summaryrefslogtreecommitdiff
path: root/libs/cairo-1.16.0/test/pdiff/pdiff.c
blob: eb5f15682abf0e9afe9c4670da6f120d2c9ecd72 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
/*
  Metric
  Copyright (C) 2006 Yangli Hector Yee

  This program is free software; you can redistribute it and/or modify it under the terms of the
  GNU General Public License as published by the Free Software Foundation; either version 2 of the License,
  or (at your option) any later version.

  This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
  without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  See the GNU General Public License for more details.

  You should have received a copy of the GNU General Public License along with this program;
  if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
*/

#define _GNU_SOURCE

#if HAVE_CONFIG_H
#include "config.h"
#endif

#include "lpyramid.h"
#include <math.h>
#include <stdio.h>
#include <stdlib.h>

#if   HAVE_STDINT_H
# include <stdint.h>
#elif HAVE_INTTYPES_H
# include <inttypes.h>
#elif HAVE_SYS_INT_TYPES_H
# include <sys/int_types.h>
#elif defined(_MSC_VER)
  typedef __int8 int8_t;
  typedef unsigned __int8 uint8_t;
  typedef __int16 int16_t;
  typedef unsigned __int16 uint16_t;
  typedef __int32 int32_t;
  typedef unsigned __int32 uint32_t;
  typedef __int64 int64_t;
  typedef unsigned __int64 uint64_t;
# ifndef HAVE_UINT64_T
#  define HAVE_UINT64_T 1
# endif
# ifndef INT16_MIN
#  define INT16_MIN	(-32767-1)
# endif
# ifndef INT16_MAX
#  define INT16_MAX	(32767)
# endif
# ifndef UINT16_MAX
#  define UINT16_MAX	(65535)
# endif
#else
#error Cannot find definitions for fixed-width integral types (uint8_t, uint32_t, etc.)
#endif

#include "pdiff.h"

#ifndef M_PI
#define M_PI 3.14159265f
#endif

#ifndef __USE_ISOC99
#define expf	exp
#define powf	pow
#define fabsf	fabs
#define sqrtf	sqrt
#define log10f	log10
#endif

/*
 * Given the adaptation luminance, this function returns the
 * threshold of visibility in cd per m^2
 * TVI means Threshold vs Intensity function
 * This version comes from Ward Larson Siggraph 1997
 */
static float
tvi (float adaptation_luminance)
{
    /* returns the threshold luminance given the adaptation luminance
       units are candelas per meter squared
    */
    float log_a, r, result;
    log_a = log10f(adaptation_luminance);

    if (log_a < -3.94f) {
	r = -2.86f;
    } else if (log_a < -1.44f) {
	r = powf(0.405f * log_a + 1.6f , 2.18f) - 2.86f;
    } else if (log_a < -0.0184f) {
	r = log_a - 0.395f;
    } else if (log_a < 1.9f) {
	r = powf(0.249f * log_a + 0.65f, 2.7f) - 0.72f;
    } else {
	r = log_a - 1.255f;
    }

    result = powf(10.0f , r);

    return result;
}

/* computes the contrast sensitivity function (Barten SPIE 1989)
 * given the cycles per degree (cpd) and luminance (lum)
 */
static float
csf (float cpd, float lum)
{
    float a, b, result;

    a = 440.0f * powf((1.0f + 0.7f / lum), -0.2f);
    b = 0.3f * powf((1.0f + 100.0f / lum), 0.15f);

    result = a * cpd * expf(-b * cpd) * sqrtf(1.0f + 0.06f * expf(b * cpd));

    return result;
}

/*
 * Visual Masking Function
 * from Daly 1993
 */
static float
mask (float contrast)
{
    float a, b, result;
    a = powf(392.498f * contrast,  0.7f);
    b = powf(0.0153f * a, 4.0f);
    result = powf(1.0f + b, 0.25f);

    return result;
}

/* convert Adobe RGB (1998) with reference white D65 to XYZ */
static void
AdobeRGBToXYZ (float r, float g, float b, float *x, float *y, float *z)
{
    /* matrix is from http://www.brucelindbloom.com/ */
    *x = r * 0.576700f + g * 0.185556f + b * 0.188212f;
    *y = r * 0.297361f + g * 0.627355f + b * 0.0752847f;
    *z = r * 0.0270328f + g * 0.0706879f + b * 0.991248f;
}

static void
XYZToLAB (float x, float y, float z, float *L, float *A, float *B)
{
    static float xw = -1;
    static float yw;
    static float zw;
    const float epsilon  = 216.0f / 24389.0f;
    const float kappa = 24389.0f / 27.0f;
    float f[3];
    float r[3];
    int i;

    /* reference white */
    if (xw < 0) {
	AdobeRGBToXYZ(1, 1, 1, &xw, &yw, &zw);
    }
    r[0] = x / xw;
    r[1] = y / yw;
    r[2] = z / zw;
    for (i = 0; i < 3; i++) {
	if (r[i] > epsilon) {
	    f[i] = powf(r[i], 1.0f / 3.0f);
	} else {
	    f[i] = (kappa * r[i] + 16.0f) / 116.0f;
	}
    }
    *L = 116.0f * f[1] - 16.0f;
    *A = 500.0f * (f[0] - f[1]);
    *B = 200.0f * (f[1] - f[2]);
}

static uint32_t
_get_pixel (const uint32_t *data, int i)
{
    return data[i];
}

static unsigned char
_get_red (const uint32_t *data, int i)
{
    uint32_t pixel;
    uint8_t alpha;

    pixel = _get_pixel (data, i);
    alpha = (pixel & 0xff000000) >> 24;
    if (alpha == 0)
	return 0;
    else
	return (((pixel & 0x00ff0000) >> 16) * 255 + alpha / 2) / alpha;
}

static unsigned char
_get_green (const uint32_t *data, int i)
{
    uint32_t pixel;
    uint8_t alpha;

    pixel = _get_pixel (data, i);
    alpha = (pixel & 0xff000000) >> 24;
    if (alpha == 0)
	return 0;
    else
	return (((pixel & 0x0000ff00) >> 8) * 255 + alpha / 2) / alpha;
}

static unsigned char
_get_blue (const uint32_t *data, int i)
{
    uint32_t pixel;
    uint8_t alpha;

    pixel = _get_pixel (data, i);
    alpha = (pixel & 0xff000000) >> 24;
    if (alpha == 0)
	return 0;
    else
	return (((pixel & 0x000000ff) >> 0) * 255 + alpha / 2) / alpha;
}

static void *
xmalloc (size_t size)
{
    void *buf;

    buf = malloc (size);
    if (buf == NULL) {
	fprintf (stderr, "Out of memory.\n");
	exit (1);
    }

    return buf;
}

int
pdiff_compare (cairo_surface_t *surface_a,
	       cairo_surface_t *surface_b,
	       double gamma,
	       double luminance,
	       double field_of_view)
{
    unsigned int dim = (cairo_image_surface_get_width (surface_a)
			* cairo_image_surface_get_height (surface_a));
    unsigned int i;

    /* assuming colorspaces are in Adobe RGB (1998) convert to XYZ */
    float *aX;
    float *aY;
    float *aZ;
    float *bX;
    float *bY;
    float *bZ;
    float *aLum;
    float *bLum;

    float *aA;
    float *bA;
    float *aB;
    float *bB;

    unsigned int x, y, w, h;

    lpyramid_t *la, *lb;

    float num_one_degree_pixels, pixels_per_degree, num_pixels;
    unsigned int adaptation_level;

    float cpd[MAX_PYR_LEVELS];
    float F_freq[MAX_PYR_LEVELS - 2];
    float csf_max;
    const uint32_t *data_a, *data_b;

    unsigned int pixels_failed;

    w = cairo_image_surface_get_width (surface_a);
    h = cairo_image_surface_get_height (surface_a);
    if (w < 3 || h < 3) /* too small for the Laplacian convolution */
	return -1;

    aX = xmalloc (dim * sizeof (float));
    aY = xmalloc (dim * sizeof (float));
    aZ = xmalloc (dim * sizeof (float));
    bX = xmalloc (dim * sizeof (float));
    bY = xmalloc (dim * sizeof (float));
    bZ = xmalloc (dim * sizeof (float));
    aLum = xmalloc (dim * sizeof (float));
    bLum = xmalloc (dim * sizeof (float));

    aA = xmalloc (dim * sizeof (float));
    bA = xmalloc (dim * sizeof (float));
    aB = xmalloc (dim * sizeof (float));
    bB = xmalloc (dim * sizeof (float));

    data_a = (uint32_t *) cairo_image_surface_get_data (surface_a);
    data_b = (uint32_t *) cairo_image_surface_get_data (surface_b);
    for (y = 0; y < h; y++) {
	for (x = 0; x < w; x++) {
	    float r, g, b, l;
	    i = x + y * w;
	    r = powf(_get_red (data_a, i) / 255.0f, gamma);
	    g = powf(_get_green (data_a, i) / 255.0f, gamma);
	    b = powf(_get_blue (data_a, i) / 255.0f, gamma);

	    AdobeRGBToXYZ(r,g,b,&aX[i],&aY[i],&aZ[i]);
	    XYZToLAB(aX[i], aY[i], aZ[i], &l, &aA[i], &aB[i]);
	    r = powf(_get_red (data_b, i) / 255.0f, gamma);
	    g = powf(_get_green (data_b, i) / 255.0f, gamma);
	    b = powf(_get_blue (data_b, i) / 255.0f, gamma);

	    AdobeRGBToXYZ(r,g,b,&bX[i],&bY[i],&bZ[i]);
	    XYZToLAB(bX[i], bY[i], bZ[i], &l, &bA[i], &bB[i]);
	    aLum[i] = aY[i] * luminance;
	    bLum[i] = bY[i] * luminance;
	}
    }

    la = lpyramid_create (aLum, w, h);
    lb = lpyramid_create (bLum, w, h);

    num_one_degree_pixels = (float) (2 * tan(field_of_view * 0.5 * M_PI / 180) * 180 / M_PI);
    pixels_per_degree = w / num_one_degree_pixels;

    num_pixels = 1;
    adaptation_level = 0;
    for (i = 0; i < MAX_PYR_LEVELS; i++) {
	adaptation_level = i;
	if (num_pixels > num_one_degree_pixels) break;
	num_pixels *= 2;
    }

    cpd[0] = 0.5f * pixels_per_degree;
    for (i = 1; i < MAX_PYR_LEVELS; i++) cpd[i] = 0.5f * cpd[i - 1];
    csf_max = csf(3.248f, 100.0f);

    for (i = 0; i < MAX_PYR_LEVELS - 2; i++) F_freq[i] = csf_max / csf( cpd[i], 100.0f);

    pixels_failed = 0;
    for (y = 0; y < h; y++) {
	for (x = 0; x < w; x++) {
	    int index = x + y * w;
	    float contrast[MAX_PYR_LEVELS - 2];
	    float F_mask[MAX_PYR_LEVELS - 2];
	    float factor;
	    float delta;
	    float adapt;
	    bool pass;
	    float sum_contrast = 0;
	    for (i = 0; i < MAX_PYR_LEVELS - 2; i++) {
		float n1 = fabsf(lpyramid_get_value (la,x,y,i) - lpyramid_get_value (la,x,y,i + 1));
		float n2 = fabsf(lpyramid_get_value (lb,x,y,i) - lpyramid_get_value (lb,x,y,i + 1));
		float numerator = (n1 > n2) ? n1 : n2;
		float d1 = fabsf(lpyramid_get_value(la,x,y,i+2));
		float d2 = fabsf(lpyramid_get_value(lb,x,y,i+2));
		float denominator = (d1 > d2) ? d1 : d2;
		if (denominator < 1e-5f) denominator = 1e-5f;
		contrast[i] = numerator / denominator;
		sum_contrast += contrast[i];
	    }
	    if (sum_contrast < 1e-5) sum_contrast = 1e-5f;
	    adapt = lpyramid_get_value(la,x,y,adaptation_level) + lpyramid_get_value(lb,x,y,adaptation_level);
	    adapt *= 0.5f;
	    if (adapt < 1e-5) adapt = 1e-5f;
	    for (i = 0; i < MAX_PYR_LEVELS - 2; i++) {
		F_mask[i] = mask(contrast[i] * csf(cpd[i], adapt));
	    }
	    factor = 0;
	    for (i = 0; i < MAX_PYR_LEVELS - 2; i++) {
		factor += contrast[i] * F_freq[i] * F_mask[i] / sum_contrast;
	    }
	    if (factor < 1) factor = 1;
	    if (factor > 10) factor = 10;
	    delta = fabsf(lpyramid_get_value(la,x,y,0) - lpyramid_get_value(lb,x,y,0));
	    pass = true;
	    /* pure luminance test */
	    if (delta > factor * tvi(adapt)) {
		pass = false;
	    } else {
		/* CIE delta E test with modifications */
		float color_scale = 1.0f;
		float da = aA[index] - bA[index];
		float db = aB[index] - bB[index];
		float delta_e;
		/* ramp down the color test in scotopic regions */
		if (adapt < 10.0f) {
		    color_scale = 1.0f - (10.0f - color_scale) / 10.0f;
		    color_scale = color_scale * color_scale;
		}
		da = da * da;
		db = db * db;
		delta_e = (da + db) * color_scale;
		if (delta_e > factor) {
		    pass = false;
		}
	    }
	    if (!pass)
		pixels_failed++;
	}
    }

    free (aX);
    free (aY);
    free (aZ);
    free (bX);
    free (bY);
    free (bZ);
    free (aLum);
    free (bLum);
    lpyramid_destroy (la);
    lpyramid_destroy (lb);
    free (aA);
    free (bA);
    free (aB);
    free (bB);

    return pixels_failed;
}