangents[a], animMesh->mTangents[numVertices - 1 - a]);
std::swap(animMesh->mBitangents[a], animMesh->mBitangents[numVertices - 1 - a]);
}
}
for (unsigned int v = 0; v < AI_MAX_NUMBER_OF_COLOR_SETS; v++) {
if (animMesh->HasVertexColors(v)) {
for (unsigned int a = 0; a < numVertices; a++) {
std::swap(animMesh->mColors[v][a], animMesh->mColors[v][numVertices - 1 - a]);
}
}
}
}
}
#endif // !! ASSIMP_BUILD_NO_FLIPWINDING_PROCESS
|