1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
|
/*
-----------------------------------------------------------------------------
This source file is part of GIMPACT Library.
For the latest info, see http://gimpact.sourceforge.net/
Copyright (c) 2006 Francisco Leon. C.C. 80087371.
email: projectileman@yahoo.com
This library is free software; you can redistribute it and/or
modify it under the terms of EITHER:
(1) The GNU Lesser General Public License as published by the Free
Software Foundation; either version 2.1 of the License, or (at
your option) any later version. The text of the GNU Lesser
General Public License is included with this library in the
file GIMPACT-LICENSE-LGPL.TXT.
(2) The BSD-style license that is included with this library in
the file GIMPACT-LICENSE-BSD.TXT.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files
GIMPACT-LICENSE-LGPL.TXT and GIMPACT-LICENSE-BSD.TXT for more details.
-----------------------------------------------------------------------------
*/
#include "GIMPACT/gim_trimesh.h"
#define FABS(x) (float(fabs(x))) /* implement as is fastest on your machine */
/* some macros */
#define CLASSIFY_TRIPOINTS_BY_FACE(v1,v2,v3,faceplane,out_of_face)\
{ \
_distances[0] = DISTANCE_PLANE_POINT(faceplane,v1);\
_distances[1] = _distances[0] * DISTANCE_PLANE_POINT(faceplane,v2);\
_distances[2] = _distances[0] * DISTANCE_PLANE_POINT(faceplane,v3); \
if(_distances[1]>0.0f && _distances[2]>0.0f)\
{\
out_of_face = 1;\
}\
else\
{\
out_of_face = 0;\
}\
}\
/* sort so that a<=b */
#define SORT(a,b) \
if(a>b) \
{ \
float c; \
c=a; \
a=b; \
b=c; \
}
/* this edge to edge test is based on Franlin Antonio's gem:
"Faster Line Segment Intersection", in Graphics Gems III,
pp. 199-202 */
#define EDGE_EDGE_TEST(V0,U0,U1) \
Bx=U0[i0]-U1[i0]; \
By=U0[i1]-U1[i1]; \
Cx=V0[i0]-U0[i0]; \
Cy=V0[i1]-U0[i1]; \
f=Ay*Bx-Ax*By; \
d=By*Cx-Bx*Cy; \
if((f>0 && d>=0 && d<=f) || (f<0 && d<=0 && d>=f)) \
{ \
e=Ax*Cy-Ay*Cx; \
if(f>0) \
{ \
if(e>=0 && e<=f) return 1; \
} \
else \
{ \
if(e<=0 && e>=f) return 1; \
} \
}
#define EDGE_AGAINST_TRI_EDGES(V0,V1,U0,U1,U2) \
{ \
float Ax,Ay,Bx,By,Cx,Cy,e,d,f; \
Ax=V1[i0]-V0[i0]; \
Ay=V1[i1]-V0[i1]; \
/* test edge U0,U1 against V0,V1 */ \
EDGE_EDGE_TEST(V0,U0,U1); \
/* test edge U1,U2 against V0,V1 */ \
EDGE_EDGE_TEST(V0,U1,U2); \
/* test edge U2,U1 against V0,V1 */ \
EDGE_EDGE_TEST(V0,U2,U0); \
}
#define POINT_IN_TRI(V0,U0,U1,U2) \
{ \
float a,b,c,d0,d1,d2; \
/* is T1 completly inside T2? */ \
/* check if V0 is inside tri(U0,U1,U2) */ \
a=U1[i1]-U0[i1]; \
b=-(U1[i0]-U0[i0]); \
c=-a*U0[i0]-b*U0[i1]; \
d0=a*V0[i0]+b*V0[i1]+c; \
\
a=U2[i1]-U1[i1]; \
b=-(U2[i0]-U1[i0]); \
c=-a*U1[i0]-b*U1[i1]; \
d1=a*V0[i0]+b*V0[i1]+c; \
\
a=U0[i1]-U2[i1]; \
b=-(U0[i0]-U2[i0]); \
c=-a*U2[i0]-b*U2[i1]; \
d2=a*V0[i0]+b*V0[i1]+c; \
if(d0*d1>0.0) \
{ \
if(d0*d2>0.0) return 1; \
} \
}
int coplanar_tri_tri(GIM_TRIANGLE_DATA *tri1,
GIM_TRIANGLE_DATA *tri2)
{
short i0,i1;
/* first project onto an axis-aligned plane, that maximizes the area */
/* of the triangles, compute indices: i0,i1. */
PLANE_MINOR_AXES(tri1->m_planes.m_planes[0], i0, i1);
/* test all edges of triangle 1 against the edges of triangle 2 */
EDGE_AGAINST_TRI_EDGES(tri1->m_vertices[0],tri1->m_vertices[1],tri2->m_vertices[0],tri2->m_vertices[1],tri2->m_vertices[2]);
EDGE_AGAINST_TRI_EDGES(tri1->m_vertices[1],tri1->m_vertices[2],tri2->m_vertices[0],tri2->m_vertices[1],tri2->m_vertices[2]);
EDGE_AGAINST_TRI_EDGES(tri1->m_vertices[2],tri1->m_vertices[0],tri2->m_vertices[0],tri2->m_vertices[1],tri2->m_vertices[2]);
/* finally, test if tri1 is totally contained in tri2 or vice versa */
POINT_IN_HULL(tri1->m_vertices[0],(&tri2->m_planes.m_planes[1]),3,i0);
if(i0==0) return 1;
POINT_IN_HULL(tri2->m_vertices[0],(&tri1->m_planes.m_planes[1]),3,i0);
if(i0==0) return 1;
return 0;
}
#define NEWCOMPUTE_INTERVALS(VV0,VV1,VV2,D0,D1,D2,D0D1,D0D2,A,B,C,X0,X1) \
{ \
if(D0D1>0.0f) \
{ \
/* here we know that D0D2<=0.0 */ \
/* that is D0, D1 are on the same side, D2 on the other or on the plane */ \
A=VV2; B=(VV0-VV2)*D2; C=(VV1-VV2)*D2; X0=D2-D0; X1=D2-D1; \
} \
else if(D0D2>0.0f)\
{ \
/* here we know that d0d1<=0.0 */ \
A=VV1; B=(VV0-VV1)*D1; C=(VV2-VV1)*D1; X0=D1-D0; X1=D1-D2; \
} \
else if(D1*D2>0.0f || D0!=0.0f) \
{ \
/* here we know that d0d1<=0.0 or that D0!=0.0 */ \
A=VV0; B=(VV1-VV0)*D0; C=(VV2-VV0)*D0; X0=D0-D1; X1=D0-D2; \
} \
else if(D1!=0.0f) \
{ \
A=VV1; B=(VV0-VV1)*D1; C=(VV2-VV1)*D1; X0=D1-D0; X1=D1-D2; \
} \
else if(D2!=0.0f) \
{ \
A=VV2; B=(VV0-VV2)*D2; C=(VV1-VV2)*D2; X0=D2-D0; X1=D2-D1; \
} \
else \
{ \
/* triangles are coplanar */ \
return coplanar_tri_tri(tri1,tri2); \
} \
}\
int gim_triangle_triangle_overlap(
GIM_TRIANGLE_DATA *tri1,
GIM_TRIANGLE_DATA *tri2)
{
vec3f _distances;
char out_of_face;
CLASSIFY_TRIPOINTS_BY_FACE(tri1->m_vertices[0],tri1->m_vertices[1],tri1->m_vertices[2],tri2->m_planes.m_planes[0],out_of_face);
if(out_of_face==1) return 0;
CLASSIFY_TRIPOINTS_BY_FACE(tri2->m_vertices[0],tri2->m_vertices[1],tri2->m_vertices[2],tri1->m_planes.m_planes[0],out_of_face);
if(out_of_face==1) return 0;
float du0=0,du1=0,du2=0,dv0=0,dv1=0,dv2=0;
float D[3];
float isect1[2], isect2[2];
float du0du1=0,du0du2=0,dv0dv1=0,dv0dv2=0;
short index;
float vp0,vp1,vp2;
float up0,up1,up2;
float bb,cc,max;
/* compute direction of intersection line */
VEC_CROSS(D,tri1->m_planes.m_planes[0],tri2->m_planes.m_planes[0]);
/* compute and index to the largest component of D */
max=(float)FABS(D[0]);
index=0;
bb=(float)FABS(D[1]);
cc=(float)FABS(D[2]);
if(bb>max) max=bb,index=1;
if(cc>max) max=cc,index=2;
/* this is the simplified projection onto L*/
vp0= tri1->m_vertices[0][index];
vp1= tri1->m_vertices[1][index];
vp2= tri1->m_vertices[2][index];
up0= tri2->m_vertices[0][index];
up1= tri2->m_vertices[1][index];
up2= tri2->m_vertices[2][index];
/* compute interval for triangle 1 */
float a,b,c,x0,x1;
NEWCOMPUTE_INTERVALS(vp0,vp1,vp2,dv0,dv1,dv2,dv0dv1,dv0dv2,a,b,c,x0,x1);
/* compute interval for triangle 2 */
float d,e,f,y0,y1;
NEWCOMPUTE_INTERVALS(up0,up1,up2,du0,du1,du2,du0du1,du0du2,d,e,f,y0,y1);
float xx,yy,xxyy,tmp;
xx=x0*x1;
yy=y0*y1;
xxyy=xx*yy;
tmp=a*xxyy;
isect1[0]=tmp+b*x1*yy;
isect1[1]=tmp+c*x0*yy;
tmp=d*xxyy;
isect2[0]=tmp+e*xx*y1;
isect2[1]=tmp+f*xx*y0;
SORT(isect1[0],isect1[1]);
SORT(isect2[0],isect2[1]);
if(isect1[1]<isect2[0] || isect2[1]<isect1[0]) return 0;
return 1;
}
|