1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
|
/*************************************************************************
* *
* Open Dynamics Engine, Copyright (C) 2001-2003 Russell L. Smith. *
* All rights reserved. Email: russ@q12.org Web: www.q12.org *
* *
* This library is free software; you can redistribute it and/or *
* modify it under the terms of EITHER: *
* (1) The GNU Lesser General Public License as published by the Free *
* Software Foundation; either version 2.1 of the License, or (at *
* your option) any later version. The text of the GNU Lesser *
* General Public License is included with this library in the *
* file LICENSE.TXT. *
* (2) The BSD-style license that is included with this library in *
* the file LICENSE-BSD.TXT. *
* *
* This library is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files *
* LICENSE.TXT and LICENSE-BSD.TXT for more details. *
* *
*************************************************************************/
/*
standard ODE geometry primitives: public API and pairwise collision functions.
the rule is that only the low level primitive collision functions should set
dContactGeom::g1 and dContactGeom::g2.
*/
#include <ode/common.h>
#include <ode/collision.h>
#include <ode/rotation.h>
#include "config.h"
#include "matrix.h"
#include "odemath.h"
#include "collision_kernel.h"
#include "collision_std.h"
#include "collision_util.h"
#ifdef _MSC_VER
#pragma warning(disable:4291) // for VC++, no complaints about "no matching operator delete found"
#endif
//****************************************************************************
// capped cylinder public API
dxCapsule::dxCapsule (dSpaceID space, dReal _radius, dReal _length) :
dxGeom (space,1)
{
dAASSERT (_radius >= 0 && _length >= 0);
type = dCapsuleClass;
radius = _radius;
lz = _length;
updateZeroSizedFlag(!_radius/* || !_length -- zero length capsule is not a zero sized capsule*/);
}
void dxCapsule::computeAABB()
{
const dMatrix3& R = final_posr->R;
const dVector3& pos = final_posr->pos;
dReal xrange = dFabs(R[2] * lz) * REAL(0.5) + radius;
dReal yrange = dFabs(R[6] * lz) * REAL(0.5) + radius;
dReal zrange = dFabs(R[10] * lz) * REAL(0.5) + radius;
aabb[0] = pos[0] - xrange;
aabb[1] = pos[0] + xrange;
aabb[2] = pos[1] - yrange;
aabb[3] = pos[1] + yrange;
aabb[4] = pos[2] - zrange;
aabb[5] = pos[2] + zrange;
}
dGeomID dCreateCapsule (dSpaceID space, dReal radius, dReal length)
{
return new dxCapsule (space,radius,length);
}
void dGeomCapsuleSetParams (dGeomID g, dReal radius, dReal length)
{
dUASSERT (g && g->type == dCapsuleClass,"argument not a ccylinder");
dAASSERT (radius >= 0 && length >= 0);
dxCapsule *c = (dxCapsule*) g;
c->radius = radius;
c->lz = length;
c->updateZeroSizedFlag(!radius/* || !length -- zero length capsule is not a zero sized capsule*/);
dGeomMoved (g);
}
void dGeomCapsuleGetParams (dGeomID g, dReal *radius, dReal *length)
{
dUASSERT (g && g->type == dCapsuleClass,"argument not a ccylinder");
dxCapsule *c = (dxCapsule*) g;
*radius = c->radius;
*length = c->lz;
}
dReal dGeomCapsulePointDepth (dGeomID g, dReal x, dReal y, dReal z)
{
dUASSERT (g && g->type == dCapsuleClass,"argument not a ccylinder");
g->recomputePosr();
dxCapsule *c = (dxCapsule*) g;
const dReal* R = g->final_posr->R;
const dReal* pos = g->final_posr->pos;
dVector3 a;
a[0] = x - pos[0];
a[1] = y - pos[1];
a[2] = z - pos[2];
dReal beta = dCalcVectorDot3_14(a,R+2);
dReal lz2 = c->lz*REAL(0.5);
if (beta < -lz2) beta = -lz2;
else if (beta > lz2) beta = lz2;
a[0] = c->final_posr->pos[0] + beta*R[0*4+2];
a[1] = c->final_posr->pos[1] + beta*R[1*4+2];
a[2] = c->final_posr->pos[2] + beta*R[2*4+2];
return c->radius -
dSqrt ((x-a[0])*(x-a[0]) + (y-a[1])*(y-a[1]) + (z-a[2])*(z-a[2]));
}
int dCollideCapsuleSphere (dxGeom *o1, dxGeom *o2, int flags,
dContactGeom *contact, int skip)
{
dIASSERT (skip >= (int)sizeof(dContactGeom));
dIASSERT (o1->type == dCapsuleClass);
dIASSERT (o2->type == dSphereClass);
dIASSERT ((flags & NUMC_MASK) >= 1);
dxCapsule *ccyl = (dxCapsule*) o1;
dxSphere *sphere = (dxSphere*) o2;
contact->g1 = o1;
contact->g2 = o2;
contact->side1 = -1;
contact->side2 = -1;
// find the point on the cylinder axis that is closest to the sphere
dReal alpha =
o1->final_posr->R[2] * (o2->final_posr->pos[0] - o1->final_posr->pos[0]) +
o1->final_posr->R[6] * (o2->final_posr->pos[1] - o1->final_posr->pos[1]) +
o1->final_posr->R[10] * (o2->final_posr->pos[2] - o1->final_posr->pos[2]);
dReal lz2 = ccyl->lz * REAL(0.5);
if (alpha > lz2) alpha = lz2;
if (alpha < -lz2) alpha = -lz2;
// collide the spheres
dVector3 p;
p[0] = o1->final_posr->pos[0] + alpha * o1->final_posr->R[2];
p[1] = o1->final_posr->pos[1] + alpha * o1->final_posr->R[6];
p[2] = o1->final_posr->pos[2] + alpha * o1->final_posr->R[10];
return dCollideSpheres (p,ccyl->radius,o2->final_posr->pos,sphere->radius,contact);
}
int dCollideCapsuleBox (dxGeom *o1, dxGeom *o2, int flags,
dContactGeom *contact, int skip)
{
dIASSERT (skip >= (int)sizeof(dContactGeom));
dIASSERT (o1->type == dCapsuleClass);
dIASSERT (o2->type == dBoxClass);
dIASSERT ((flags & NUMC_MASK) >= 1);
dxCapsule *cyl = (dxCapsule*) o1;
dxBox *box = (dxBox*) o2;
contact->g1 = o1;
contact->g2 = o2;
contact->side1 = -1;
contact->side2 = -1;
// get p1,p2 = cylinder axis endpoints, get radius
dVector3 p1,p2;
dReal clen = cyl->lz * REAL(0.5);
p1[0] = o1->final_posr->pos[0] + clen * o1->final_posr->R[2];
p1[1] = o1->final_posr->pos[1] + clen * o1->final_posr->R[6];
p1[2] = o1->final_posr->pos[2] + clen * o1->final_posr->R[10];
p2[0] = o1->final_posr->pos[0] - clen * o1->final_posr->R[2];
p2[1] = o1->final_posr->pos[1] - clen * o1->final_posr->R[6];
p2[2] = o1->final_posr->pos[2] - clen * o1->final_posr->R[10];
dReal radius = cyl->radius;
// copy out box center, rotation matrix, and side array
dReal *c = o2->final_posr->pos;
dReal *R = o2->final_posr->R;
const dReal *side = box->side;
// get the closest point between the cylinder axis and the box
dVector3 pl,pb;
dClosestLineBoxPoints (p1,p2,c,R,side,pl,pb);
// if the capsule is penetrated further than radius
// then pl and pb are equal (up to mindist) -> unknown normal
// use normal vector of closest box surface
#ifdef dSINGLE
dReal mindist = REAL(1e-6);
#else
dReal mindist = REAL(1e-15);
#endif
if (dCalcPointsDistance3(pl, pb)<mindist) {
// consider capsule as box
dVector3 normal;
dReal depth;
int code;
// WARNING! rad2 is declared as #define in Microsoft headers (as well as psh2, chx2, grp2, frm2, rct2, ico2, stc2, lst2, cmb2, edt2, scr2). Avoid abbreviations!
/* dReal rad2 = radius*REAL(2.0); */ dReal radiusMul2 = radius * REAL(2.0);
const dVector3 capboxside = {radiusMul2, radiusMul2, cyl->lz + radiusMul2};
int num = dBoxBox (c, R, side,
o1->final_posr->pos, o1->final_posr->R, capboxside,
normal, &depth, &code, flags, contact, skip);
for (int i=0; i<num; i++) {
dContactGeom *currContact = CONTACT(contact,i*skip);
currContact->normal[0] = normal[0];
currContact->normal[1] = normal[1];
currContact->normal[2] = normal[2];
currContact->g1 = o1;
currContact->g2 = o2;
currContact->side1 = -1;
currContact->side2 = -1;
}
return num;
} else {
// generate contact point
return dCollideSpheres (pl,radius,pb,0,contact);
}
}
int dCollideCapsuleCapsule (dxGeom *o1, dxGeom *o2,
int flags, dContactGeom *contact, int skip)
{
dIASSERT (skip >= (int)sizeof(dContactGeom));
dIASSERT (o1->type == dCapsuleClass);
dIASSERT (o2->type == dCapsuleClass);
dIASSERT ((flags & NUMC_MASK) >= 1);
int i;
const dReal tolerance = REAL(1e-5);
dxCapsule *cyl1 = (dxCapsule*) o1;
dxCapsule *cyl2 = (dxCapsule*) o2;
contact->g1 = o1;
contact->g2 = o2;
contact->side1 = -1;
contact->side2 = -1;
// copy out some variables, for convenience
dReal lz1 = cyl1->lz * REAL(0.5);
dReal lz2 = cyl2->lz * REAL(0.5);
dReal *pos1 = o1->final_posr->pos;
dReal *pos2 = o2->final_posr->pos;
dReal axis1[3],axis2[3];
axis1[0] = o1->final_posr->R[2];
axis1[1] = o1->final_posr->R[6];
axis1[2] = o1->final_posr->R[10];
axis2[0] = o2->final_posr->R[2];
axis2[1] = o2->final_posr->R[6];
axis2[2] = o2->final_posr->R[10];
// if the cylinder axes are close to parallel, we'll try to detect up to
// two contact points along the body of the cylinder. if we can't find any
// points then we'll fall back to the closest-points algorithm. note that
// we are not treating this special case for reasons of degeneracy, but
// because we want two contact points in some situations. the closet-points
// algorithm is robust in all casts, but it can return only one contact.
dVector3 sphere1,sphere2;
dReal a1a2 = dCalcVectorDot3 (axis1,axis2);
dReal det = REAL(1.0)-a1a2*a1a2;
if (det < tolerance) {
// the cylinder axes (almost) parallel, so we will generate up to two
// contacts. alpha1 and alpha2 (line position parameters) are related by:
// alpha2 = alpha1 + (pos1-pos2)'*axis1 (if axis1==axis2)
// or alpha2 = -(alpha1 + (pos1-pos2)'*axis1) (if axis1==-axis2)
// first compute where the two cylinders overlap in alpha1 space:
if (a1a2 < 0) {
axis2[0] = -axis2[0];
axis2[1] = -axis2[1];
axis2[2] = -axis2[2];
}
dReal q[3];
for (i=0; i<3; i++) q[i] = pos1[i]-pos2[i];
dReal k = dCalcVectorDot3 (axis1,q);
dReal a1lo = -lz1;
dReal a1hi = lz1;
dReal a2lo = -lz2 - k;
dReal a2hi = lz2 - k;
dReal lo = (a1lo > a2lo) ? a1lo : a2lo;
dReal hi = (a1hi < a2hi) ? a1hi : a2hi;
if (lo <= hi) {
int num_contacts = flags & NUMC_MASK;
if (num_contacts >= 2 && lo < hi) {
// generate up to two contacts. if one of those contacts is
// not made, fall back on the one-contact strategy.
for (i=0; i<3; i++) sphere1[i] = pos1[i] + lo*axis1[i];
for (i=0; i<3; i++) sphere2[i] = pos2[i] + (lo+k)*axis2[i];
int n1 = dCollideSpheres (sphere1,cyl1->radius,
sphere2,cyl2->radius,contact);
if (n1) {
for (i=0; i<3; i++) sphere1[i] = pos1[i] + hi*axis1[i];
for (i=0; i<3; i++) sphere2[i] = pos2[i] + (hi+k)*axis2[i];
dContactGeom *c2 = CONTACT(contact,skip);
int n2 = dCollideSpheres (sphere1,cyl1->radius,
sphere2,cyl2->radius, c2);
if (n2) {
c2->g1 = o1;
c2->g2 = o2;
c2->side1 = -1;
c2->side2 = -1;
return 2;
}
}
}
// just one contact to generate, so put it in the middle of
// the range
dReal alpha1 = (lo + hi) * REAL(0.5);
dReal alpha2 = alpha1 + k;
for (i=0; i<3; i++) sphere1[i] = pos1[i] + alpha1*axis1[i];
for (i=0; i<3; i++) sphere2[i] = pos2[i] + alpha2*axis2[i];
return dCollideSpheres (sphere1,cyl1->radius,
sphere2,cyl2->radius,contact);
}
}
// use the closest point algorithm
dVector3 a1,a2,b1,b2;
a1[0] = o1->final_posr->pos[0] + axis1[0]*lz1;
a1[1] = o1->final_posr->pos[1] + axis1[1]*lz1;
a1[2] = o1->final_posr->pos[2] + axis1[2]*lz1;
a2[0] = o1->final_posr->pos[0] - axis1[0]*lz1;
a2[1] = o1->final_posr->pos[1] - axis1[1]*lz1;
a2[2] = o1->final_posr->pos[2] - axis1[2]*lz1;
b1[0] = o2->final_posr->pos[0] + axis2[0]*lz2;
b1[1] = o2->final_posr->pos[1] + axis2[1]*lz2;
b1[2] = o2->final_posr->pos[2] + axis2[2]*lz2;
b2[0] = o2->final_posr->pos[0] - axis2[0]*lz2;
b2[1] = o2->final_posr->pos[1] - axis2[1]*lz2;
b2[2] = o2->final_posr->pos[2] - axis2[2]*lz2;
dClosestLineSegmentPoints (a1,a2,b1,b2,sphere1,sphere2);
return dCollideSpheres (sphere1,cyl1->radius,sphere2,cyl2->radius,contact);
}
int dCollideCapsulePlane (dxGeom *o1, dxGeom *o2, int flags,
dContactGeom *contact, int skip)
{
dIASSERT (skip >= (int)sizeof(dContactGeom));
dIASSERT (o1->type == dCapsuleClass);
dIASSERT (o2->type == dPlaneClass);
dIASSERT ((flags & NUMC_MASK) >= 1);
dxCapsule *ccyl = (dxCapsule*) o1;
dxPlane *plane = (dxPlane*) o2;
// collide the deepest capping sphere with the plane
dReal sign = (dCalcVectorDot3_14 (plane->p,o1->final_posr->R+2) > 0) ? REAL(-1.0) : REAL(1.0);
dVector3 p;
p[0] = o1->final_posr->pos[0] + o1->final_posr->R[2] * ccyl->lz * REAL(0.5) * sign;
p[1] = o1->final_posr->pos[1] + o1->final_posr->R[6] * ccyl->lz * REAL(0.5) * sign;
p[2] = o1->final_posr->pos[2] + o1->final_posr->R[10] * ccyl->lz * REAL(0.5) * sign;
dReal k = dCalcVectorDot3 (p,plane->p);
dReal depth = plane->p[3] - k + ccyl->radius;
if (depth < 0) return 0;
contact->normal[0] = plane->p[0];
contact->normal[1] = plane->p[1];
contact->normal[2] = plane->p[2];
contact->pos[0] = p[0] - plane->p[0] * ccyl->radius;
contact->pos[1] = p[1] - plane->p[1] * ccyl->radius;
contact->pos[2] = p[2] - plane->p[2] * ccyl->radius;
contact->depth = depth;
int ncontacts = 1;
if ((flags & NUMC_MASK) >= 2) {
// collide the other capping sphere with the plane
p[0] = o1->final_posr->pos[0] - o1->final_posr->R[2] * ccyl->lz * REAL(0.5) * sign;
p[1] = o1->final_posr->pos[1] - o1->final_posr->R[6] * ccyl->lz * REAL(0.5) * sign;
p[2] = o1->final_posr->pos[2] - o1->final_posr->R[10] * ccyl->lz * REAL(0.5) * sign;
k = dCalcVectorDot3 (p,plane->p);
depth = plane->p[3] - k + ccyl->radius;
if (depth >= 0) {
dContactGeom *c2 = CONTACT(contact,skip);
c2->normal[0] = plane->p[0];
c2->normal[1] = plane->p[1];
c2->normal[2] = plane->p[2];
c2->pos[0] = p[0] - plane->p[0] * ccyl->radius;
c2->pos[1] = p[1] - plane->p[1] * ccyl->radius;
c2->pos[2] = p[2] - plane->p[2] * ccyl->radius;
c2->depth = depth;
ncontacts = 2;
}
}
for (int i=0; i < ncontacts; i++) {
dContactGeom *currContact = CONTACT(contact,i*skip);
currContact->g1 = o1;
currContact->g2 = o2;
currContact->side1 = -1;
currContact->side2 = -1;
}
return ncontacts;
}
|