summaryrefslogtreecommitdiff
path: root/libs/glfw-3.3.8/examples/particles.c
blob: 9556ccac0f0941e1caebc3352dd9a418c06d0a5c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
//========================================================================
// A simple particle engine with threaded physics
// Copyright (c) Marcus Geelnard
// Copyright (c) Camilla Löwy <elmindreda@glfw.org>
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
//    claim that you wrote the original software. If you use this software
//    in a product, an acknowledgment in the product documentation would
//    be appreciated but is not required.
//
// 2. Altered source versions must be plainly marked as such, and must not
//    be misrepresented as being the original software.
//
// 3. This notice may not be removed or altered from any source
//    distribution.
//
//========================================================================

#if defined(_MSC_VER)
 // Make MS math.h define M_PI
 #define _USE_MATH_DEFINES
#endif

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <time.h>

#include <tinycthread.h>
#include <getopt.h>
#include <linmath.h>

#include <glad/gl.h>
#define GLFW_INCLUDE_NONE
#include <GLFW/glfw3.h>

// Define tokens for GL_EXT_separate_specular_color if not already defined
#ifndef GL_EXT_separate_specular_color
#define GL_LIGHT_MODEL_COLOR_CONTROL_EXT  0x81F8
#define GL_SINGLE_COLOR_EXT               0x81F9
#define GL_SEPARATE_SPECULAR_COLOR_EXT    0x81FA
#endif // GL_EXT_separate_specular_color


//========================================================================
// Type definitions
//========================================================================

typedef struct
{
    float x, y, z;
} Vec3;

// This structure is used for interleaved vertex arrays (see the
// draw_particles function)
//
// NOTE: This structure SHOULD be packed on most systems. It uses 32-bit fields
// on 32-bit boundaries, and is a multiple of 64 bits in total (6x32=3x64). If
// it does not work, try using pragmas or whatever to force the structure to be
// packed.
typedef struct
{
    GLfloat s, t;         // Texture coordinates
    GLuint  rgba;         // Color (four ubytes packed into an uint)
    GLfloat x, y, z;      // Vertex coordinates
} Vertex;


//========================================================================
// Program control global variables
//========================================================================

// Window dimensions
float aspect_ratio;

// "wireframe" flag (true if we use wireframe view)
int wireframe;

// Thread synchronization
struct {
    double    t;         // Time (s)
    float     dt;        // Time since last frame (s)
    int       p_frame;   // Particle physics frame number
    int       d_frame;   // Particle draw frame number
    cnd_t     p_done;    // Condition: particle physics done
    cnd_t     d_done;    // Condition: particle draw done
    mtx_t     particles_lock; // Particles data sharing mutex
} thread_sync;


//========================================================================
// Texture declarations (we hard-code them into the source code, since
// they are so simple)
//========================================================================

#define P_TEX_WIDTH  8    // Particle texture dimensions
#define P_TEX_HEIGHT 8
#define F_TEX_WIDTH  16   // Floor texture dimensions
#define F_TEX_HEIGHT 16

// Texture object IDs
GLuint particle_tex_id, floor_tex_id;

// Particle texture (a simple spot)
const unsigned char particle_texture[ P_TEX_WIDTH * P_TEX_HEIGHT ] = {
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
    0x00, 0x00, 0x11, 0x22, 0x22, 0x11, 0x00, 0x00,
    0x00, 0x11, 0x33, 0x88, 0x77, 0x33, 0x11, 0x00,
    0x00, 0x22, 0x88, 0xff, 0xee, 0x77, 0x22, 0x00,
    0x00, 0x22, 0x77, 0xee, 0xff, 0x88, 0x22, 0x00,
    0x00, 0x11, 0x33, 0x77, 0x88, 0x33, 0x11, 0x00,
    0x00, 0x00, 0x11, 0x33, 0x22, 0x11, 0x00, 0x00,
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};

// Floor texture (your basic checkered floor)
const unsigned char floor_texture[ F_TEX_WIDTH * F_TEX_HEIGHT ] = {
    0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30,
    0xff, 0xf0, 0xcc, 0xf0, 0xf0, 0xf0, 0xff, 0xf0, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30,
    0xf0, 0xcc, 0xee, 0xff, 0xf0, 0xf0, 0xf0, 0xf0, 0x30, 0x66, 0x30, 0x30, 0x30, 0x20, 0x30, 0x30,
    0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xee, 0xf0, 0xf0, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30,
    0xf0, 0xf0, 0xf0, 0xf0, 0xcc, 0xf0, 0xf0, 0xf0, 0x30, 0x30, 0x55, 0x30, 0x30, 0x44, 0x30, 0x30,
    0xf0, 0xdd, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0x33, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30,
    0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xff, 0xf0, 0xf0, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x60, 0x30,
    0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0x33, 0x33, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30,
    0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x33, 0x30, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0,
    0x30, 0x30, 0x30, 0x30, 0x30, 0x20, 0x30, 0x30, 0xf0, 0xff, 0xf0, 0xf0, 0xdd, 0xf0, 0xf0, 0xff,
    0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x55, 0x33, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xff, 0xf0, 0xf0,
    0x30, 0x44, 0x66, 0x30, 0x30, 0x30, 0x30, 0x30, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0,
    0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0xf0, 0xf0, 0xf0, 0xaa, 0xf0, 0xf0, 0xcc, 0xf0,
    0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0xff, 0xf0, 0xf0, 0xf0, 0xff, 0xf0, 0xdd, 0xf0,
    0x30, 0x30, 0x30, 0x77, 0x30, 0x30, 0x30, 0x30, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0,
    0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0,
};


//========================================================================
// These are fixed constants that control the particle engine. In a
// modular world, these values should be variables...
//========================================================================

// Maximum number of particles
#define MAX_PARTICLES   3000

// Life span of a particle (in seconds)
#define LIFE_SPAN       8.f

// A new particle is born every [BIRTH_INTERVAL] second
#define BIRTH_INTERVAL (LIFE_SPAN/(float)MAX_PARTICLES)

// Particle size (meters)
#define PARTICLE_SIZE   0.7f

// Gravitational constant (m/s^2)
#define GRAVITY         9.8f

// Base initial velocity (m/s)
#define VELOCITY        8.f

// Bounce friction (1.0 = no friction, 0.0 = maximum friction)
#define FRICTION        0.75f

// "Fountain" height (m)
#define FOUNTAIN_HEIGHT 3.f

// Fountain radius (m)
#define FOUNTAIN_RADIUS 1.6f

// Minimum delta-time for particle phisics (s)
#define MIN_DELTA_T     (BIRTH_INTERVAL * 0.5f)


//========================================================================
// Particle system global variables
//========================================================================

// This structure holds all state for a single particle
typedef struct {
    float x,y,z;     // Position in space
    float vx,vy,vz;  // Velocity vector
    float r,g,b;     // Color of particle
    float life;      // Life of particle (1.0 = newborn, < 0.0 = dead)
    int   active;    // Tells if this particle is active
} PARTICLE;

// Global vectors holding all particles. We use two vectors for double
// buffering.
static PARTICLE particles[MAX_PARTICLES];

// Global variable holding the age of the youngest particle
static float min_age;

// Color of latest born particle (used for fountain lighting)
static float glow_color[4];

// Position of latest born particle (used for fountain lighting)
static float glow_pos[4];


//========================================================================
// Object material and fog configuration constants
//========================================================================

const GLfloat fountain_diffuse[4]  = { 0.7f, 1.f,  1.f,  1.f };
const GLfloat fountain_specular[4] = {  1.f, 1.f,  1.f,  1.f };
const GLfloat fountain_shininess   = 12.f;
const GLfloat floor_diffuse[4]     = { 1.f,  0.6f, 0.6f, 1.f };
const GLfloat floor_specular[4]    = { 0.6f, 0.6f, 0.6f, 1.f };
const GLfloat floor_shininess      = 18.f;
const GLfloat fog_color[4]         = { 0.1f, 0.1f, 0.1f, 1.f };


//========================================================================
// Print usage information
//========================================================================

static void usage(void)
{
    printf("Usage: particles [-bfhs]\n");
    printf("Options:\n");
    printf(" -f   Run in full screen\n");
    printf(" -h   Display this help\n");
    printf(" -s   Run program as single thread (default is to use two threads)\n");
    printf("\n");
    printf("Program runtime controls:\n");
    printf(" W    Toggle wireframe mode\n");
    printf(" Esc  Exit program\n");
}


//========================================================================
// Initialize a new particle
//========================================================================

static void init_particle(PARTICLE *p, double t)
{
    float xy_angle, velocity;

    // Start position of particle is at the fountain blow-out
    p->x = 0.f;
    p->y = 0.f;
    p->z = FOUNTAIN_HEIGHT;

    // Start velocity is up (Z)...
    p->vz = 0.7f + (0.3f / 4096.f) * (float) (rand() & 4095);

    // ...and a randomly chosen X/Y direction
    xy_angle = (2.f * (float) M_PI / 4096.f) * (float) (rand() & 4095);
    p->vx = 0.4f * (float) cos(xy_angle);
    p->vy = 0.4f * (float) sin(xy_angle);

    // Scale velocity vector according to a time-varying velocity
    velocity = VELOCITY * (0.8f + 0.1f * (float) (sin(0.5 * t) + sin(1.31 * t)));
    p->vx *= velocity;
    p->vy *= velocity;
    p->vz *= velocity;

    // Color is time-varying
    p->r = 0.7f + 0.3f * (float) sin(0.34 * t + 0.1);
    p->g = 0.6f + 0.4f * (float) sin(0.63 * t + 1.1);
    p->b = 0.6f + 0.4f * (float) sin(0.91 * t + 2.1);

    // Store settings for fountain glow lighting
    glow_pos[0] = 0.4f * (float) sin(1.34 * t);
    glow_pos[1] = 0.4f * (float) sin(3.11 * t);
    glow_pos[2] = FOUNTAIN_HEIGHT + 1.f;
    glow_pos[3] = 1.f;
    glow_color[0] = p->r;
    glow_color[1] = p->g;
    glow_color[2] = p->b;
    glow_color[3] = 1.f;

    // The particle is new-born and active
    p->life = 1.f;
    p->active = 1;
}


//========================================================================
// Update a particle
//========================================================================

#define FOUNTAIN_R2 (FOUNTAIN_RADIUS+PARTICLE_SIZE/2)*(FOUNTAIN_RADIUS+PARTICLE_SIZE/2)

static void update_particle(PARTICLE *p, float dt)
{
    // If the particle is not active, we need not do anything
    if (!p->active)
        return;

    // The particle is getting older...
    p->life -= dt * (1.f / LIFE_SPAN);

    // Did the particle die?
    if (p->life <= 0.f)
    {
        p->active = 0;
        return;
    }

    // Apply gravity
    p->vz = p->vz - GRAVITY * dt;

    // Update particle position
    p->x = p->x + p->vx * dt;
    p->y = p->y + p->vy * dt;
    p->z = p->z + p->vz * dt;

    // Simple collision detection + response
    if (p->vz < 0.f)
    {
        // Particles should bounce on the fountain (with friction)
        if ((p->x * p->x + p->y * p->y) < FOUNTAIN_R2 &&
            p->z < (FOUNTAIN_HEIGHT + PARTICLE_SIZE / 2))
        {
            p->vz = -FRICTION * p->vz;
            p->z  = FOUNTAIN_HEIGHT + PARTICLE_SIZE / 2 +
                    FRICTION * (FOUNTAIN_HEIGHT +
                    PARTICLE_SIZE / 2 - p->z);
        }

        // Particles should bounce on the floor (with friction)
        else if (p->z < PARTICLE_SIZE / 2)
        {
            p->vz = -FRICTION * p->vz;
            p->z  = PARTICLE_SIZE / 2 +
                    FRICTION * (PARTICLE_SIZE / 2 - p->z);
        }
    }
}


//========================================================================
// The main frame for the particle engine. Called once per frame.
//========================================================================

static void particle_engine(double t, float dt)
{
    int i;
    float dt2;

    // Update particles (iterated several times per frame if dt is too large)
    while (dt > 0.f)
    {
        // Calculate delta time for this iteration
        dt2 = dt < MIN_DELTA_T ? dt : MIN_DELTA_T;

        for (i = 0;  i < MAX_PARTICLES;  i++)
            update_particle(&particles[i], dt2);

        min_age += dt2;

        // Should we create any new particle(s)?
        while (min_age >= BIRTH_INTERVAL)
        {
            min_age -= BIRTH_INTERVAL;

            // Find a dead particle to replace with a new one
            for (i = 0;  i < MAX_PARTICLES;  i++)
            {
                if (!particles[i].active)
                {
                    init_particle(&particles[i], t + min_age);
                    update_particle(&particles[i], min_age);
                    break;
                }
            }
        }

        dt -= dt2;
    }
}


//========================================================================
// Draw all active particles. We use OpenGL 1.1 vertex
// arrays for this in order to accelerate the drawing.
//========================================================================

#define BATCH_PARTICLES 70  // Number of particles to draw in each batch
                            // (70 corresponds to 7.5 KB = will not blow
                            // the L1 data cache on most CPUs)
#define PARTICLE_VERTS  4   // Number of vertices per particle

static void draw_particles(GLFWwindow* window, double t, float dt)
{
    int i, particle_count;
    Vertex vertex_array[BATCH_PARTICLES * PARTICLE_VERTS];
    Vertex* vptr;
    float alpha;
    GLuint rgba;
    Vec3 quad_lower_left, quad_lower_right;
    GLfloat mat[16];
    PARTICLE* pptr;

    // Here comes the real trick with flat single primitive objects (s.c.
    // "billboards"): We must rotate the textured primitive so that it
    // always faces the viewer (is coplanar with the view-plane).
    // We:
    //   1) Create the primitive around origo (0,0,0)
    //   2) Rotate it so that it is coplanar with the view plane
    //   3) Translate it according to the particle position
    // Note that 1) and 2) is the same for all particles (done only once).

    // Get modelview matrix. We will only use the upper left 3x3 part of
    // the matrix, which represents the rotation.
    glGetFloatv(GL_MODELVIEW_MATRIX, mat);

    // 1) & 2) We do it in one swift step:
    // Although not obvious, the following six lines represent two matrix/
    // vector multiplications. The matrix is the inverse 3x3 rotation
    // matrix (i.e. the transpose of the same matrix), and the two vectors
    // represent the lower left corner of the quad, PARTICLE_SIZE/2 *
    // (-1,-1,0), and the lower right corner, PARTICLE_SIZE/2 * (1,-1,0).
    // The upper left/right corners of the quad is always the negative of
    // the opposite corners (regardless of rotation).
    quad_lower_left.x = (-PARTICLE_SIZE / 2) * (mat[0] + mat[1]);
    quad_lower_left.y = (-PARTICLE_SIZE / 2) * (mat[4] + mat[5]);
    quad_lower_left.z = (-PARTICLE_SIZE / 2) * (mat[8] + mat[9]);
    quad_lower_right.x = (PARTICLE_SIZE / 2) * (mat[0] - mat[1]);
    quad_lower_right.y = (PARTICLE_SIZE / 2) * (mat[4] - mat[5]);
    quad_lower_right.z = (PARTICLE_SIZE / 2) * (mat[8] - mat[9]);

    // Don't update z-buffer, since all particles are transparent!
    glDepthMask(GL_FALSE);

    glEnable(GL_BLEND);
    glBlendFunc(GL_SRC_ALPHA, GL_ONE);

    // Select particle texture
    if (!wireframe)
    {
        glEnable(GL_TEXTURE_2D);
        glBindTexture(GL_TEXTURE_2D, particle_tex_id);
    }

    // Set up vertex arrays. We use interleaved arrays, which is easier to
    // handle (in most situations) and it gives a linear memory access
    // access pattern (which may give better performance in some
    // situations). GL_T2F_C4UB_V3F means: 2 floats for texture coords,
    // 4 ubytes for color and 3 floats for vertex coord (in that order).
    // Most OpenGL cards / drivers are optimized for this format.
    glInterleavedArrays(GL_T2F_C4UB_V3F, 0, vertex_array);

    // Wait for particle physics thread to be done
    mtx_lock(&thread_sync.particles_lock);
    while (!glfwWindowShouldClose(window) &&
            thread_sync.p_frame <= thread_sync.d_frame)
    {
        struct timespec ts;
        clock_gettime(CLOCK_REALTIME, &ts);
        ts.tv_nsec += 100 * 1000 * 1000;
        ts.tv_sec += ts.tv_nsec / (1000 * 1000 * 1000);
        ts.tv_nsec %= 1000 * 1000 * 1000;
        cnd_timedwait(&thread_sync.p_done, &thread_sync.particles_lock, &ts);
    }

    // Store the frame time and delta time for the physics thread
    thread_sync.t = t;
    thread_sync.dt = dt;

    // Update frame counter
    thread_sync.d_frame++;

    // Loop through all particles and build vertex arrays.
    particle_count = 0;
    vptr = vertex_array;
    pptr = particles;

    for (i = 0;  i < MAX_PARTICLES;  i++)
    {
        if (pptr->active)
        {
            // Calculate particle intensity (we set it to max during 75%
            // of its life, then it fades out)
            alpha =  4.f * pptr->life;
            if (alpha > 1.f)
                alpha = 1.f;

            // Convert color from float to 8-bit (store it in a 32-bit
            // integer using endian independent type casting)
            ((GLubyte*) &rgba)[0] = (GLubyte)(pptr->r * 255.f);
            ((GLubyte*) &rgba)[1] = (GLubyte)(pptr->g * 255.f);
            ((GLubyte*) &rgba)[2] = (GLubyte)(pptr->b * 255.f);
            ((GLubyte*) &rgba)[3] = (GLubyte)(alpha * 255.f);

            // 3) Translate the quad to the correct position in modelview
            // space and store its parameters in vertex arrays (we also
            // store texture coord and color information for each vertex).

            // Lower left corner
            vptr->s    = 0.f;
            vptr->t    = 0.f;
            vptr->rgba = rgba;
            vptr->x    = pptr->x + quad_lower_left.x;
            vptr->y    = pptr->y + quad_lower_left.y;
            vptr->z    = pptr->z + quad_lower_left.z;
            vptr ++;

            // Lower right corner
            vptr->s    = 1.f;
            vptr->t    = 0.f;
            vptr->rgba = rgba;
            vptr->x    = pptr->x + quad_lower_right.x;
            vptr->y    = pptr->y + quad_lower_right.y;
            vptr->z    = pptr->z + quad_lower_right.z;
            vptr ++;

            // Upper right corner
            vptr->s    = 1.f;
            vptr->t    = 1.f;
            vptr->rgba = rgba;
            vptr->x    = pptr->x - quad_lower_left.x;
            vptr->y    = pptr->y - quad_lower_left.y;
            vptr->z    = pptr->z - quad_lower_left.z;
            vptr ++;

            // Upper left corner
            vptr->s    = 0.f;
            vptr->t    = 1.f;
            vptr->rgba = rgba;
            vptr->x    = pptr->x - quad_lower_right.x;
            vptr->y    = pptr->y - quad_lower_right.y;
            vptr->z    = pptr->z - quad_lower_right.z;
            vptr ++;

            // Increase count of drawable particles
            particle_count ++;
        }

        // If we have filled up one batch of particles, draw it as a set
        // of quads using glDrawArrays.
        if (particle_count >= BATCH_PARTICLES)
        {
            // The first argument tells which primitive type we use (QUAD)
            // The second argument tells the index of the first vertex (0)
            // The last argument is the vertex count
            glDrawArrays(GL_QUADS, 0, PARTICLE_VERTS * particle_count);
            particle_count = 0;
            vptr = vertex_array;
        }

        // Next particle
        pptr++;
    }

    // We are done with the particle data
    mtx_unlock(&thread_sync.particles_lock);
    cnd_signal(&thread_sync.d_done);

    // Draw final batch of particles (if any)
    glDrawArrays(GL_QUADS, 0, PARTICLE_VERTS * particle_count);

    // Disable vertex arrays (Note: glInterleavedArrays implicitly called
    // glEnableClientState for vertex, texture coord and color arrays)
    glDisableClientState(GL_VERTEX_ARRAY);
    glDisableClientState(GL_TEXTURE_COORD_ARRAY);
    glDisableClientState(GL_COLOR_ARRAY);

    glDisable(GL_TEXTURE_2D);
    glDisable(GL_BLEND);

    glDepthMask(GL_TRUE);
}


//========================================================================
// Fountain geometry specification
//========================================================================

#define FOUNTAIN_SIDE_POINTS 14
#define FOUNTAIN_SWEEP_STEPS 32

static const float fountain_side[FOUNTAIN_SIDE_POINTS * 2] =
{
    1.2f, 0.f,  1.f, 0.2f,  0.41f, 0.3f, 0.4f, 0.35f,
    0.4f, 1.95f, 0.41f, 2.f, 0.8f, 2.2f,  1.2f, 2.4f,
    1.5f, 2.7f,  1.55f,2.95f, 1.6f, 3.f,  1.f, 3.f,
    0.5f, 3.f,  0.f, 3.f
};

static const float fountain_normal[FOUNTAIN_SIDE_POINTS * 2] =
{
    1.0000f, 0.0000f,  0.6428f, 0.7660f,  0.3420f, 0.9397f,  1.0000f, 0.0000f,
    1.0000f, 0.0000f,  0.3420f,-0.9397f,  0.4226f,-0.9063f,  0.5000f,-0.8660f,
    0.7660f,-0.6428f,  0.9063f,-0.4226f,  0.0000f,1.00000f,  0.0000f,1.00000f,
    0.0000f,1.00000f,  0.0000f,1.00000f
};


//========================================================================
// Draw a fountain
//========================================================================

static void draw_fountain(void)
{
    static GLuint fountain_list = 0;
    double angle;
    float  x, y;
    int m, n;

    // The first time, we build the fountain display list
    if (!fountain_list)
    {
        fountain_list = glGenLists(1);
        glNewList(fountain_list, GL_COMPILE_AND_EXECUTE);

        glMaterialfv(GL_FRONT, GL_DIFFUSE, fountain_diffuse);
        glMaterialfv(GL_FRONT, GL_SPECULAR, fountain_specular);
        glMaterialf(GL_FRONT, GL_SHININESS, fountain_shininess);

        // Build fountain using triangle strips
        for (n = 0;  n < FOUNTAIN_SIDE_POINTS - 1;  n++)
        {
            glBegin(GL_TRIANGLE_STRIP);
            for (m = 0;  m <= FOUNTAIN_SWEEP_STEPS;  m++)
            {
                angle = (double) m * (2.0 * M_PI / (double) FOUNTAIN_SWEEP_STEPS);
                x = (float) cos(angle);
                y = (float) sin(angle);

                // Draw triangle strip
                glNormal3f(x * fountain_normal[n * 2 + 2],
                           y * fountain_normal[n * 2 + 2],
                           fountain_normal[n * 2 + 3]);
                glVertex3f(x * fountain_side[n * 2 + 2],
                           y * fountain_side[n * 2 + 2],
                           fountain_side[n * 2 +3 ]);
                glNormal3f(x * fountain_normal[n * 2],
                           y * fountain_normal[n * 2],
                           fountain_normal[n * 2 + 1]);
                glVertex3f(x * fountain_side[n * 2],
                           y * fountain_side[n * 2],
                           fountain_side[n * 2 + 1]);
            }

            glEnd();
        }

        glEndList();
    }
    else
        glCallList(fountain_list);
}


//========================================================================
// Recursive function for building variable tessellated floor
//========================================================================

static void tessellate_floor(float x1, float y1, float x2, float y2, int depth)
{
    float delta, x, y;

    // Last recursion?
    if (depth >= 5)
        delta = 999999.f;
    else
    {
        x = (float) (fabs(x1) < fabs(x2) ? fabs(x1) : fabs(x2));
        y = (float) (fabs(y1) < fabs(y2) ? fabs(y1) : fabs(y2));
        delta = x*x + y*y;
    }

    // Recurse further?
    if (delta < 0.1f)
    {
        x = (x1 + x2) * 0.5f;
        y = (y1 + y2) * 0.5f;
        tessellate_floor(x1, y1,  x,  y, depth + 1);
        tessellate_floor(x, y1, x2,  y, depth + 1);
        tessellate_floor(x1,  y,  x, y2, depth + 1);
        tessellate_floor(x,  y, x2, y2, depth + 1);
    }
    else
    {
        glTexCoord2f(x1 * 30.f, y1 * 30.f);
        glVertex3f(  x1 * 80.f, y1 * 80.f, 0.f);
        glTexCoord2f(x2 * 30.f, y1 * 30.f);
        glVertex3f(  x2 * 80.f, y1 * 80.f, 0.f);
        glTexCoord2f(x2 * 30.f, y2 * 30.f);
        glVertex3f(  x2 * 80.f, y2 * 80.f, 0.f);
        glTexCoord2f(x1 * 30.f, y2 * 30.f);
        glVertex3f(  x1 * 80.f, y2 * 80.f, 0.f);
    }
}


//========================================================================
// Draw floor. We build the floor recursively and let the tessellation in the
// center (near x,y=0,0) be high, while the tessellation around the edges be
// low.
//========================================================================

static void draw_floor(void)
{
    static GLuint floor_list = 0;

    if (!wireframe)
    {
        glEnable(GL_TEXTURE_2D);
        glBindTexture(GL_TEXTURE_2D, floor_tex_id);
    }

    // The first time, we build the floor display list
    if (!floor_list)
    {
        floor_list = glGenLists(1);
        glNewList(floor_list, GL_COMPILE_AND_EXECUTE);

        glMaterialfv(GL_FRONT, GL_DIFFUSE, floor_diffuse);
        glMaterialfv(GL_FRONT, GL_SPECULAR, floor_specular);
        glMaterialf(GL_FRONT, GL_SHININESS, floor_shininess);

        // Draw floor as a bunch of triangle strips (high tessellation
        // improves lighting)
        glNormal3f(0.f, 0.f, 1.f);
        glBegin(GL_QUADS);
        tessellate_floor(-1.f, -1.f, 0.f, 0.f, 0);
        tessellate_floor( 0.f, -1.f, 1.f, 0.f, 0);
        tessellate_floor( 0.f,  0.f, 1.f, 1.f, 0);
        tessellate_floor(-1.f,  0.f, 0.f, 1.f, 0);
        glEnd();

        glEndList();
    }
    else
        glCallList(floor_list);

    glDisable(GL_TEXTURE_2D);

}


//========================================================================
// Position and configure light sources
//========================================================================

static void setup_lights(void)
{
    float l1pos[4], l1amb[4], l1dif[4], l1spec[4];
    float l2pos[4], l2amb[4], l2dif[4], l2spec[4];

    // Set light source 1 parameters
    l1pos[0] =  0.f;  l1pos[1] = -9.f; l1pos[2] =   8.f;  l1pos[3] = 1.f;
    l1amb[0] = 0.2f;  l1amb[1] = 0.2f;  l1amb[2] = 0.2f;  l1amb[3] = 1.f;
    l1dif[0] = 0.8f;  l1dif[1] = 0.4f;  l1dif[2] = 0.2f;  l1dif[3] = 1.f;
    l1spec[0] = 1.f; l1spec[1] = 0.6f; l1spec[2] = 0.2f; l1spec[3] = 0.f;

    // Set light source 2 parameters
    l2pos[0] =  -15.f; l2pos[1] =  12.f; l2pos[2] = 1.5f; l2pos[3] =  1.f;
    l2amb[0] =    0.f; l2amb[1] =   0.f; l2amb[2] =  0.f; l2amb[3] =  1.f;
    l2dif[0] =   0.2f; l2dif[1] =  0.4f; l2dif[2] = 0.8f; l2dif[3] =  1.f;
    l2spec[0] =  0.2f; l2spec[1] = 0.6f; l2spec[2] = 1.f; l2spec[3] = 0.f;

    glLightfv(GL_LIGHT1, GL_POSITION, l1pos);
    glLightfv(GL_LIGHT1, GL_AMBIENT, l1amb);
    glLightfv(GL_LIGHT1, GL_DIFFUSE, l1dif);
    glLightfv(GL_LIGHT1, GL_SPECULAR, l1spec);
    glLightfv(GL_LIGHT2, GL_POSITION, l2pos);
    glLightfv(GL_LIGHT2, GL_AMBIENT, l2amb);
    glLightfv(GL_LIGHT2, GL_DIFFUSE, l2dif);
    glLightfv(GL_LIGHT2, GL_SPECULAR, l2spec);
    glLightfv(GL_LIGHT3, GL_POSITION, glow_pos);
    glLightfv(GL_LIGHT3, GL_DIFFUSE, glow_color);
    glLightfv(GL_LIGHT3, GL_SPECULAR, glow_color);

    glEnable(GL_LIGHT1);
    glEnable(GL_LIGHT2);
    glEnable(GL_LIGHT3);
}


//========================================================================
// Main rendering function
//========================================================================

static void draw_scene(GLFWwindow* window, double t)
{
    double xpos, ypos, zpos, angle_x, angle_y, angle_z;
    static double t_old = 0.0;
    float dt;
    mat4x4 projection;

    // Calculate frame-to-frame delta time
    dt = (float) (t - t_old);
    t_old = t;

    mat4x4_perspective(projection,
                       65.f * (float) M_PI / 180.f,
                       aspect_ratio,
                       1.0, 60.0);

    glClearColor(0.1f, 0.1f, 0.1f, 1.f);
    glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

    glMatrixMode(GL_PROJECTION);
    glLoadMatrixf((const GLfloat*) projection);

    // Setup camera
    glMatrixMode(GL_MODELVIEW);
    glLoadIdentity();

    // Rotate camera
    angle_x = 90.0 - 10.0;
    angle_y = 10.0 * sin(0.3 * t);
    angle_z = 10.0 * t;
    glRotated(-angle_x, 1.0, 0.0, 0.0);
    glRotated(-angle_y, 0.0, 1.0, 0.0);
    glRotated(-angle_z, 0.0, 0.0, 1.0);

    // Translate camera
    xpos =  15.0 * sin((M_PI / 180.0) * angle_z) +
             2.0 * sin((M_PI / 180.0) * 3.1 * t);
    ypos = -15.0 * cos((M_PI / 180.0) * angle_z) +
             2.0 * cos((M_PI / 180.0) * 2.9 * t);
    zpos = 4.0 + 2.0 * cos((M_PI / 180.0) * 4.9 * t);
    glTranslated(-xpos, -ypos, -zpos);

    glFrontFace(GL_CCW);
    glCullFace(GL_BACK);
    glEnable(GL_CULL_FACE);

    setup_lights();
    glEnable(GL_LIGHTING);

    glEnable(GL_FOG);
    glFogi(GL_FOG_MODE, GL_EXP);
    glFogf(GL_FOG_DENSITY, 0.05f);
    glFogfv(GL_FOG_COLOR, fog_color);

    draw_floor();

    glEnable(GL_DEPTH_TEST);
    glDepthFunc(GL_LEQUAL);
    glDepthMask(GL_TRUE);

    draw_fountain();

    glDisable(GL_LIGHTING);
    glDisable(GL_FOG);

    // Particles must be drawn after all solid objects have been drawn
    draw_particles(window, t, dt);

    // Z-buffer not needed anymore
    glDisable(GL_DEPTH_TEST);
}


//========================================================================
// Window resize callback function
//========================================================================

static void resize_callback(GLFWwindow* window, int width, int height)
{
    glViewport(0, 0, width, height);
    aspect_ratio = height ? width / (float) height : 1.f;
}


//========================================================================
// Key callback functions
//========================================================================

static void key_callback(GLFWwindow* window, int key, int scancode, int action, int mods)
{
    if (action == GLFW_PRESS)
    {
        switch (key)
        {
            case GLFW_KEY_ESCAPE:
                glfwSetWindowShouldClose(window, GLFW_TRUE);
                break;
            case GLFW_KEY_W:
                wireframe = !wireframe;
                glPolygonMode(GL_FRONT_AND_BACK,
                              wireframe ? GL_LINE : GL_FILL);
                break;
            default:
                break;
        }
    }
}


//========================================================================
// Thread for updating particle physics
//========================================================================

static int physics_thread_main(void* arg)
{
    GLFWwindow* window = arg;

    for (;;)
    {
        mtx_lock(&thread_sync.particles_lock);

        // Wait for particle drawing to be done
        while (!glfwWindowShouldClose(window) &&
               thread_sync.p_frame > thread_sync.d_frame)
        {
            struct timespec ts;
            clock_gettime(CLOCK_REALTIME, &ts);
            ts.tv_nsec += 100 * 1000 * 1000;
            ts.tv_sec += ts.tv_nsec / (1000 * 1000 * 1000);
            ts.tv_nsec %= 1000 * 1000 * 1000;
            cnd_timedwait(&thread_sync.d_done, &thread_sync.particles_lock, &ts);
        }

        if (glfwWindowShouldClose(window))
            break;

        // Update particles
        particle_engine(thread_sync.t, thread_sync.dt);

        // Update frame counter
        thread_sync.p_frame++;

        // Unlock mutex and signal drawing thread
        mtx_unlock(&thread_sync.particles_lock);
        cnd_signal(&thread_sync.p_done);
    }

    return 0;
}


//========================================================================
// main
//========================================================================

int main(int argc, char** argv)
{
    int ch, width, height;
    thrd_t physics_thread = 0;
    GLFWwindow* window;
    GLFWmonitor* monitor = NULL;

    if (!glfwInit())
    {
        fprintf(stderr, "Failed to initialize GLFW\n");
        exit(EXIT_FAILURE);
    }

    while ((ch = getopt(argc, argv, "fh")) != -1)
    {
        switch (ch)
        {
            case 'f':
                monitor = glfwGetPrimaryMonitor();
                break;
            case 'h':
                usage();
                exit(EXIT_SUCCESS);
        }
    }

    if (monitor)
    {
        const GLFWvidmode* mode = glfwGetVideoMode(monitor);

        glfwWindowHint(GLFW_RED_BITS, mode->redBits);
        glfwWindowHint(GLFW_GREEN_BITS, mode->greenBits);
        glfwWindowHint(GLFW_BLUE_BITS, mode->blueBits);
        glfwWindowHint(GLFW_REFRESH_RATE, mode->refreshRate);

        width  = mode->width;
        height = mode->height;
    }
    else
    {
        width  = 640;
        height = 480;
    }

    window = glfwCreateWindow(width, height, "Particle Engine", monitor, NULL);
    if (!window)
    {
        fprintf(stderr, "Failed to create GLFW window\n");
        glfwTerminate();
        exit(EXIT_FAILURE);
    }

    if (monitor)
        glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);

    glfwMakeContextCurrent(window);
    gladLoadGL(glfwGetProcAddress);
    glfwSwapInterval(1);

    glfwSetFramebufferSizeCallback(window, resize_callback);
    glfwSetKeyCallback(window, key_callback);

    // Set initial aspect ratio
    glfwGetFramebufferSize(window, &width, &height);
    resize_callback(window, width, height);

    // Upload particle texture
    glGenTextures(1, &particle_tex_id);
    glBindTexture(GL_TEXTURE_2D, particle_tex_id);
    glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
    glTexImage2D(GL_TEXTURE_2D, 0, GL_LUMINANCE, P_TEX_WIDTH, P_TEX_HEIGHT,
                 0, GL_LUMINANCE, GL_UNSIGNED_BYTE, particle_texture);

    // Upload floor texture
    glGenTextures(1, &floor_tex_id);
    glBindTexture(GL_TEXTURE_2D, floor_tex_id);
    glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
    glTexImage2D(GL_TEXTURE_2D, 0, GL_LUMINANCE, F_TEX_WIDTH, F_TEX_HEIGHT,
                 0, GL_LUMINANCE, GL_UNSIGNED_BYTE, floor_texture);

    if (glfwExtensionSupported("GL_EXT_separate_specular_color"))
    {
        glLightModeli(GL_LIGHT_MODEL_COLOR_CONTROL_EXT,
                      GL_SEPARATE_SPECULAR_COLOR_EXT);
    }

    // Set filled polygon mode as default (not wireframe)
    glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
    wireframe = 0;

    // Set initial times
    thread_sync.t  = 0.0;
    thread_sync.dt = 0.001f;
    thread_sync.p_frame = 0;
    thread_sync.d_frame = 0;

    mtx_init(&thread_sync.particles_lock, mtx_timed);
    cnd_init(&thread_sync.p_done);
    cnd_init(&thread_sync.d_done);

    if (thrd_create(&physics_thread, physics_thread_main, window) != thrd_success)
    {
        glfwTerminate();
        exit(EXIT_FAILURE);
    }

    glfwSetTime(0.0);

    while (!glfwWindowShouldClose(window))
    {
        draw_scene(window, glfwGetTime());

        glfwSwapBuffers(window);
        glfwPollEvents();
    }

    thrd_join(physics_thread, NULL);

    glfwDestroyWindow(window);
    glfwTerminate();

    exit(EXIT_SUCCESS);
}