summaryrefslogtreecommitdiff
path: root/libs/ode-0.16.1/OPCODE/Ice/IceMatrix4x4.h
blob: e2db1045622d06a3bbc1c8892f5e5be7e1ececb6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
 *	Contains code for 4x4 matrices.
 *	\file		IceMatrix4x4.h
 *	\author		Pierre Terdiman
 *	\date		April, 4, 2000
 */
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Include Guard
#ifndef __ICEMATRIX4X4_H__
#define __ICEMATRIX4X4_H__

	// Forward declarations
	class PRS;
	class PR;

	#define	MATRIX4X4_EPSILON		(1.0e-7f)

	class ICEMATHS_API Matrix4x4
	{
//				void	LUBackwardSubstitution( sdword *indx, float* b );
//				void	LUDecomposition( sdword* indx, float* d );

		public:
		//! Empty constructor.
		inline_						Matrix4x4()									{}
		//! Constructor from 16 values
		inline_						Matrix4x4(	float m00, float m01, float m02, float m03,
												float m10, float m11, float m12, float m13,
												float m20, float m21, float m22, float m23,
												float m30, float m31, float m32, float m33)
									{
										m[0][0] = m00;	m[0][1] = m01;	m[0][2] = m02;	m[0][3] = m03;
										m[1][0] = m10;	m[1][1] = m11;	m[1][2] = m12;	m[1][3] = m13;
										m[2][0] = m20;	m[2][1] = m21;	m[2][2] = m22;	m[2][3] = m23;
										m[3][0] = m30;	m[3][1] = m31;	m[3][2] = m32;	m[3][3] = m33;
									}
		//! Copy constructor
		inline_						Matrix4x4(const Matrix4x4& mat)				{ CopyMemory(m, &mat.m, 16*sizeof(float));	}
		//! Destructor.
		inline_						~Matrix4x4()								{}

		//! Assign values (rotation only)
		template<typename trotationfloat>
		inline_	Matrix4x4&			Set(	trotationfloat m00, trotationfloat m01, trotationfloat m02,
											trotationfloat m10, trotationfloat m11, trotationfloat m12,
											trotationfloat m20, trotationfloat m21, trotationfloat m22)
									{
										m[0][0] = (float)m00;	m[0][1] = (float)m01;	m[0][2] = (float)m02;
										m[1][0] = (float)m10;	m[1][1] = (float)m11;	m[1][2] = (float)m12;
										m[2][0] = (float)m20;	m[2][1] = (float)m21;	m[2][2] = (float)m22;
										return *this;
									}
		//! Assign values
		template<typename trotationfloat, typename toffsetfloat, typename textrafloat>
		inline_	Matrix4x4&			Set(	trotationfloat m00, trotationfloat m01, trotationfloat m02, textrafloat m03,
											trotationfloat m10, trotationfloat m11, trotationfloat m12, textrafloat m13,
											trotationfloat m20, trotationfloat m21, trotationfloat m22, textrafloat m23,
											toffsetfloat m30, toffsetfloat m31, toffsetfloat m32, textrafloat m33)
									{
										m[0][0] = (float)m00;	m[0][1] = (float)m01;	m[0][2] = (float)m02;	m[0][3] = (float)m03;
										m[1][0] = (float)m10;	m[1][1] = (float)m11;	m[1][2] = (float)m12;	m[1][3] = (float)m13;
										m[2][0] = (float)m20;	m[2][1] = (float)m21;	m[2][2] = (float)m22;	m[2][3] = (float)m23;
										m[3][0] = (float)m30;	m[3][1] = (float)m31;	m[3][2] = (float)m32;	m[3][3] = (float)m33;
										return *this;
									}

		//! Copy from a Matrix4x4
		inline_	void				Copy(const Matrix4x4& source)				{ CopyMemory(m, source.m, 16*sizeof(float));	}

		// Row-column access
		//! Returns a row.
		inline_	void				GetRow(const udword r, HPoint& p)	const	{ p.x=m[r][0];	p.y=m[r][1];	p.z=m[r][2];	p.w=m[r][3];		}
		//! Returns a row.
		inline_	void				GetRow(const udword r, Point& p)	const	{ p.x=m[r][0];	p.y=m[r][1];	p.z=m[r][2];						}
		//! Returns a row.
		inline_	const HPoint&		GetRow(const udword r)				const	{ return *(const HPoint*)&m[r][0];									}
		//! Returns a row.
		inline_	HPoint&				GetRow(const udword r)						{ return *(HPoint*)&m[r][0];										}
		//! Sets a row.
		inline_	void				SetRow(const udword r, const HPoint& p)		{ m[r][0]=p.x;	m[r][1]=p.y;	m[r][2]=p.z;	m[r][3]=p.w;		}
		//! Sets a row.
		inline_	void				SetRow(const udword r, const Point& p)		{ m[r][0]=p.x;	m[r][1]=p.y;	m[r][2]=p.z;	m[r][3]= (r!=3) ? 0.0f : 1.0f;		}
		//! Returns a column.
		inline_	void				GetCol(const udword c, HPoint& p)	const	{ p.x=m[0][c];	p.y=m[1][c];	p.z=m[2][c];	p.w=m[3][c];		}
		//! Returns a column.
		inline_	void				GetCol(const udword c, Point& p)	const	{ p.x=m[0][c];	p.y=m[1][c];	p.z=m[2][c];						}
		//! Sets a column.
		inline_	void				SetCol(const udword c, const HPoint& p)		{ m[0][c]=p.x;	m[1][c]=p.y;	m[2][c]=p.z;	m[3][c]=p.w;		}
		//! Sets a column.
		inline_	void				SetCol(const udword c, const Point& p)		{ m[0][c]=p.x;	m[1][c]=p.y;	m[2][c]=p.z;	m[3][c]= (c!=3) ? 0.0f : 1.0f;	}

		// Translation
		//! Returns the translation part of the matrix.
		inline_	const HPoint&		GetTrans()							const	{ return GetRow(3);								}
		//! Gets the translation part of the matrix
		inline_	void				GetTrans(Point& p)					const	{ p.x=m[3][0];	p.y=m[3][1];	p.z=m[3][2];	}
		//! Sets the translation part of the matrix, from a Point.
		inline_	void				SetTrans(const Point& p)					{ m[3][0]=p.x;	m[3][1]=p.y;	m[3][2]=p.z;	}
		//! Sets the translation part of the matrix, from a HPoint.
		inline_	void				SetTrans(const HPoint& p)					{ m[3][0]=p.x;	m[3][1]=p.y;	m[3][2]=p.z;	m[3][3]=p.w;	}
		//! Sets the translation part of the matrix, from floats.
		inline_	void				SetTrans(float tx, float ty, float tz)		{ m[3][0]=tx;	m[3][1]=ty;		m[3][2]=tz;		}

		// Scale
		//! Sets the scale from a Point. The point is put on the diagonal.
		inline_	void				SetScale(const Point& p)					{ m[0][0]=p.x;	m[1][1]=p.y;	m[2][2]=p.z;	}
		//! Sets the scale from floats. Values are put on the diagonal.
		inline_	void				SetScale(float sx, float sy, float sz)		{ m[0][0]=sx;	m[1][1]=sy;		m[2][2]=sz;		}
		//! Scales from a Point. Each row is multiplied by a component.
				void				Scale(const Point& p)
									{
										m[0][0] *= p.x;	m[1][0] *= p.y;	m[2][0] *= p.z;
										m[0][1] *= p.x;	m[1][1] *= p.y;	m[2][1] *= p.z;
										m[0][2] *= p.x;	m[1][2] *= p.y;	m[2][2] *= p.z;
									}
		//! Scales from floats. Each row is multiplied by a value.
				void				Scale(float sx, float sy, float sz)
									{
										m[0][0] *= sx;	m[1][0] *= sy;	m[2][0] *= sz;
										m[0][1] *= sx;	m[1][1] *= sy;	m[2][1] *= sz;
										m[0][2] *= sx;	m[1][2] *= sy;	m[2][2] *= sz;
									}
/*
		//! Returns a row.
		inline_	HPoint		GetRow(const udword row)	const			{ return mRow[row];														}
		//! Sets a row.
		inline_	Matrix4x4&	SetRow(const udword row, const HPoint& p)	{ mRow[row] = p;	return *this;										}
		//! Sets a row.
						Matrix4x4&	SetRow(const udword row, const Point& p)
						{
							m[row][0] = p.x;
							m[row][1] = p.y;
							m[row][2] = p.z;
							m[row][3] = (row != 3) ? 0.0f : 1.0f;
							return	*this;
						}
		//! Returns a column.
						HPoint		GetCol(const udword col)		const
						{
							HPoint	Res;
							Res.x = m[0][col];
							Res.y = m[1][col];
							Res.z = m[2][col];
							Res.w = m[3][col];
							return	Res;
						}
		//! Sets a column.
						Matrix4x4&	SetCol(const udword col, const HPoint& p)
						{
							m[0][col] = p.x;
							m[1][col] = p.y;
							m[2][col] = p.z;
							m[3][col] = p.w;
							return	*this;
						}
		//! Sets a column.
						Matrix4x4&	SetCol(const udword col, const Point& p)
						{
							m[0][col] = p.x;
							m[1][col] = p.y;
							m[2][col] = p.z;
							m[3][col] = (col != 3) ? 0.0f : 1.0f;
							return	*this;
						}
*/
		//! Computes the trace. The trace is the sum of the 4 diagonal components.
		inline_	float				Trace()			const			{ return m[0][0] + m[1][1] + m[2][2] + m[3][3];			}
		//! Computes the trace of the upper 3x3 matrix.
		inline_	float				Trace3x3()		const			{ return m[0][0] + m[1][1] + m[2][2];					}
		//! Clears the matrix.
		inline_	void				Zero()							{ ZeroMemory(&m,  sizeof(m));							}
		//! Sets the identity matrix.
		inline_	void				Identity()						{ Zero(); m[0][0] = m[1][1] = m[2][2] = m[3][3] = 1.0f;	}
		//! Checks for identity
		inline_	bool				IsIdentity()	const
									{
										if(IR(m[0][0])!=IEEE_1_0)	return false;
										if(IR(m[0][1])!=0)			return false;
										if(IR(m[0][2])!=0)			return false;
										if(IR(m[0][3])!=0)			return false;

										if(IR(m[1][0])!=0)			return false;
										if(IR(m[1][1])!=IEEE_1_0)	return false;
										if(IR(m[1][2])!=0)			return false;
										if(IR(m[1][3])!=0)			return false;

										if(IR(m[2][0])!=0)			return false;
										if(IR(m[2][1])!=0)			return false;
										if(IR(m[2][2])!=IEEE_1_0)	return false;
										if(IR(m[2][3])!=0)			return false;

										if(IR(m[3][0])!=0)			return false;
										if(IR(m[3][1])!=0)			return false;
										if(IR(m[3][2])!=0)			return false;
										if(IR(m[3][3])!=IEEE_1_0)	return false;
										return true;
									}

		//! Checks matrix validity
		inline_	BOOL				IsValid()		const
									{
										for(udword j=0;j<4;j++)
										{
											for(udword i=0;i<4;i++)
											{
												if(!IsValidFloat(m[j][i]))	return FALSE;
											}
										}
										return TRUE;
									}

		//! Sets a rotation matrix around the X axis.
				void				RotX(float angle)	{ float Cos = cosf(angle), Sin = sinf(angle); Identity(); m[1][1] = m[2][2] = Cos; m[2][1] = -Sin;	m[1][2] = Sin;	}
		//! Sets a rotation matrix around the Y axis.
				void				RotY(float angle)	{ float Cos = cosf(angle), Sin = sinf(angle); Identity(); m[0][0] = m[2][2] = Cos; m[2][0] = Sin;	m[0][2] = -Sin;	}
		//! Sets a rotation matrix around the Z axis.
				void				RotZ(float angle)	{ float Cos = cosf(angle), Sin = sinf(angle); Identity(); m[0][0] = m[1][1] = Cos; m[1][0] = -Sin;	m[0][1] = Sin;	}

		//! Makes a rotation matrix about an arbitrary axis
				Matrix4x4&			Rot(float angle, Point& p1, Point& p2);

		//! Transposes the matrix.
				void				Transpose()
									{
										TSwap(m[1][0], m[0][1]);
										TSwap(m[2][0], m[0][2]);
										TSwap(m[3][0], m[0][3]);
										TSwap(m[1][2], m[2][1]);
										TSwap(m[1][3], m[3][1]);
										TSwap(m[2][3], m[3][2]);
									}

		//! Computes a cofactor. Used for matrix inversion.
				float				CoFactor(udword row, udword col)	const;
		//! Computes the determinant of the matrix.
				float				Determinant()	const;
		//! Inverts the matrix. Determinant must be different from zero, else matrix can't be inverted.
				Matrix4x4&			Invert();
//				Matrix&	ComputeAxisMatrix(Point& axis, float angle);

		// Cast operators
		//! Casts a Matrix4x4 to a Matrix3x3.
		inline_	operator			Matrix3x3()	const
									{
										return Matrix3x3(
										m[0][0],	m[0][1],	m[0][2],
										m[1][0],	m[1][1],	m[1][2],
										m[2][0],	m[2][1],	m[2][2]);
									}
		//! Casts a Matrix4x4 to a Quat.
				operator			Quat()	const;
		//! Casts a Matrix4x4 to a PR.
				operator			PR()	const;

		// Arithmetic operators
		//! Operator for Matrix4x4 Plus = Matrix4x4 + Matrix4x4;
		inline_	Matrix4x4			operator+(const Matrix4x4& mat)	const
									{
										return Matrix4x4(
										m[0][0]+mat.m[0][0], m[0][1]+mat.m[0][1], m[0][2]+mat.m[0][2], m[0][3]+mat.m[0][3], 
										m[1][0]+mat.m[1][0], m[1][1]+mat.m[1][1], m[1][2]+mat.m[1][2], m[1][3]+mat.m[1][3], 
										m[2][0]+mat.m[2][0], m[2][1]+mat.m[2][1], m[2][2]+mat.m[2][2], m[2][3]+mat.m[2][3], 
										m[3][0]+mat.m[3][0], m[3][1]+mat.m[3][1], m[3][2]+mat.m[3][2], m[3][3]+mat.m[3][3]);
									}

		//! Operator for Matrix4x4 Minus = Matrix4x4 - Matrix4x4;
		inline_	Matrix4x4			operator-(const Matrix4x4& mat)	const
									{
										return Matrix4x4(
										m[0][0]-mat.m[0][0], m[0][1]-mat.m[0][1], m[0][2]-mat.m[0][2], m[0][3]-mat.m[0][3], 
										m[1][0]-mat.m[1][0], m[1][1]-mat.m[1][1], m[1][2]-mat.m[1][2], m[1][3]-mat.m[1][3], 
										m[2][0]-mat.m[2][0], m[2][1]-mat.m[2][1], m[2][2]-mat.m[2][2], m[2][3]-mat.m[2][3], 
										m[3][0]-mat.m[3][0], m[3][1]-mat.m[3][1], m[3][2]-mat.m[3][2], m[3][3]-mat.m[3][3]);
									}

		//! Operator for Matrix4x4 Mul = Matrix4x4 * Matrix4x4;
		inline_	Matrix4x4			operator*(const Matrix4x4& mat)	const
									{
										return Matrix4x4(
										m[0][0]*mat.m[0][0] + m[0][1]*mat.m[1][0] + m[0][2]*mat.m[2][0] + m[0][3]*mat.m[3][0],
										m[0][0]*mat.m[0][1] + m[0][1]*mat.m[1][1] + m[0][2]*mat.m[2][1] + m[0][3]*mat.m[3][1],
										m[0][0]*mat.m[0][2] + m[0][1]*mat.m[1][2] + m[0][2]*mat.m[2][2] + m[0][3]*mat.m[3][2],
										m[0][0]*mat.m[0][3] + m[0][1]*mat.m[1][3] + m[0][2]*mat.m[2][3] + m[0][3]*mat.m[3][3],

										m[1][0]*mat.m[0][0] + m[1][1]*mat.m[1][0] + m[1][2]*mat.m[2][0] + m[1][3]*mat.m[3][0],
										m[1][0]*mat.m[0][1] + m[1][1]*mat.m[1][1] + m[1][2]*mat.m[2][1] + m[1][3]*mat.m[3][1],
										m[1][0]*mat.m[0][2] + m[1][1]*mat.m[1][2] + m[1][2]*mat.m[2][2] + m[1][3]*mat.m[3][2],
										m[1][0]*mat.m[0][3] + m[1][1]*mat.m[1][3] + m[1][2]*mat.m[2][3] + m[1][3]*mat.m[3][3],

										m[2][0]*mat.m[0][0] + m[2][1]*mat.m[1][0] + m[2][2]*mat.m[2][0] + m[2][3]*mat.m[3][0],
										m[2][0]*mat.m[0][1] + m[2][1]*mat.m[1][1] + m[2][2]*mat.m[2][1] + m[2][3]*mat.m[3][1],
										m[2][0]*mat.m[0][2] + m[2][1]*mat.m[1][2] + m[2][2]*mat.m[2][2] + m[2][3]*mat.m[3][2],
										m[2][0]*mat.m[0][3] + m[2][1]*mat.m[1][3] + m[2][2]*mat.m[2][3] + m[2][3]*mat.m[3][3],

										m[3][0]*mat.m[0][0] + m[3][1]*mat.m[1][0] + m[3][2]*mat.m[2][0] + m[3][3]*mat.m[3][0],
										m[3][0]*mat.m[0][1] + m[3][1]*mat.m[1][1] + m[3][2]*mat.m[2][1] + m[3][3]*mat.m[3][1],
										m[3][0]*mat.m[0][2] + m[3][1]*mat.m[1][2] + m[3][2]*mat.m[2][2] + m[3][3]*mat.m[3][2],
										m[3][0]*mat.m[0][3] + m[3][1]*mat.m[1][3] + m[3][2]*mat.m[2][3] + m[3][3]*mat.m[3][3]);
									}

		//! Operator for HPoint Mul = Matrix4x4 * HPoint;
		inline_	HPoint				operator*(const HPoint& v)		const	{ return HPoint(GetRow(0)|v, GetRow(1)|v, GetRow(2)|v, GetRow(3)|v); }

		//! Operator for Point Mul = Matrix4x4 * Point;
		inline_	Point				operator*(const Point& v)		const
									{
										return Point(	m[0][0]*v.x + m[0][1]*v.y + m[0][2]*v.z + m[0][3],
														m[1][0]*v.x + m[1][1]*v.y + m[1][2]*v.z + m[1][3],
														m[2][0]*v.x + m[2][1]*v.y + m[2][2]*v.z + m[2][3]	);
									}

		//! Operator for Matrix4x4 Scale = Matrix4x4 * float;
		inline_	Matrix4x4			operator*(float s)				const
									{
										return Matrix4x4(
										m[0][0]*s,	m[0][1]*s,	m[0][2]*s,	m[0][3]*s,
										m[1][0]*s,	m[1][1]*s,	m[1][2]*s,	m[1][3]*s,
										m[2][0]*s,	m[2][1]*s,	m[2][2]*s,	m[2][3]*s,
										m[3][0]*s,	m[3][1]*s,	m[3][2]*s,	m[3][3]*s);
									}

		//! Operator for Matrix4x4 Scale = float * Matrix4x4;
		inline_	friend Matrix4x4	operator*(float s, const Matrix4x4& mat)
									{
										return Matrix4x4(
										s*mat.m[0][0],	s*mat.m[0][1],	s*mat.m[0][2],	s*mat.m[0][3],
										s*mat.m[1][0],	s*mat.m[1][1],	s*mat.m[1][2],	s*mat.m[1][3],
										s*mat.m[2][0],	s*mat.m[2][1],	s*mat.m[2][2],	s*mat.m[2][3],
										s*mat.m[3][0],	s*mat.m[3][1],	s*mat.m[3][2],	s*mat.m[3][3]);
									}

		//! Operator for Matrix4x4 Div = Matrix4x4 / float;
		inline_	Matrix4x4			operator/(float s)				const
									{
										if(s) s = 1.0f / s;

										return Matrix4x4(
										m[0][0]*s,	m[0][1]*s,	m[0][2]*s,	m[0][3]*s,
										m[1][0]*s,	m[1][1]*s,	m[1][2]*s,	m[1][3]*s,
										m[2][0]*s,	m[2][1]*s,	m[2][2]*s,	m[2][3]*s,
										m[3][0]*s,	m[3][1]*s,	m[3][2]*s,	m[3][3]*s);
									}

		//! Operator for Matrix4x4 Div = float / Matrix4x4;
		inline_	friend Matrix4x4	operator/(float s, const Matrix4x4& mat)
									{
										return Matrix4x4(
										s/mat.m[0][0],	s/mat.m[0][1],	s/mat.m[0][2],	s/mat.m[0][3],
										s/mat.m[1][0],	s/mat.m[1][1],	s/mat.m[1][2],	s/mat.m[1][3],
										s/mat.m[2][0],	s/mat.m[2][1],	s/mat.m[2][2],	s/mat.m[2][3],
										s/mat.m[3][0],	s/mat.m[3][1],	s/mat.m[3][2],	s/mat.m[3][3]);
									}

		//! Operator for Matrix4x4 += Matrix4x4;
		inline_	Matrix4x4&			operator+=(const Matrix4x4& mat)
									{
										m[0][0]+=mat.m[0][0];	m[0][1]+=mat.m[0][1];	m[0][2]+=mat.m[0][2];	m[0][3]+=mat.m[0][3];
										m[1][0]+=mat.m[1][0];	m[1][1]+=mat.m[1][1];	m[1][2]+=mat.m[1][2];	m[1][3]+=mat.m[1][3];
										m[2][0]+=mat.m[2][0];	m[2][1]+=mat.m[2][1];	m[2][2]+=mat.m[2][2];	m[2][3]+=mat.m[2][3];
										m[3][0]+=mat.m[3][0];	m[3][1]+=mat.m[3][1];	m[3][2]+=mat.m[3][2];	m[3][3]+=mat.m[3][3];
										return	*this;
									}

		//! Operator for Matrix4x4 -= Matrix4x4;
		inline_	Matrix4x4&			operator-=(const Matrix4x4& mat)
									{
										m[0][0]-=mat.m[0][0];	m[0][1]-=mat.m[0][1];	m[0][2]-=mat.m[0][2];	m[0][3]-=mat.m[0][3];
										m[1][0]-=mat.m[1][0];	m[1][1]-=mat.m[1][1];	m[1][2]-=mat.m[1][2];	m[1][3]-=mat.m[1][3];
										m[2][0]-=mat.m[2][0];	m[2][1]-=mat.m[2][1];	m[2][2]-=mat.m[2][2];	m[2][3]-=mat.m[2][3];
										m[3][0]-=mat.m[3][0];	m[3][1]-=mat.m[3][1];	m[3][2]-=mat.m[3][2];	m[3][3]-=mat.m[3][3];
										return	*this;
									}

		//! Operator for Matrix4x4 *= Matrix4x4;
				Matrix4x4&			operator*=(const Matrix4x4& mat)
									{
										HPoint TempRow;

										GetRow(0, TempRow);
										m[0][0] = TempRow.x*mat.m[0][0] + TempRow.y*mat.m[1][0] + TempRow.z*mat.m[2][0] + TempRow.w*mat.m[3][0];
										m[0][1] = TempRow.x*mat.m[0][1] + TempRow.y*mat.m[1][1] + TempRow.z*mat.m[2][1] + TempRow.w*mat.m[3][1];
										m[0][2] = TempRow.x*mat.m[0][2] + TempRow.y*mat.m[1][2] + TempRow.z*mat.m[2][2] + TempRow.w*mat.m[3][2];
										m[0][3] = TempRow.x*mat.m[0][3] + TempRow.y*mat.m[1][3] + TempRow.z*mat.m[2][3] + TempRow.w*mat.m[3][3];

										GetRow(1, TempRow);
										m[1][0] = TempRow.x*mat.m[0][0] + TempRow.y*mat.m[1][0] + TempRow.z*mat.m[2][0] + TempRow.w*mat.m[3][0];
										m[1][1] = TempRow.x*mat.m[0][1] + TempRow.y*mat.m[1][1] + TempRow.z*mat.m[2][1] + TempRow.w*mat.m[3][1];
										m[1][2] = TempRow.x*mat.m[0][2] + TempRow.y*mat.m[1][2] + TempRow.z*mat.m[2][2] + TempRow.w*mat.m[3][2];
										m[1][3] = TempRow.x*mat.m[0][3] + TempRow.y*mat.m[1][3] + TempRow.z*mat.m[2][3] + TempRow.w*mat.m[3][3];

										GetRow(2, TempRow);
										m[2][0] = TempRow.x*mat.m[0][0] + TempRow.y*mat.m[1][0] + TempRow.z*mat.m[2][0] + TempRow.w*mat.m[3][0];
										m[2][1] = TempRow.x*mat.m[0][1] + TempRow.y*mat.m[1][1] + TempRow.z*mat.m[2][1] + TempRow.w*mat.m[3][1];
										m[2][2] = TempRow.x*mat.m[0][2] + TempRow.y*mat.m[1][2] + TempRow.z*mat.m[2][2] + TempRow.w*mat.m[3][2];
										m[2][3] = TempRow.x*mat.m[0][3] + TempRow.y*mat.m[1][3] + TempRow.z*mat.m[2][3] + TempRow.w*mat.m[3][3];

										GetRow(3, TempRow);
										m[3][0] = TempRow.x*mat.m[0][0] + TempRow.y*mat.m[1][0] + TempRow.z*mat.m[2][0] + TempRow.w*mat.m[3][0];
										m[3][1] = TempRow.x*mat.m[0][1] + TempRow.y*mat.m[1][1] + TempRow.z*mat.m[2][1] + TempRow.w*mat.m[3][1];
										m[3][2] = TempRow.x*mat.m[0][2] + TempRow.y*mat.m[1][2] + TempRow.z*mat.m[2][2] + TempRow.w*mat.m[3][2];
										m[3][3] = TempRow.x*mat.m[0][3] + TempRow.y*mat.m[1][3] + TempRow.z*mat.m[2][3] + TempRow.w*mat.m[3][3];

										return	*this;
									}

		//! Operator for Matrix4x4 *= float;
		inline_	Matrix4x4&		operator*=(float s)
								{
									m[0][0]*=s;	m[0][1]*=s;	m[0][2]*=s;	m[0][3]*=s;
									m[1][0]*=s;	m[1][1]*=s;	m[1][2]*=s;	m[1][3]*=s;
									m[2][0]*=s;	m[2][1]*=s;	m[2][2]*=s;	m[2][3]*=s;
									m[3][0]*=s;	m[3][1]*=s;	m[3][2]*=s;	m[3][3]*=s;
									return	*this;
								}

		//! Operator for Matrix4x4 /= float;
		inline_	Matrix4x4&		operator/=(float s)
								{
									if(s)  s = 1.0f / s;
									m[0][0]*=s;	m[0][1]*=s;	m[0][2]*=s;	m[0][3]*=s;
									m[1][0]*=s;	m[1][1]*=s;	m[1][2]*=s;	m[1][3]*=s;
									m[2][0]*=s;	m[2][1]*=s;	m[2][2]*=s;	m[2][3]*=s;
									m[3][0]*=s;	m[3][1]*=s;	m[3][2]*=s;	m[3][3]*=s;
									return	*this;
								}

		inline_	const HPoint&	operator[](int row)		const	{ return *(const HPoint*)&m[row][0];	}
		inline_	HPoint&			operator[](int row)				{ return *(HPoint*)&m[row][0];			}

		public:

				float			m[4][4];
	};

	//! Quickly rotates & translates a vector, using the 4x3 part of a 4x4 matrix
	inline_ void TransformPoint4x3(Point& dest, const Point& source, const Matrix4x4& rot)
	{
		dest.x = rot.m[3][0] + source.x * rot.m[0][0] + source.y * rot.m[1][0] + source.z * rot.m[2][0];
		dest.y = rot.m[3][1] + source.x * rot.m[0][1] + source.y * rot.m[1][1] + source.z * rot.m[2][1];
		dest.z = rot.m[3][2] + source.x * rot.m[0][2] + source.y * rot.m[1][2] + source.z * rot.m[2][2];
	}

	//! Quickly rotates a vector, using the 3x3 part of a 4x4 matrix
	inline_ void TransformPoint3x3(Point& dest, const Point& source, const Matrix4x4& rot)
	{
		dest.x = source.x * rot.m[0][0] + source.y * rot.m[1][0] + source.z * rot.m[2][0];
		dest.y = source.x * rot.m[0][1] + source.y * rot.m[1][1] + source.z * rot.m[2][1];
		dest.z = source.x * rot.m[0][2] + source.y * rot.m[1][2] + source.z * rot.m[2][2];
	}

	ICEMATHS_API void InvertPRMatrix(Matrix4x4& dest, const Matrix4x4& src);

#endif // __ICEMATRIX4X4_H__