1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
|
/*
** SPLIT: Split 64 bit IR instructions into 32 bit IR instructions.
** Copyright (C) 2005-2022 Mike Pall. See Copyright Notice in luajit.h
*/
#define lj_opt_split_c
#define LUA_CORE
#include "lj_obj.h"
#if LJ_HASJIT && (LJ_SOFTFP32 || (LJ_32 && LJ_HASFFI))
#include "lj_err.h"
#include "lj_buf.h"
#include "lj_ir.h"
#include "lj_jit.h"
#include "lj_ircall.h"
#include "lj_iropt.h"
#include "lj_dispatch.h"
#include "lj_vm.h"
/* SPLIT pass:
**
** This pass splits up 64 bit IR instructions into multiple 32 bit IR
** instructions. It's only active for soft-float targets or for 32 bit CPUs
** which lack native 64 bit integer operations (the FFI is currently the
** only emitter for 64 bit integer instructions).
**
** Splitting the IR in a separate pass keeps each 32 bit IR assembler
** backend simple. Only a small amount of extra functionality needs to be
** implemented. This is much easier than adding support for allocating
** register pairs to each backend (believe me, I tried). A few simple, but
** important optimizations can be performed by the SPLIT pass, which would
** be tedious to do in the backend.
**
** The basic idea is to replace each 64 bit IR instruction with its 32 bit
** equivalent plus an extra HIOP instruction. The splitted IR is not passed
** through FOLD or any other optimizations, so each HIOP is guaranteed to
** immediately follow it's counterpart. The actual functionality of HIOP is
** inferred from the previous instruction.
**
** The operands of HIOP hold the hiword input references. The output of HIOP
** is the hiword output reference, which is also used to hold the hiword
** register or spill slot information. The register allocator treats this
** instruction independently of any other instruction, which improves code
** quality compared to using fixed register pairs.
**
** It's easier to split up some instructions into two regular 32 bit
** instructions. E.g. XLOAD is split up into two XLOADs with two different
** addresses. Obviously 64 bit constants need to be split up into two 32 bit
** constants, too. Some hiword instructions can be entirely omitted, e.g.
** when zero-extending a 32 bit value to 64 bits. 64 bit arguments for calls
** are split up into two 32 bit arguments each.
**
** On soft-float targets, floating-point instructions are directly converted
** to soft-float calls by the SPLIT pass (except for comparisons and MIN/MAX).
** HIOP for number results has the type IRT_SOFTFP ("sfp" in -jdump).
**
** Here's the IR and x64 machine code for 'x.b = x.a + 1' for a struct with
** two int64_t fields:
**
** 0100 p32 ADD base +8
** 0101 i64 XLOAD 0100
** 0102 i64 ADD 0101 +1
** 0103 p32 ADD base +16
** 0104 i64 XSTORE 0103 0102
**
** mov rax, [esi+0x8]
** add rax, +0x01
** mov [esi+0x10], rax
**
** Here's the transformed IR and the x86 machine code after the SPLIT pass:
**
** 0100 p32 ADD base +8
** 0101 int XLOAD 0100
** 0102 p32 ADD base +12
** 0103 int XLOAD 0102
** 0104 int ADD 0101 +1
** 0105 int HIOP 0103 +0
** 0106 p32 ADD base +16
** 0107 int XSTORE 0106 0104
** 0108 int HIOP 0106 0105
**
** mov eax, [esi+0x8]
** mov ecx, [esi+0xc]
** add eax, +0x01
** adc ecx, +0x00
** mov [esi+0x10], eax
** mov [esi+0x14], ecx
**
** You may notice the reassociated hiword address computation, which is
** later fused into the mov operands by the assembler.
*/
/* Some local macros to save typing. Undef'd at the end. */
#define IR(ref) (&J->cur.ir[(ref)])
/* Directly emit the transformed IR without updating chains etc. */
static IRRef split_emit(jit_State *J, uint16_t ot, IRRef1 op1, IRRef1 op2)
{
IRRef nref = lj_ir_nextins(J);
IRIns *ir = IR(nref);
ir->ot = ot;
ir->op1 = op1;
ir->op2 = op2;
return nref;
}
#if LJ_SOFTFP
/* Emit a (checked) number to integer conversion. */
static IRRef split_num2int(jit_State *J, IRRef lo, IRRef hi, int check)
{
IRRef tmp, res;
#if LJ_LE
tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), lo, hi);
#else
tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), hi, lo);
#endif
res = split_emit(J, IRTI(IR_CALLN), tmp, IRCALL_softfp_d2i);
if (check) {
tmp = split_emit(J, IRTI(IR_CALLN), res, IRCALL_softfp_i2d);
split_emit(J, IRT(IR_HIOP, IRT_SOFTFP), tmp, tmp);
split_emit(J, IRTGI(IR_EQ), tmp, lo);
split_emit(J, IRTG(IR_HIOP, IRT_SOFTFP), tmp+1, hi);
}
return res;
}
/* Emit a CALLN with one split 64 bit argument. */
static IRRef split_call_l(jit_State *J, IRRef1 *hisubst, IRIns *oir,
IRIns *ir, IRCallID id)
{
IRRef tmp, op1 = ir->op1;
J->cur.nins--;
#if LJ_LE
tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), oir[op1].prev, hisubst[op1]);
#else
tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), hisubst[op1], oir[op1].prev);
#endif
ir->prev = tmp = split_emit(J, IRTI(IR_CALLN), tmp, id);
return split_emit(J, IRT(IR_HIOP, IRT_SOFTFP), tmp, tmp);
}
#endif
/* Emit a CALLN with one split 64 bit argument and a 32 bit argument. */
static IRRef split_call_li(jit_State *J, IRRef1 *hisubst, IRIns *oir,
IRIns *ir, IRCallID id)
{
IRRef tmp, op1 = ir->op1, op2 = ir->op2;
J->cur.nins--;
#if LJ_LE
tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), oir[op1].prev, hisubst[op1]);
#else
tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), hisubst[op1], oir[op1].prev);
#endif
tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), tmp, oir[op2].prev);
ir->prev = tmp = split_emit(J, IRTI(IR_CALLN), tmp, id);
return split_emit(J, IRT(IR_HIOP, IRT_SOFTFP), tmp, tmp);
}
/* Emit a CALLN with two split 64 bit arguments. */
static IRRef split_call_ll(jit_State *J, IRRef1 *hisubst, IRIns *oir,
IRIns *ir, IRCallID id)
{
IRRef tmp, op1 = ir->op1, op2 = ir->op2;
J->cur.nins--;
#if LJ_LE
tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), oir[op1].prev, hisubst[op1]);
tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), tmp, oir[op2].prev);
tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), tmp, hisubst[op2]);
#else
tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), hisubst[op1], oir[op1].prev);
tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), tmp, hisubst[op2]);
tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), tmp, oir[op2].prev);
#endif
ir->prev = tmp = split_emit(J, IRTI(IR_CALLN), tmp, id);
return split_emit(J,
IRT(IR_HIOP, (LJ_SOFTFP && irt_isnum(ir->t)) ? IRT_SOFTFP : IRT_INT),
tmp, tmp);
}
/* Get a pointer to the other 32 bit word (LE: hiword, BE: loword). */
static IRRef split_ptr(jit_State *J, IRIns *oir, IRRef ref)
{
IRRef nref = oir[ref].prev;
IRIns *ir = IR(nref);
int32_t ofs = 4;
if (ir->o == IR_KPTR)
return lj_ir_kptr(J, (char *)ir_kptr(ir) + ofs);
if (ir->o == IR_ADD && irref_isk(ir->op2) && !irt_isphi(oir[ref].t)) {
/* Reassociate address. */
ofs += IR(ir->op2)->i;
nref = ir->op1;
if (ofs == 0) return nref;
}
return split_emit(J, IRT(IR_ADD, IRT_PTR), nref, lj_ir_kint(J, ofs));
}
#if LJ_HASFFI
static IRRef split_bitshift(jit_State *J, IRRef1 *hisubst,
IRIns *oir, IRIns *nir, IRIns *ir)
{
IROp op = ir->o;
IRRef kref = nir->op2;
if (irref_isk(kref)) { /* Optimize constant shifts. */
int32_t k = (IR(kref)->i & 63);
IRRef lo = nir->op1, hi = hisubst[ir->op1];
if (op == IR_BROL || op == IR_BROR) {
if (op == IR_BROR) k = (-k & 63);
if (k >= 32) { IRRef t = lo; lo = hi; hi = t; k -= 32; }
if (k == 0) {
passthrough:
J->cur.nins--;
ir->prev = lo;
return hi;
} else {
TRef k1, k2;
IRRef t1, t2, t3, t4;
J->cur.nins--;
k1 = lj_ir_kint(J, k);
k2 = lj_ir_kint(J, (-k & 31));
t1 = split_emit(J, IRTI(IR_BSHL), lo, k1);
t2 = split_emit(J, IRTI(IR_BSHL), hi, k1);
t3 = split_emit(J, IRTI(IR_BSHR), lo, k2);
t4 = split_emit(J, IRTI(IR_BSHR), hi, k2);
ir->prev = split_emit(J, IRTI(IR_BOR), t1, t4);
return split_emit(J, IRTI(IR_BOR), t2, t3);
}
} else if (k == 0) {
goto passthrough;
} else if (k < 32) {
if (op == IR_BSHL) {
IRRef t1 = split_emit(J, IRTI(IR_BSHL), hi, kref);
IRRef t2 = split_emit(J, IRTI(IR_BSHR), lo, lj_ir_kint(J, (-k&31)));
return split_emit(J, IRTI(IR_BOR), t1, t2);
} else {
IRRef t1 = ir->prev, t2;
lj_assertJ(op == IR_BSHR || op == IR_BSAR, "bad usage");
nir->o = IR_BSHR;
t2 = split_emit(J, IRTI(IR_BSHL), hi, lj_ir_kint(J, (-k&31)));
ir->prev = split_emit(J, IRTI(IR_BOR), t1, t2);
return split_emit(J, IRTI(op), hi, kref);
}
} else {
if (op == IR_BSHL) {
if (k == 32)
J->cur.nins--;
else
lo = ir->prev;
ir->prev = lj_ir_kint(J, 0);
return lo;
} else {
lj_assertJ(op == IR_BSHR || op == IR_BSAR, "bad usage");
if (k == 32) {
J->cur.nins--;
ir->prev = hi;
} else {
nir->op1 = hi;
}
if (op == IR_BSHR)
return lj_ir_kint(J, 0);
else
return split_emit(J, IRTI(IR_BSAR), hi, lj_ir_kint(J, 31));
}
}
}
return split_call_li(J, hisubst, oir, ir,
op - IR_BSHL + IRCALL_lj_carith_shl64);
}
static IRRef split_bitop(jit_State *J, IRRef1 *hisubst,
IRIns *nir, IRIns *ir)
{
IROp op = ir->o;
IRRef hi, kref = nir->op2;
if (irref_isk(kref)) { /* Optimize bit operations with lo constant. */
int32_t k = IR(kref)->i;
if (k == 0 || k == -1) {
if (op == IR_BAND) k = ~k;
if (k == 0) {
J->cur.nins--;
ir->prev = nir->op1;
} else if (op == IR_BXOR) {
nir->o = IR_BNOT;
nir->op2 = 0;
} else {
J->cur.nins--;
ir->prev = kref;
}
}
}
hi = hisubst[ir->op1];
kref = hisubst[ir->op2];
if (irref_isk(kref)) { /* Optimize bit operations with hi constant. */
int32_t k = IR(kref)->i;
if (k == 0 || k == -1) {
if (op == IR_BAND) k = ~k;
if (k == 0) {
return hi;
} else if (op == IR_BXOR) {
return split_emit(J, IRTI(IR_BNOT), hi, 0);
} else {
return kref;
}
}
}
return split_emit(J, IRTI(op), hi, kref);
}
#endif
/* Substitute references of a snapshot. */
static void split_subst_snap(jit_State *J, SnapShot *snap, IRIns *oir)
{
SnapEntry *map = &J->cur.snapmap[snap->mapofs];
MSize n, nent = snap->nent;
for (n = 0; n < nent; n++) {
SnapEntry sn = map[n];
IRIns *ir = &oir[snap_ref(sn)];
if (!(LJ_SOFTFP && (sn & SNAP_SOFTFPNUM) && irref_isk(snap_ref(sn))))
map[n] = ((sn & 0xffff0000) | ir->prev);
}
}
/* Transform the old IR to the new IR. */
static void split_ir(jit_State *J)
{
IRRef nins = J->cur.nins, nk = J->cur.nk;
MSize irlen = nins - nk;
MSize need = (irlen+1)*(sizeof(IRIns) + sizeof(IRRef1));
IRIns *oir = (IRIns *)lj_buf_tmp(J->L, need);
IRRef1 *hisubst;
IRRef ref, snref;
SnapShot *snap;
/* Copy old IR to buffer. */
memcpy(oir, IR(nk), irlen*sizeof(IRIns));
/* Bias hiword substitution table and old IR. Loword kept in field prev. */
hisubst = (IRRef1 *)&oir[irlen] - nk;
oir -= nk;
/* Remove all IR instructions, but retain IR constants. */
J->cur.nins = REF_FIRST;
J->loopref = 0;
/* Process constants and fixed references. */
for (ref = nk; ref <= REF_BASE; ref++) {
IRIns *ir = &oir[ref];
if ((LJ_SOFTFP && ir->o == IR_KNUM) || ir->o == IR_KINT64) {
/* Split up 64 bit constant. */
TValue tv = *ir_k64(ir);
ir->prev = lj_ir_kint(J, (int32_t)tv.u32.lo);
hisubst[ref] = lj_ir_kint(J, (int32_t)tv.u32.hi);
} else {
ir->prev = ref; /* Identity substitution for loword. */
hisubst[ref] = 0;
}
if (irt_is64(ir->t) && ir->o != IR_KNULL)
ref++;
}
/* Process old IR instructions. */
snap = J->cur.snap;
snref = snap->ref;
for (ref = REF_FIRST; ref < nins; ref++) {
IRIns *ir = &oir[ref];
IRRef nref = lj_ir_nextins(J);
IRIns *nir = IR(nref);
IRRef hi = 0;
if (ref >= snref) {
snap->ref = nref;
split_subst_snap(J, snap++, oir);
snref = snap < &J->cur.snap[J->cur.nsnap] ? snap->ref : ~(IRRef)0;
}
/* Copy-substitute old instruction to new instruction. */
nir->op1 = ir->op1 < nk ? ir->op1 : oir[ir->op1].prev;
nir->op2 = ir->op2 < nk ? ir->op2 : oir[ir->op2].prev;
ir->prev = nref; /* Loword substitution. */
nir->o = ir->o;
nir->t.irt = ir->t.irt & ~(IRT_MARK|IRT_ISPHI);
hisubst[ref] = 0;
/* Split 64 bit instructions. */
#if LJ_SOFTFP
if (irt_isnum(ir->t)) {
nir->t.irt = IRT_INT | (nir->t.irt & IRT_GUARD); /* Turn into INT op. */
/* Note: hi ref = lo ref + 1! Required for SNAP_SOFTFPNUM logic. */
switch (ir->o) {
case IR_ADD:
hi = split_call_ll(J, hisubst, oir, ir, IRCALL_softfp_add);
break;
case IR_SUB:
hi = split_call_ll(J, hisubst, oir, ir, IRCALL_softfp_sub);
break;
case IR_MUL:
hi = split_call_ll(J, hisubst, oir, ir, IRCALL_softfp_mul);
break;
case IR_DIV:
hi = split_call_ll(J, hisubst, oir, ir, IRCALL_softfp_div);
break;
case IR_POW:
hi = split_call_ll(J, hisubst, oir, ir, IRCALL_pow);
break;
case IR_FPMATH:
hi = split_call_l(J, hisubst, oir, ir, IRCALL_lj_vm_floor + ir->op2);
break;
case IR_LDEXP:
hi = split_call_li(J, hisubst, oir, ir, IRCALL_ldexp);
break;
case IR_NEG: case IR_ABS:
nir->o = IR_CONV; /* Pass through loword. */
nir->op2 = (IRT_INT << 5) | IRT_INT;
hi = split_emit(J, IRT(ir->o == IR_NEG ? IR_BXOR : IR_BAND, IRT_SOFTFP),
hisubst[ir->op1],
lj_ir_kint(J, (int32_t)(0x7fffffffu + (ir->o == IR_NEG))));
break;
case IR_SLOAD:
if ((nir->op2 & IRSLOAD_CONVERT)) { /* Convert from int to number. */
nir->op2 &= ~IRSLOAD_CONVERT;
ir->prev = nref = split_emit(J, IRTI(IR_CALLN), nref,
IRCALL_softfp_i2d);
hi = split_emit(J, IRT(IR_HIOP, IRT_SOFTFP), nref, nref);
break;
}
/* fallthrough */
case IR_ALOAD: case IR_HLOAD: case IR_ULOAD: case IR_VLOAD:
case IR_STRTO:
hi = split_emit(J, IRT(IR_HIOP, IRT_SOFTFP), nref, nref);
break;
case IR_FLOAD:
lj_assertJ(ir->op1 == REF_NIL, "expected FLOAD from GG_State");
hi = lj_ir_kint(J, *(int32_t*)((char*)J2GG(J) + ir->op2 + LJ_LE*4));
nir->op2 += LJ_BE*4;
break;
case IR_XLOAD: {
IRIns inslo = *nir; /* Save/undo the emit of the lo XLOAD. */
J->cur.nins--;
hi = split_ptr(J, oir, ir->op1); /* Insert the hiref ADD. */
#if LJ_BE
hi = split_emit(J, IRT(IR_XLOAD, IRT_INT), hi, ir->op2);
inslo.t.irt = IRT_SOFTFP | (inslo.t.irt & IRT_GUARD);
#endif
nref = lj_ir_nextins(J);
nir = IR(nref);
*nir = inslo; /* Re-emit lo XLOAD. */
#if LJ_LE
hi = split_emit(J, IRT(IR_XLOAD, IRT_SOFTFP), hi, ir->op2);
ir->prev = nref;
#else
ir->prev = hi; hi = nref;
#endif
break;
}
case IR_ASTORE: case IR_HSTORE: case IR_USTORE: case IR_XSTORE:
split_emit(J, IRT(IR_HIOP, IRT_SOFTFP), nir->op1, hisubst[ir->op2]);
break;
case IR_CONV: { /* Conversion to number. Others handled below. */
IRType st = (IRType)(ir->op2 & IRCONV_SRCMASK);
UNUSED(st);
#if LJ_32 && LJ_HASFFI
if (st == IRT_I64 || st == IRT_U64) {
hi = split_call_l(J, hisubst, oir, ir,
st == IRT_I64 ? IRCALL_fp64_l2d : IRCALL_fp64_ul2d);
break;
}
#endif
lj_assertJ(st == IRT_INT ||
(LJ_32 && LJ_HASFFI && (st == IRT_U32 || st == IRT_FLOAT)),
"bad source type for CONV");
nir->o = IR_CALLN;
#if LJ_32 && LJ_HASFFI
nir->op2 = st == IRT_INT ? IRCALL_softfp_i2d :
st == IRT_FLOAT ? IRCALL_softfp_f2d :
IRCALL_softfp_ui2d;
#else
nir->op2 = IRCALL_softfp_i2d;
#endif
hi = split_emit(J, IRT(IR_HIOP, IRT_SOFTFP), nref, nref);
break;
}
case IR_CALLN:
case IR_CALLL:
case IR_CALLS:
case IR_CALLXS:
goto split_call;
case IR_PHI:
if (nir->op1 == nir->op2)
J->cur.nins--; /* Drop useless PHIs. */
if (hisubst[ir->op1] != hisubst[ir->op2])
split_emit(J, IRT(IR_PHI, IRT_SOFTFP),
hisubst[ir->op1], hisubst[ir->op2]);
break;
case IR_HIOP:
J->cur.nins--; /* Drop joining HIOP. */
ir->prev = nir->op1;
hi = nir->op2;
break;
default:
lj_assertJ(ir->o <= IR_NE || ir->o == IR_MIN || ir->o == IR_MAX,
"bad IR op %d", ir->o);
hi = split_emit(J, IRTG(IR_HIOP, IRT_SOFTFP),
hisubst[ir->op1], hisubst[ir->op2]);
break;
}
} else
#endif
#if LJ_32 && LJ_HASFFI
if (irt_isint64(ir->t)) {
IRRef hiref = hisubst[ir->op1];
nir->t.irt = IRT_INT | (nir->t.irt & IRT_GUARD); /* Turn into INT op. */
switch (ir->o) {
case IR_ADD:
case IR_SUB:
/* Use plain op for hiword if loword cannot produce a carry/borrow. */
if (irref_isk(nir->op2) && IR(nir->op2)->i == 0) {
ir->prev = nir->op1; /* Pass through loword. */
nir->op1 = hiref; nir->op2 = hisubst[ir->op2];
hi = nref;
break;
}
/* fallthrough */
case IR_NEG:
hi = split_emit(J, IRTI(IR_HIOP), hiref, hisubst[ir->op2]);
break;
case IR_MUL:
hi = split_call_ll(J, hisubst, oir, ir, IRCALL_lj_carith_mul64);
break;
case IR_DIV:
hi = split_call_ll(J, hisubst, oir, ir,
irt_isi64(ir->t) ? IRCALL_lj_carith_divi64 :
IRCALL_lj_carith_divu64);
break;
case IR_MOD:
hi = split_call_ll(J, hisubst, oir, ir,
irt_isi64(ir->t) ? IRCALL_lj_carith_modi64 :
IRCALL_lj_carith_modu64);
break;
case IR_POW:
hi = split_call_ll(J, hisubst, oir, ir,
irt_isi64(ir->t) ? IRCALL_lj_carith_powi64 :
IRCALL_lj_carith_powu64);
break;
case IR_BNOT:
hi = split_emit(J, IRTI(IR_BNOT), hiref, 0);
break;
case IR_BSWAP:
ir->prev = split_emit(J, IRTI(IR_BSWAP), hiref, 0);
hi = nref;
break;
case IR_BAND: case IR_BOR: case IR_BXOR:
hi = split_bitop(J, hisubst, nir, ir);
break;
case IR_BSHL: case IR_BSHR: case IR_BSAR: case IR_BROL: case IR_BROR:
hi = split_bitshift(J, hisubst, oir, nir, ir);
break;
case IR_FLOAD:
lj_assertJ(ir->op2 == IRFL_CDATA_INT64, "only INT64 supported");
hi = split_emit(J, IRTI(IR_FLOAD), nir->op1, IRFL_CDATA_INT64_4);
#if LJ_BE
ir->prev = hi; hi = nref;
#endif
break;
case IR_XLOAD:
hi = split_emit(J, IRTI(IR_XLOAD), split_ptr(J, oir, ir->op1), ir->op2);
#if LJ_BE
ir->prev = hi; hi = nref;
#endif
break;
case IR_XSTORE:
split_emit(J, IRTI(IR_HIOP), nir->op1, hisubst[ir->op2]);
break;
case IR_CONV: { /* Conversion to 64 bit integer. Others handled below. */
IRType st = (IRType)(ir->op2 & IRCONV_SRCMASK);
#if LJ_SOFTFP
if (st == IRT_NUM) { /* NUM to 64 bit int conv. */
hi = split_call_l(J, hisubst, oir, ir,
irt_isi64(ir->t) ? IRCALL_fp64_d2l : IRCALL_fp64_d2ul);
} else if (st == IRT_FLOAT) { /* FLOAT to 64 bit int conv. */
nir->o = IR_CALLN;
nir->op2 = irt_isi64(ir->t) ? IRCALL_fp64_f2l : IRCALL_fp64_f2ul;
hi = split_emit(J, IRTI(IR_HIOP), nref, nref);
}
#else
if (st == IRT_NUM || st == IRT_FLOAT) { /* FP to 64 bit int conv. */
hi = split_emit(J, IRTI(IR_HIOP), nir->op1, nref);
}
#endif
else if (st == IRT_I64 || st == IRT_U64) { /* 64/64 bit cast. */
/* Drop cast, since assembler doesn't care. But fwd both parts. */
hi = hiref;
goto fwdlo;
} else if ((ir->op2 & IRCONV_SEXT)) { /* Sign-extend to 64 bit. */
IRRef k31 = lj_ir_kint(J, 31);
nir = IR(nref); /* May have been reallocated. */
ir->prev = nir->op1; /* Pass through loword. */
nir->o = IR_BSAR; /* hi = bsar(lo, 31). */
nir->op2 = k31;
hi = nref;
} else { /* Zero-extend to 64 bit. */
hi = lj_ir_kint(J, 0);
goto fwdlo;
}
break;
}
case IR_CALLXS:
goto split_call;
case IR_PHI: {
IRRef hiref2;
if ((irref_isk(nir->op1) && irref_isk(nir->op2)) ||
nir->op1 == nir->op2)
J->cur.nins--; /* Drop useless PHIs. */
hiref2 = hisubst[ir->op2];
if (!((irref_isk(hiref) && irref_isk(hiref2)) || hiref == hiref2))
split_emit(J, IRTI(IR_PHI), hiref, hiref2);
break;
}
case IR_HIOP:
J->cur.nins--; /* Drop joining HIOP. */
ir->prev = nir->op1;
hi = nir->op2;
break;
default:
lj_assertJ(ir->o <= IR_NE, "bad IR op %d", ir->o); /* Comparisons. */
split_emit(J, IRTGI(IR_HIOP), hiref, hisubst[ir->op2]);
break;
}
} else
#endif
#if LJ_SOFTFP
if (ir->o == IR_SLOAD) {
if ((nir->op2 & IRSLOAD_CONVERT)) { /* Convert from number to int. */
nir->op2 &= ~IRSLOAD_CONVERT;
if (!(nir->op2 & IRSLOAD_TYPECHECK))
nir->t.irt = IRT_INT; /* Drop guard. */
split_emit(J, IRT(IR_HIOP, IRT_SOFTFP), nref, nref);
ir->prev = split_num2int(J, nref, nref+1, irt_isguard(ir->t));
}
} else if (ir->o == IR_TOBIT) {
IRRef tmp, op1 = ir->op1;
J->cur.nins--;
#if LJ_LE
tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), oir[op1].prev, hisubst[op1]);
#else
tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), hisubst[op1], oir[op1].prev);
#endif
ir->prev = split_emit(J, IRTI(IR_CALLN), tmp, IRCALL_lj_vm_tobit);
} else if (ir->o == IR_TOSTR || ir->o == IR_TMPREF) {
if (hisubst[ir->op1]) {
if (irref_isk(ir->op1))
nir->op1 = ir->op1;
else
split_emit(J, IRT(IR_HIOP, IRT_NIL), hisubst[ir->op1], nref);
}
} else if (ir->o == IR_HREF || ir->o == IR_NEWREF) {
if (irref_isk(ir->op2) && hisubst[ir->op2])
nir->op2 = ir->op2;
} else
#endif
if (ir->o == IR_CONV) { /* See above, too. */
IRType st = (IRType)(ir->op2 & IRCONV_SRCMASK);
#if LJ_32 && LJ_HASFFI
if (st == IRT_I64 || st == IRT_U64) { /* Conversion from 64 bit int. */
#if LJ_SOFTFP
if (irt_isfloat(ir->t)) {
split_call_l(J, hisubst, oir, ir,
st == IRT_I64 ? IRCALL_fp64_l2f : IRCALL_fp64_ul2f);
J->cur.nins--; /* Drop unused HIOP. */
}
#else
if (irt_isfp(ir->t)) { /* 64 bit integer to FP conversion. */
ir->prev = split_emit(J, IRT(IR_HIOP, irt_type(ir->t)),
hisubst[ir->op1], nref);
}
#endif
else { /* Truncate to lower 32 bits. */
fwdlo:
ir->prev = nir->op1; /* Forward loword. */
/* Replace with NOP to avoid messing up the snapshot logic. */
nir->ot = IRT(IR_NOP, IRT_NIL);
nir->op1 = nir->op2 = 0;
}
}
#endif
#if LJ_SOFTFP && LJ_32 && LJ_HASFFI
else if (irt_isfloat(ir->t)) {
if (st == IRT_NUM) {
split_call_l(J, hisubst, oir, ir, IRCALL_softfp_d2f);
J->cur.nins--; /* Drop unused HIOP. */
} else {
nir->o = IR_CALLN;
nir->op2 = st == IRT_INT ? IRCALL_softfp_i2f : IRCALL_softfp_ui2f;
}
} else if (st == IRT_FLOAT) {
nir->o = IR_CALLN;
nir->op2 = irt_isint(ir->t) ? IRCALL_softfp_f2i : IRCALL_softfp_f2ui;
} else
#endif
#if LJ_SOFTFP
if (st == IRT_NUM || (LJ_32 && LJ_HASFFI && st == IRT_FLOAT)) {
if (irt_isguard(ir->t)) {
lj_assertJ(st == IRT_NUM && irt_isint(ir->t), "bad CONV types");
J->cur.nins--;
ir->prev = split_num2int(J, nir->op1, hisubst[ir->op1], 1);
} else {
split_call_l(J, hisubst, oir, ir,
#if LJ_32 && LJ_HASFFI
st == IRT_NUM ?
(irt_isint(ir->t) ? IRCALL_softfp_d2i : IRCALL_softfp_d2ui) :
(irt_isint(ir->t) ? IRCALL_softfp_f2i : IRCALL_softfp_f2ui)
#else
IRCALL_softfp_d2i
#endif
);
J->cur.nins--; /* Drop unused HIOP. */
}
}
#endif
} else if (ir->o == IR_CALLXS) {
IRRef hiref;
split_call:
hiref = hisubst[ir->op1];
if (hiref) {
IROpT ot = nir->ot;
IRRef op2 = nir->op2;
nir->ot = IRT(IR_CARG, IRT_NIL);
#if LJ_LE
nir->op2 = hiref;
#else
nir->op2 = nir->op1; nir->op1 = hiref;
#endif
ir->prev = nref = split_emit(J, ot, nref, op2);
}
if (LJ_SOFTFP ? irt_is64(ir->t) : irt_isint64(ir->t))
hi = split_emit(J,
IRT(IR_HIOP, (LJ_SOFTFP && irt_isnum(ir->t)) ? IRT_SOFTFP : IRT_INT),
nref, nref);
} else if (ir->o == IR_CARG) {
IRRef hiref = hisubst[ir->op1];
if (hiref) {
IRRef op2 = nir->op2;
#if LJ_LE
nir->op2 = hiref;
#else
nir->op2 = nir->op1; nir->op1 = hiref;
#endif
ir->prev = nref = split_emit(J, IRT(IR_CARG, IRT_NIL), nref, op2);
nir = IR(nref);
}
hiref = hisubst[ir->op2];
if (hiref) {
#if !LJ_TARGET_X86
int carg = 0;
IRIns *cir;
for (cir = IR(nir->op1); cir->o == IR_CARG; cir = IR(cir->op1))
carg++;
if ((carg & 1) == 0) { /* Align 64 bit arguments. */
IRRef op2 = nir->op2;
nir->op2 = REF_NIL;
nref = split_emit(J, IRT(IR_CARG, IRT_NIL), nref, op2);
nir = IR(nref);
}
#endif
#if LJ_BE
{ IRRef tmp = nir->op2; nir->op2 = hiref; hiref = tmp; }
#endif
ir->prev = split_emit(J, IRT(IR_CARG, IRT_NIL), nref, hiref);
}
} else if (ir->o == IR_CNEWI) {
if (hisubst[ir->op2])
split_emit(J, IRT(IR_HIOP, IRT_NIL), nref, hisubst[ir->op2]);
} else if (ir->o == IR_LOOP) {
J->loopref = nref; /* Needed by assembler. */
}
hisubst[ref] = hi; /* Store hiword substitution. */
}
if (snref == nins) { /* Substitution for last snapshot. */
snap->ref = J->cur.nins;
split_subst_snap(J, snap, oir);
}
/* Add PHI marks. */
for (ref = J->cur.nins-1; ref >= REF_FIRST; ref--) {
IRIns *ir = IR(ref);
if (ir->o != IR_PHI) break;
if (!irref_isk(ir->op1)) irt_setphi(IR(ir->op1)->t);
if (ir->op2 > J->loopref) irt_setphi(IR(ir->op2)->t);
}
}
/* Protected callback for split pass. */
static TValue *cpsplit(lua_State *L, lua_CFunction dummy, void *ud)
{
jit_State *J = (jit_State *)ud;
split_ir(J);
UNUSED(L); UNUSED(dummy);
return NULL;
}
#if defined(LUA_USE_ASSERT) || LJ_SOFTFP
/* Slow, but sure way to check whether a SPLIT pass is needed. */
static int split_needsplit(jit_State *J)
{
IRIns *ir, *irend;
IRRef ref;
for (ir = IR(REF_FIRST), irend = IR(J->cur.nins); ir < irend; ir++)
if (LJ_SOFTFP ? irt_is64orfp(ir->t) : irt_isint64(ir->t))
return 1;
if (LJ_SOFTFP) {
for (ref = J->chain[IR_SLOAD]; ref; ref = IR(ref)->prev)
if ((IR(ref)->op2 & IRSLOAD_CONVERT))
return 1;
if (J->chain[IR_TOBIT])
return 1;
}
for (ref = J->chain[IR_CONV]; ref; ref = IR(ref)->prev) {
IRType st = (IR(ref)->op2 & IRCONV_SRCMASK);
if ((LJ_SOFTFP && (st == IRT_NUM || st == IRT_FLOAT)) ||
st == IRT_I64 || st == IRT_U64)
return 1;
}
return 0; /* Nope. */
}
#endif
/* SPLIT pass. */
void lj_opt_split(jit_State *J)
{
#if LJ_SOFTFP
if (!J->needsplit)
J->needsplit = split_needsplit(J);
#else
lj_assertJ(J->needsplit >= split_needsplit(J), "bad SPLIT state");
#endif
if (J->needsplit) {
int errcode = lj_vm_cpcall(J->L, NULL, J, cpsplit);
if (errcode) {
/* Completely reset the trace to avoid inconsistent dump on abort. */
J->cur.nins = J->cur.nk = REF_BASE;
J->cur.nsnap = 0;
lj_err_throw(J->L, errcode); /* Propagate errors. */
}
}
}
#undef IR
#endif
|