summaryrefslogtreecommitdiff
path: root/libs/cairo-1.16.0/src/cairo-mesh-pattern-rasterizer.c
blob: e7f0db666ae90b75c36cc1a31f99b6dc5b627864 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
/* -*- Mode: c; tab-width: 8; c-basic-offset: 4; indent-tabs-mode: t; -*- */
/* cairo - a vector graphics library with display and print output
 *
 * Copyright 2009 Andrea Canciani
 *
 * This library is free software; you can redistribute it and/or
 * modify it either under the terms of the GNU Lesser General Public
 * License version 2.1 as published by the Free Software Foundation
 * (the "LGPL") or, at your option, under the terms of the Mozilla
 * Public License Version 1.1 (the "MPL"). If you do not alter this
 * notice, a recipient may use your version of this file under either
 * the MPL or the LGPL.
 *
 * You should have received a copy of the LGPL along with this library
 * in the file COPYING-LGPL-2.1; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
 * You should have received a copy of the MPL along with this library
 * in the file COPYING-MPL-1.1
 *
 * The contents of this file are subject to the Mozilla Public License
 * Version 1.1 (the "License"); you may not use this file except in
 * compliance with the License. You may obtain a copy of the License at
 * http://www.mozilla.org/MPL/
 *
 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
 * OF ANY KIND, either express or implied. See the LGPL or the MPL for
 * the specific language governing rights and limitations.
 *
 * The Original Code is the cairo graphics library.
 *
 * The Initial Developer of the Original Code is Andrea Canciani.
 *
 * Contributor(s):
 *	Andrea Canciani <ranma42@gmail.com>
 */

#include "cairoint.h"

#include "cairo-array-private.h"
#include "cairo-pattern-private.h"

/*
 * Rasterizer for mesh patterns.
 *
 * This implementation is based on techniques derived from several
 * papers (available from ACM):
 *
 * - Lien, Shantz and Pratt "Adaptive Forward Differencing for
 *   Rendering Curves and Surfaces" (discussion of the AFD technique,
 *   bound of 1/sqrt(2) on step length without proof)
 *
 * - Popescu and Rosen, "Forward rasterization" (description of
 *   forward rasterization, proof of the previous bound)
 *
 * - Klassen, "Integer Forward Differencing of Cubic Polynomials:
 *   Analysis and Algorithms"
 *
 * - Klassen, "Exact Integer Hybrid Subdivision and Forward
 *   Differencing of Cubics" (improving the bound on the minimum
 *   number of steps)
 *
 * - Chang, Shantz and Rocchetti, "Rendering Cubic Curves and Surfaces
 *   with Integer Adaptive Forward Differencing" (analysis of forward
 *   differencing applied to Bezier patches)
 *
 * Notes:
 * - Poor performance expected in degenerate cases
 *
 * - Patches mostly outside the drawing area are drawn completely (and
 *   clipped), wasting time
 *
 * - Both previous problems are greatly reduced by splitting until a
 *   reasonably small size and clipping the new tiles: execution time
 *   is quadratic in the convex-hull diameter instead than linear to
 *   the painted area. Splitting the tiles doesn't change the painted
 *   area but (usually) reduces the bounding box area (bbox area can
 *   remain the same after splitting, but cannot grow)
 *
 * - The initial implementation used adaptive forward differencing,
 *   but simple forward differencing scored better in benchmarks
 *
 * Idea:
 *
 * We do a sampling over the cubic patch with step du and dv (in the
 * two parameters) that guarantees that any point of our sampling will
 * be at most at 1/sqrt(2) from its adjacent points. In formulae
 * (assuming B is the patch):
 *
 *   |B(u,v) - B(u+du,v)| < 1/sqrt(2)
 *   |B(u,v) - B(u,v+dv)| < 1/sqrt(2)
 *
 * This means that every pixel covered by the patch will contain at
 * least one of the samples, thus forward rasterization can be
 * performed. Sketch of proof (from Popescu and Rosen):
 *
 * Let's take the P pixel we're interested into. If we assume it to be
 * square, its boundaries define 9 regions on the plane:
 *
 * 1|2|3
 * -+-+-
 * 8|P|4
 * -+-+-
 * 7|6|5
 *
 * Let's check that the pixel P will contain at least one point
 * assuming that it is covered by the patch.
 *
 * Since the pixel is covered by the patch, its center will belong to
 * (at least) one of the quads:
 *
 *   {(B(u,v), B(u+du,v), B(u,v+dv), B(u+du,v+dv)) for u,v in [0,1]}
 *
 * If P doesn't contain any of the corners of the quad:
 *
 * - if one of the corners is in 1,3,5 or 7, other two of them have to
 *   be in 2,4,6 or 8, thus if the last corner is not in P, the length
 *   of one of the edges will be > 1/sqrt(2)
 *
 * - if none of the corners is in 1,3,5 or 7, all of them are in 2,4,6
 *   and/or 8. If they are all in different regions, they can't
 *   satisfy the distance constraint. If two of them are in the same
 *   region (let's say 2), no point is in 6 and again it is impossible
 *   to have the center of P in the quad respecting the distance
 *   constraint (both these assertions can be checked by continuity
 *   considering the length of the edges of a quad with the vertices
 *   on the edges of P)
 *
 * Each of the cases led to a contradiction, so P contains at least
 * one of the corners of the quad.
 */

/*
 * Make sure that errors are less than 1 in fixed point math if you
 * change these values.
 *
 * The error is amplified by about steps^3/4 times.
 * The rasterizer always uses a number of steps that is a power of 2.
 *
 * 256 is the maximum allowed number of steps (to have error < 1)
 * using 8.24 for the differences.
 */
#define STEPS_MAX_V 256.0
#define STEPS_MAX_U 256.0

/*
 * If the patch/curve is only partially visible, split it to a finer
 * resolution to get higher chances to clip (part of) it.
 *
 * These values have not been computed, but simply obtained
 * empirically (by benchmarking some patches). They should never be
 * greater than STEPS_MAX_V (or STEPS_MAX_U), but they can be as small
 * as 1 (depending on how much you want to spend time in splitting the
 * patch/curve when trying to save some rasterization time).
 */
#define STEPS_CLIP_V 64.0
#define STEPS_CLIP_U 64.0


/* Utils */
static inline double
sqlen (cairo_point_double_t p0, cairo_point_double_t p1)
{
    cairo_point_double_t delta;

    delta.x = p0.x - p1.x;
    delta.y = p0.y - p1.y;

    return delta.x * delta.x + delta.y * delta.y;
}

static inline int16_t
_color_delta_to_shifted_short (int32_t from, int32_t to, int shift)
{
    int32_t delta = to - from;

    /* We need to round toward zero, because otherwise adding the
     * delta 2^shift times can overflow */
    if (delta >= 0)
	return delta >> shift;
    else
	return -((-delta) >> shift);
}

/*
 * Convert a number of steps to the equivalent shift.
 *
 * Input: the square of the minimum number of steps
 *
 * Output: the smallest integer x such that 2^x > steps
 */
static inline int
sqsteps2shift (double steps_sq)
{
    int r;
    frexp (MAX (1.0, steps_sq), &r);
    return (r + 1) >> 1;
}

/*
 * FD functions
 *
 * A Bezier curve is defined (with respect to a parameter t in
 * [0,1]) from its nodes (x,y,z,w) like this:
 *
 *   B(t) = x(1-t)^3 + 3yt(1-t)^2 + 3zt^2(1-t) + wt^3
 *
 * To efficiently evaluate a Bezier curve, the rasterizer uses forward
 * differences. Given x, y, z, w (the 4 nodes of the Bezier curve), it
 * is possible to convert them to forward differences form and walk
 * over the curve using fd_init (), fd_down () and fd_fwd ().
 *
 * f[0] is always the value of the Bezier curve for "current" t.
 */

/*
 * Initialize the coefficient for forward differences.
 *
 * Input: x,y,z,w are the 4 nodes of the Bezier curve
 *
 * Output: f[i] is the i-th difference of the curve
 *
 * f[0] is the value of the curve for t==0, i.e. f[0]==x.
 *
 * The initial step is 1; this means that each step increases t by 1
 * (so fd_init () immediately followed by fd_fwd (f) n times makes
 * f[0] be the value of the curve for t==n).
 */
static inline void
fd_init (double x, double y, double z, double w, double f[4])
{
    f[0] = x;
    f[1] = w - x;
    f[2] = 6. * (w - 2. * z + y);
    f[3] = 6. * (w - 3. * z + 3. * y - x);
}

/*
 * Halve the step of the coefficients for forward differences.
 *
 * Input: f[i] is the i-th difference of the curve
 *
 * Output: f[i] is the i-th difference of the curve with half the
 *         original step
 *
 * f[0] is not affected, so the current t is not changed.
 *
 * The other coefficients are changed so that the step is half the
 * original step. This means that doing fd_fwd (f) n times with the
 * input f results in the same f[0] as doing fd_fwd (f) 2n times with
 * the output f.
 */
static inline void
fd_down (double f[4])
{
    f[3] *= 0.125;
    f[2] = f[2] * 0.25 - f[3];
    f[1] = (f[1] - f[2]) * 0.5;
}

/*
 * Perform one step of forward differences along the curve.
 *
 * Input: f[i] is the i-th difference of the curve
 *
 * Output: f[i] is the i-th difference of the curve after one step
 */
static inline void
fd_fwd (double f[4])
{
    f[0] += f[1];
    f[1] += f[2];
    f[2] += f[3];
}

/*
 * Transform to integer forward differences.
 *
 * Input: d[n] is the n-th difference (in double precision)
 *
 * Output: i[n] is the n-th difference (in fixed point precision)
 *
 * i[0] is 9.23 fixed point, other differences are 4.28 fixed point.
 */
static inline void
fd_fixed (double d[4], int32_t i[4])
{
    i[0] = _cairo_fixed_16_16_from_double (256 *  2 * d[0]);
    i[1] = _cairo_fixed_16_16_from_double (256 * 16 * d[1]);
    i[2] = _cairo_fixed_16_16_from_double (256 * 16 * d[2]);
    i[3] = _cairo_fixed_16_16_from_double (256 * 16 * d[3]);
}

/*
 * Perform one step of integer forward differences along the curve.
 *
 * Input: f[n] is the n-th difference
 *
 * Output: f[n] is the n-th difference
 *
 * f[0] is 9.23 fixed point, other differences are 4.28 fixed point.
 */
static inline void
fd_fixed_fwd (int32_t f[4])
{
    f[0] += (f[1] >> 5) + ((f[1] >> 4) & 1);
    f[1] += f[2];
    f[2] += f[3];
}

/*
 * Compute the minimum number of steps that guarantee that walking
 * over a curve will leave no holes.
 *
 * Input: p[0..3] the nodes of the Bezier curve
 *
 * Returns: the square of the number of steps
 *
 * Idea:
 *
 * We want to make sure that at every step we move by less than
 * 1/sqrt(2).
 *
 * The derivative of the cubic Bezier with nodes (p0, p1, p2, p3) is
 * the quadratic Bezier with nodes (p1-p0, p2-p1, p3-p2) scaled by 3,
 * so (since a Bezier curve is always bounded by its convex hull), we
 * can say that:
 *
 *  max(|B'(t)|) <= 3 max (|p1-p0|, |p2-p1|, |p3-p2|)
 *
 * We can improve this by noticing that a quadratic Bezier (a,b,c) is
 * bounded by the quad (a,lerp(a,b,t),lerp(b,c,t),c) for any t, so
 * (substituting the previous values, using t=0.5 and simplifying):
 *
 *  max(|B'(t)|) <= 3 max (|p1-p0|, |p2-p0|/2, |p3-p1|/2, |p3-p2|)
 *
 * So, to guarantee a maximum step length of 1/sqrt(2) we must do:
 *
 *   3 max (|p1-p0|, |p2-p0|/2, |p3-p1|/2, |p3-p2|) sqrt(2) steps
 */
static inline double
bezier_steps_sq (cairo_point_double_t p[4])
{
    double tmp = sqlen (p[0], p[1]);
    tmp = MAX (tmp, sqlen (p[2], p[3]));
    tmp = MAX (tmp, sqlen (p[0], p[2]) * .25);
    tmp = MAX (tmp, sqlen (p[1], p[3]) * .25);
    return 18.0 * tmp;
}

/*
 * Split a 1D Bezier cubic using de Casteljau's algorithm.
 *
 * Input: x,y,z,w the nodes of the Bezier curve
 *
 * Output: x0,y0,z0,w0 and x1,y1,z1,w1 are respectively the nodes of
 *         the first half and of the second half of the curve
 *
 * The output control nodes have to be distinct.
 */
static inline void
split_bezier_1D (double  x,  double  y,  double  z,  double  w,
		 double *x0, double *y0, double *z0, double *w0,
		 double *x1, double *y1, double *z1, double *w1)
{
    double tmp;

    *x0 = x;
    *w1 = w;

    tmp = 0.5 * (y + z);
    *y0 = 0.5 * (x + y);
    *z1 = 0.5 * (z + w);

    *z0 = 0.5 * (*y0 + tmp);
    *y1 = 0.5 * (tmp + *z1);

    *w0 = *x1 = 0.5 * (*z0 + *y1);
}

/*
 * Split a Bezier curve using de Casteljau's algorithm.
 *
 * Input: p[0..3] the nodes of the Bezier curve
 *
 * Output: fst_half[0..3] and snd_half[0..3] are respectively the
 *         nodes of the first and of the second half of the curve
 *
 * fst_half and snd_half must be different, but they can be the same as
 * nodes.
 */
static void
split_bezier (cairo_point_double_t p[4],
	      cairo_point_double_t fst_half[4],
	      cairo_point_double_t snd_half[4])
{
    split_bezier_1D (p[0].x, p[1].x, p[2].x, p[3].x,
		     &fst_half[0].x, &fst_half[1].x, &fst_half[2].x, &fst_half[3].x,
		     &snd_half[0].x, &snd_half[1].x, &snd_half[2].x, &snd_half[3].x);

    split_bezier_1D (p[0].y, p[1].y, p[2].y, p[3].y,
		     &fst_half[0].y, &fst_half[1].y, &fst_half[2].y, &fst_half[3].y,
		     &snd_half[0].y, &snd_half[1].y, &snd_half[2].y, &snd_half[3].y);
}


typedef enum _intersection {
    INSIDE = -1, /* the interval is entirely contained in the reference interval */
    OUTSIDE = 0, /* the interval has no intersection with the reference interval */
    PARTIAL = 1  /* the interval intersects the reference interval (but is not fully inside it) */
} intersection_t;

/*
 * Check if an interval if inside another.
 *
 * Input: a,b are the extrema of the first interval
 *        c,d are the extrema of the second interval
 *
 * Returns: INSIDE  iff [a,b) intersection [c,d) = [a,b)
 *          OUTSIDE iff [a,b) intersection [c,d) = {}
 *          PARTIAL otherwise
 *
 * The function assumes a < b and c < d
 *
 * Note: Bitwise-anding the results along each component gives the
 *       expected result for [a,b) x [A,B) intersection [c,d) x [C,D).
 */
static inline int
intersect_interval (double a, double b, double c, double d)
{
    if (c <= a && b <= d)
	return INSIDE;
    else if (a >= d || b <= c)
	return OUTSIDE;
    else
	return PARTIAL;
}

/*
 * Set the color of a pixel.
 *
 * Input: data is the base pointer of the image
 *        width, height are the dimensions of the image
 *        stride is the stride in bytes between adjacent rows
 *        x, y are the coordinates of the pixel to be colored
 *        r,g,b,a are the color components of the color to be set
 *
 * Output: the (x,y) pixel in data has the (r,g,b,a) color
 *
 * The input color components are not premultiplied, but the data
 * stored in the image is assumed to be in CAIRO_FORMAT_ARGB32 (8 bpc,
 * premultiplied).
 *
 * If the pixel to be set is outside the image, this function does
 * nothing.
 */
static inline void
draw_pixel (unsigned char *data, int width, int height, int stride,
	    int x, int y, uint16_t r, uint16_t g, uint16_t b, uint16_t a)
{
    if (likely (0 <= x && 0 <= y && x < width && y < height)) {
	uint32_t tr, tg, tb, ta;

	/* Premultiply and round */
	ta = a;
	tr = r * ta + 0x8000;
	tg = g * ta + 0x8000;
	tb = b * ta + 0x8000;

	tr += tr >> 16;
	tg += tg >> 16;
	tb += tb >> 16;

	*((uint32_t*) (data + y*(ptrdiff_t)stride + 4*x)) = ((ta << 16) & 0xff000000) |
	    ((tr >> 8) & 0xff0000) | ((tg >> 16) & 0xff00) | (tb >> 24);
    }
}

/*
 * Forward-rasterize a cubic curve using forward differences.
 *
 * Input: data is the base pointer of the image
 *        width, height are the dimensions of the image
 *        stride is the stride in bytes between adjacent rows
 *        ushift is log2(n) if n is the number of desired steps
 *        dxu[i], dyu[i] are the x,y forward differences of the curve
 *        r0,g0,b0,a0 are the color components of the start point
 *        r3,g3,b3,a3 are the color components of the end point
 *
 * Output: data will be changed to have the requested curve drawn in
 *         the specified colors
 *
 * The input color components are not premultiplied, but the data
 * stored in the image is assumed to be in CAIRO_FORMAT_ARGB32 (8 bpc,
 * premultiplied).
 *
 * The function draws n+1 pixels, that is from the point at step 0 to
 * the point at step n, both included. This is the discrete equivalent
 * to drawing the curve for values of the interpolation parameter in
 * [0,1] (including both extremes).
 */
static inline void
rasterize_bezier_curve (unsigned char *data, int width, int height, int stride,
			int ushift, double dxu[4], double dyu[4],
			uint16_t r0, uint16_t g0, uint16_t b0, uint16_t a0,
			uint16_t r3, uint16_t g3, uint16_t b3, uint16_t a3)
{
    int32_t xu[4], yu[4];
    int x0, y0, u, usteps = 1 << ushift;

    uint16_t r = r0, g = g0, b = b0, a = a0;
    int16_t dr = _color_delta_to_shifted_short (r0, r3, ushift);
    int16_t dg = _color_delta_to_shifted_short (g0, g3, ushift);
    int16_t db = _color_delta_to_shifted_short (b0, b3, ushift);
    int16_t da = _color_delta_to_shifted_short (a0, a3, ushift);

    fd_fixed (dxu, xu);
    fd_fixed (dyu, yu);

    /*
     * Use (dxu[0],dyu[0]) as origin for the forward differences.
     *
     * This makes it possible to handle much larger coordinates (the
     * ones that can be represented as cairo_fixed_t)
     */
    x0 = _cairo_fixed_from_double (dxu[0]);
    y0 = _cairo_fixed_from_double (dyu[0]);
    xu[0] = 0;
    yu[0] = 0;

    for (u = 0; u <= usteps; ++u) {
	/*
	 * This rasterizer assumes that pixels are integer aligned
	 * squares, so a generic (x,y) point belongs to the pixel with
	 * top-left coordinates (floor(x), floor(y))
	 */

	int x = _cairo_fixed_integer_floor (x0 + (xu[0] >> 15) + ((xu[0] >> 14) & 1));
	int y = _cairo_fixed_integer_floor (y0 + (yu[0] >> 15) + ((yu[0] >> 14) & 1));

	draw_pixel (data, width, height, stride, x, y, r, g, b, a);

	fd_fixed_fwd (xu);
	fd_fixed_fwd (yu);
	r += dr;
	g += dg;
	b += db;
	a += da;
    }
}

/*
 * Clip, split and rasterize a Bezier curve.
 *
 * Input: data is the base pointer of the image
 *        width, height are the dimensions of the image
 *        stride is the stride in bytes between adjacent rows
 *        p[i] is the i-th node of the Bezier curve
 *        c0[i] is the i-th color component at the start point
 *        c3[i] is the i-th color component at the end point
 *
 * Output: data will be changed to have the requested curve drawn in
 *         the specified colors
 *
 * The input color components are not premultiplied, but the data
 * stored in the image is assumed to be in CAIRO_FORMAT_ARGB32 (8 bpc,
 * premultiplied).
 *
 * The color components are red, green, blue and alpha, in this order.
 *
 * The function guarantees that it will draw the curve with a step
 * small enough to never have a distance above 1/sqrt(2) between two
 * consecutive points (which is needed to ensure that no hole can
 * appear when using this function to rasterize a patch).
 */
static void
draw_bezier_curve (unsigned char *data, int width, int height, int stride,
		   cairo_point_double_t p[4], double c0[4], double c3[4])
{
    double top, bottom, left, right, steps_sq;
    int i, v;

    top = bottom = p[0].y;
    for (i = 1; i < 4; ++i) {
	top    = MIN (top,    p[i].y);
	bottom = MAX (bottom, p[i].y);
    }

    /* Check visibility */
    v = intersect_interval (top, bottom, 0, height);
    if (v == OUTSIDE)
	return;

    left = right = p[0].x;
    for (i = 1; i < 4; ++i) {
	left  = MIN (left,  p[i].x);
	right = MAX (right, p[i].x);
    }

    v &= intersect_interval (left, right, 0, width);
    if (v == OUTSIDE)
	return;

    steps_sq = bezier_steps_sq (p);
    if (steps_sq >= (v == INSIDE ? STEPS_MAX_U * STEPS_MAX_U : STEPS_CLIP_U * STEPS_CLIP_U)) {
	/*
	 * The number of steps is greater than the threshold. This
	 * means that either the error would become too big if we
	 * directly rasterized it or that we can probably save some
	 * time by splitting the curve and clipping part of it
	 */
	cairo_point_double_t first[4], second[4];
	double midc[4];
	split_bezier (p, first, second);
	midc[0] = (c0[0] + c3[0]) * 0.5;
	midc[1] = (c0[1] + c3[1]) * 0.5;
	midc[2] = (c0[2] + c3[2]) * 0.5;
	midc[3] = (c0[3] + c3[3]) * 0.5;
	draw_bezier_curve (data, width, height, stride, first, c0, midc);
	draw_bezier_curve (data, width, height, stride, second, midc, c3);
    } else {
	double xu[4], yu[4];
	int ushift = sqsteps2shift (steps_sq), k;

	fd_init (p[0].x, p[1].x, p[2].x, p[3].x, xu);
	fd_init (p[0].y, p[1].y, p[2].y, p[3].y, yu);

	for (k = 0; k < ushift; ++k) {
	    fd_down (xu);
	    fd_down (yu);
	}

	rasterize_bezier_curve (data, width, height, stride, ushift,
				xu, yu,
				_cairo_color_double_to_short (c0[0]),
				_cairo_color_double_to_short (c0[1]),
				_cairo_color_double_to_short (c0[2]),
				_cairo_color_double_to_short (c0[3]),
				_cairo_color_double_to_short (c3[0]),
				_cairo_color_double_to_short (c3[1]),
				_cairo_color_double_to_short (c3[2]),
				_cairo_color_double_to_short (c3[3]));

	/* Draw the end point, to make sure that we didn't leave it
	 * out because of rounding */
	draw_pixel (data, width, height, stride,
		    _cairo_fixed_integer_floor (_cairo_fixed_from_double (p[3].x)),
		    _cairo_fixed_integer_floor (_cairo_fixed_from_double (p[3].y)),
		    _cairo_color_double_to_short (c3[0]),
		    _cairo_color_double_to_short (c3[1]),
		    _cairo_color_double_to_short (c3[2]),
		    _cairo_color_double_to_short (c3[3]));
    }
}

/*
 * Forward-rasterize a cubic Bezier patch using forward differences.
 *
 * Input: data is the base pointer of the image
 *        width, height are the dimensions of the image
 *        stride is the stride in bytes between adjacent rows
 *        vshift is log2(n) if n is the number of desired steps
 *        p[i][j], p[i][j] are the the nodes of the Bezier patch
 *        col[i][j] is the j-th color component of the i-th corner
 *
 * Output: data will be changed to have the requested patch drawn in
 *         the specified colors
 *
 * The nodes of the patch are as follows:
 *
 * u\v 0    - >    1
 * 0  p00 p01 p02 p03
 * |  p10 p11 p12 p13
 * v  p20 p21 p22 p23
 * 1  p30 p31 p32 p33
 *
 * i.e. u varies along the first component (rows), v varies along the
 * second one (columns).
 *
 * The color components are red, green, blue and alpha, in this order.
 * c[0..3] are the colors in p00, p30, p03, p33 respectively
 *
 * The input color components are not premultiplied, but the data
 * stored in the image is assumed to be in CAIRO_FORMAT_ARGB32 (8 bpc,
 * premultiplied).
 *
 * If the patch folds over itself, the part with the highest v
 * parameter is considered above. If both have the same v, the one
 * with the highest u parameter is above.
 *
 * The function draws n+1 curves, that is from the curve at step 0 to
 * the curve at step n, both included. This is the discrete equivalent
 * to drawing the patch for values of the interpolation parameter in
 * [0,1] (including both extremes).
 */
static inline void
rasterize_bezier_patch (unsigned char *data, int width, int height, int stride, int vshift,
			cairo_point_double_t p[4][4], double col[4][4])
{
    double pv[4][2][4], cstart[4], cend[4], dcstart[4], dcend[4];
    int v, i, k;

    v = 1 << vshift;

    /*
     * pv[i][0] is the function (represented using forward
     * differences) mapping v to the x coordinate of the i-th node of
     * the Bezier curve with parameter u.
     * (Likewise p[i][0] gives the y coordinate).
     *
     * This means that (pv[0][0][0],pv[0][1][0]),
     * (pv[1][0][0],pv[1][1][0]), (pv[2][0][0],pv[2][1][0]) and
     * (pv[3][0][0],pv[3][1][0]) are the nodes of the Bezier curve for
     * the "current" v value (see the FD comments for more details).
     */
    for (i = 0; i < 4; ++i) {
	fd_init (p[i][0].x, p[i][1].x, p[i][2].x, p[i][3].x, pv[i][0]);
	fd_init (p[i][0].y, p[i][1].y, p[i][2].y, p[i][3].y, pv[i][1]);
	for (k = 0; k < vshift; ++k) {
	    fd_down (pv[i][0]);
	    fd_down (pv[i][1]);
	}
    }

    for (i = 0; i < 4; ++i) {
	cstart[i]  = col[0][i];
	cend[i]    = col[1][i];
	dcstart[i] = (col[2][i] - col[0][i]) / v;
	dcend[i]   = (col[3][i] - col[1][i]) / v;
    }

    v++;
    while (v--) {
	cairo_point_double_t nodes[4];
	for (i = 0; i < 4; ++i) {
	    nodes[i].x = pv[i][0][0];
	    nodes[i].y = pv[i][1][0];
	}

	draw_bezier_curve (data, width, height, stride, nodes, cstart, cend);

	for (i = 0; i < 4; ++i) {
	    fd_fwd (pv[i][0]);
	    fd_fwd (pv[i][1]);
	    cstart[i] += dcstart[i];
	    cend[i] += dcend[i];
	}
    }
}

/*
 * Clip, split and rasterize a Bezier cubic patch.
 *
 * Input: data is the base pointer of the image
 *        width, height are the dimensions of the image
 *        stride is the stride in bytes between adjacent rows
 *        p[i][j], p[i][j] are the nodes of the patch
 *        col[i][j] is the j-th color component of the i-th corner
 *
 * Output: data will be changed to have the requested patch drawn in
 *         the specified colors
 *
 * The nodes of the patch are as follows:
 *
 * u\v 0    - >    1
 * 0  p00 p01 p02 p03
 * |  p10 p11 p12 p13
 * v  p20 p21 p22 p23
 * 1  p30 p31 p32 p33
 *
 * i.e. u varies along the first component (rows), v varies along the
 * second one (columns).
 *
 * The color components are red, green, blue and alpha, in this order.
 * c[0..3] are the colors in p00, p30, p03, p33 respectively
 *
 * The input color components are not premultiplied, but the data
 * stored in the image is assumed to be in CAIRO_FORMAT_ARGB32 (8 bpc,
 * premultiplied).
 *
 * If the patch folds over itself, the part with the highest v
 * parameter is considered above. If both have the same v, the one
 * with the highest u parameter is above.
 *
 * The function guarantees that it will draw the patch with a step
 * small enough to never have a distance above 1/sqrt(2) between two
 * adjacent points (which guarantees that no hole can appear).
 *
 * This function can be used to rasterize a tile of PDF type 7
 * shadings (see http://www.adobe.com/devnet/pdf/pdf_reference.html).
 */
static void
draw_bezier_patch (unsigned char *data, int width, int height, int stride,
		     cairo_point_double_t p[4][4], double c[4][4])
{
    double top, bottom, left, right, steps_sq;
    int i, j, v;

    top = bottom = p[0][0].y;
    for (i = 0; i < 4; ++i) {
	for (j= 0; j < 4; ++j) {
	    top    = MIN (top,    p[i][j].y);
	    bottom = MAX (bottom, p[i][j].y);
	}
    }

    v = intersect_interval (top, bottom, 0, height);
    if (v == OUTSIDE)
	return;

    left = right = p[0][0].x;
    for (i = 0; i < 4; ++i) {
	for (j= 0; j < 4; ++j) {
	    left  = MIN (left,  p[i][j].x);
	    right = MAX (right, p[i][j].x);
	}
    }

    v &= intersect_interval (left, right, 0, width);
    if (v == OUTSIDE)
	return;

    steps_sq = 0;
    for (i = 0; i < 4; ++i)
	steps_sq = MAX (steps_sq, bezier_steps_sq (p[i]));

    if (steps_sq >= (v == INSIDE ? STEPS_MAX_V * STEPS_MAX_V : STEPS_CLIP_V * STEPS_CLIP_V)) {
	/* The number of steps is greater than the threshold. This
	 * means that either the error would become too big if we
	 * directly rasterized it or that we can probably save some
	 * time by splitting the curve and clipping part of it. The
	 * patch is only split in the v direction to guarantee that
	 * rasterizing each part will overwrite parts with low v with
	 * overlapping parts with higher v. */

	cairo_point_double_t first[4][4], second[4][4];
	double subc[4][4];

	for (i = 0; i < 4; ++i)
	    split_bezier (p[i], first[i], second[i]);

	for (i = 0; i < 4; ++i) {
	    subc[0][i] = c[0][i];
	    subc[1][i] = c[1][i];
	    subc[2][i] = 0.5 * (c[0][i] + c[2][i]);
	    subc[3][i] = 0.5 * (c[1][i] + c[3][i]);
	}

	draw_bezier_patch (data, width, height, stride, first, subc);

	for (i = 0; i < 4; ++i) {
	    subc[0][i] = subc[2][i];
	    subc[1][i] = subc[3][i];
	    subc[2][i] = c[2][i];
	    subc[3][i] = c[3][i];
	}
	draw_bezier_patch (data, width, height, stride, second, subc);
    } else {
	rasterize_bezier_patch (data, width, height, stride, sqsteps2shift (steps_sq), p, c);
    }
}

/*
 * Draw a tensor product shading pattern.
 *
 * Input: mesh is the mesh pattern
 *        data is the base pointer of the image
 *        width, height are the dimensions of the image
 *        stride is the stride in bytes between adjacent rows
 *
 * Output: data will be changed to have the pattern drawn on it
 *
 * data is assumed to be clear and its content is assumed to be in
 * CAIRO_FORMAT_ARGB32 (8 bpc, premultiplied).
 *
 * This function can be used to rasterize a PDF type 7 shading (see
 * http://www.adobe.com/devnet/pdf/pdf_reference.html).
 */
void
_cairo_mesh_pattern_rasterize (const cairo_mesh_pattern_t *mesh,
			       void                       *data,
			       int                         width,
			       int                         height,
			       int                         stride,
			       double                      x_offset,
			       double                      y_offset)
{
    cairo_point_double_t nodes[4][4];
    double colors[4][4];
    cairo_matrix_t p2u;
    unsigned int i, j, k, n;
    cairo_status_t status;
    const cairo_mesh_patch_t *patch;
    const cairo_color_t *c;

    assert (mesh->base.status == CAIRO_STATUS_SUCCESS);
    assert (mesh->current_patch == NULL);

    p2u = mesh->base.matrix;
    status = cairo_matrix_invert (&p2u);
    assert (status == CAIRO_STATUS_SUCCESS);

    n = _cairo_array_num_elements (&mesh->patches);
    patch = _cairo_array_index_const (&mesh->patches, 0);
    for (i = 0; i < n; i++) {
	for (j = 0; j < 4; j++) {
	    for (k = 0; k < 4; k++) {
		nodes[j][k] = patch->points[j][k];
		cairo_matrix_transform_point (&p2u, &nodes[j][k].x, &nodes[j][k].y);
		nodes[j][k].x += x_offset;
		nodes[j][k].y += y_offset;
	    }
	}

	c = &patch->colors[0];
	colors[0][0] = c->red;
	colors[0][1] = c->green;
	colors[0][2] = c->blue;
	colors[0][3] = c->alpha;

	c = &patch->colors[3];
	colors[1][0] = c->red;
	colors[1][1] = c->green;
	colors[1][2] = c->blue;
	colors[1][3] = c->alpha;

	c = &patch->colors[1];
	colors[2][0] = c->red;
	colors[2][1] = c->green;
	colors[2][2] = c->blue;
	colors[2][3] = c->alpha;

	c = &patch->colors[2];
	colors[3][0] = c->red;
	colors[3][1] = c->green;
	colors[3][2] = c->blue;
	colors[3][3] = c->alpha;

	draw_bezier_patch (data, width, height, stride, nodes, colors);
	patch++;
    }
}