summaryrefslogtreecommitdiff
path: root/libs/ode-0.16.1/ode/src/collision_trimesh_trimesh_old.cpp
blob: 23d04a12a27c0746860fdf409bcebf9ffbbeb133 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
/*************************************************************************
 *                                                                       *
 * Open Dynamics Engine, Copyright (C) 2001-2003 Russell L. Smith.       *
 * All rights reserved.  Email: russ@q12.org   Web: www.q12.org          *
 *                                                                       *
 * This library is free software; you can redistribute it and/or         *
 * modify it under the terms of EITHER:                                  *
 *   (1) The GNU Lesser General Public License as published by the Free  *
 *       Software Foundation; either version 2.1 of the License, or (at  *
 *       your option) any later version. The text of the GNU Lesser      *
 *       General Public License is included with this library in the     *
 *       file LICENSE.TXT.                                               *
 *   (2) The BSD-style license that is included with this library in     *
 *       the file LICENSE-BSD.TXT.                                       *
 *                                                                       *
 * This library is distributed in the hope that it will be useful,       *
 * but WITHOUT ANY WARRANTY; without even the implied warranty of        *
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files    *
 * LICENSE.TXT and LICENSE-BSD.TXT for more details.                     *
 *                                                                       *
 *************************************************************************/

// OPCODE TriMesh/TriMesh collision code by Jeff Smith (c) 2004

#ifdef _MSC_VER
#pragma warning(disable:4244 4305)  // for VC++, no precision loss complaints
#endif

#include <ode/collision.h>
#include <ode/rotation.h>
#include "config.h"
#include "matrix.h"
#include "odemath.h"


#if dTRIMESH_ENABLED

#include "collision_util.h"
#include "collision_trimesh_internal.h"


#if dTRIMESH_OPCODE

// Classic Implementation
#if dTRIMESH_OPCODE_USE_OLD_TRIMESH_TRIMESH_COLLIDER

#define SMALL_ELT           REAL(2.5e-4)
#define EXPANDED_ELT_THRESH REAL(1.0e-3)
#define DISTANCE_EPSILON    REAL(1.0e-8)
#define VELOCITY_EPSILON    REAL(1.0e-5)
#define TINY_PENETRATION    REAL(5.0e-6)

struct LineContactSet
{
    enum
    {
        MAX_POINTS = 8
    };

    dVector3 Points[MAX_POINTS];
    int      Count;
};


// static void GetTriangleGeometryCallback(udword, VertexPointers&, udword); -- not used
static void GenerateContact(int, dContactGeom*, int, dxTriMesh*,  dxTriMesh*, 
                            int TriIndex1, int TriIndex2,
                            const dVector3, const dVector3, dReal, int&);
static int TriTriIntersectWithIsectLine(dReal V0[3],dReal V1[3],dReal V2[3],
                                        dReal U0[3],dReal U1[3],dReal U2[3],int *coplanar,
                                        dReal isectpt1[3],dReal isectpt2[3]);
inline void dMakeMatrix4(const dVector3 Position, const dMatrix3 Rotation, dMatrix4 &B);
static void dInvertMatrix4( dMatrix4& B, dMatrix4& Binv );
//static int IntersectLineSegmentRay(dVector3, dVector3, dVector3, dVector3,  dVector3);
static bool FindTriSolidIntrsection(const dVector3 Tri[3], 
                                    const dVector4 Planes[6], int numSides,
                                    LineContactSet& ClippedPolygon );
static void ClipConvexPolygonAgainstPlane( const dVector3, dReal, LineContactSet& );
static bool SimpleUnclippedTest(dVector3 in_CoplanarPt, dVector3 in_v, dVector3 in_elt,
                                dVector3 in_n, dVector3* in_col_v, dReal &out_depth);
static int ExamineContactPoint(dVector3* v_col, dVector3 in_n, dVector3 in_point);
static int RayTriangleIntersect(const dVector3 orig, const dVector3 dir,
                                const dVector3 vert0, const dVector3 vert1,const dVector3 vert2,
                                dReal *t,dReal *u,dReal *v);




/* some math macros */
#define IS_ZERO(v) (!(v)[0] && !(v)[1] && !(v)[2])

#define CROSS(dest,v1,v2) dCalcVectorCross3(dest, v1, v2)

#define DOT(v1,v2) dCalcVectorDot3(v1, v2)

#define SUB(dest,v1,v2) dSubtractVectors3(dest, v1, v2)

#define ADD(dest,v1,v2) dAddVectors3(dest, v1, v2)

#define MULT(dest,v,factor) dCopyScaledVector3(dest, v, factor)

#define SET(dest,src) dCopyVector3(dest, src)

#define SMULT(p,q,s) dCopyScaledVector3(p, q, s)

#define LENGTH(x) dCalcVectorLength3(x)

#define DEPTH(d, p, q, n) d = dCalcPointDepth3(q, p, n)


inline void
SwapNormals(dVector3 *&pen_v, dVector3 *&col_v, dVector3* v1, dVector3* v2,
            dVector3 *&pen_elt, dVector3 *elt_f1, dVector3 *elt_f2,
            dVector3 n, dVector3 n1, dVector3 n2)
{
    if (pen_v == v1) {
        pen_v = v2;
        pen_elt = elt_f2;
        col_v = v1;
        SET(n, n1);
    }
    else {
        pen_v = v1;
        pen_elt = elt_f1;
        col_v = v2;
        SET(n, n2);
    }
}




int 
dCollideTTL(dxGeom* g1, dxGeom* g2, int Flags, dContactGeom* Contacts, int Stride)
{
    dIASSERT (Stride >= (int)sizeof(dContactGeom));
    dIASSERT (g1->type == dTriMeshClass);
    dIASSERT (g2->type == dTriMeshClass);
    dIASSERT ((Flags & NUMC_MASK) >= 1);

    dxTriMesh* TriMesh1 = (dxTriMesh*) g1;
    dxTriMesh* TriMesh2 = (dxTriMesh*) g2;

    const dReal* TriNormals1 = TriMesh1->retrieveMeshNormals();
    const dReal* TriNormals2 = TriMesh2->retrieveMeshNormals();

    const dVector3& TLPosition1 = *(const dVector3*) dGeomGetPosition(TriMesh1);
    // TLRotation1 = column-major order
    const dMatrix3& TLRotation1 = *(const dMatrix3*) dGeomGetRotation(TriMesh1);

    const dVector3& TLPosition2 = *(const dVector3*) dGeomGetPosition(TriMesh2);
    // TLRotation2 = column-major order
    const dMatrix3& TLRotation2 = *(const dMatrix3*) dGeomGetRotation(TriMesh2);

    const unsigned uiTLSKind = TriMesh1->getParentSpaceTLSKind();
    dIASSERT(uiTLSKind == TriMesh2->getParentSpaceTLSKind()); // The colliding spaces must use matching cleanup method
    TrimeshCollidersCache *pccColliderCache = GetTrimeshCollidersCache(uiTLSKind);
    AABBTreeCollider& Collider = pccColliderCache->m_AABBTreeCollider;
    BVTCache &ColCache = pccColliderCache->ColCache;

    ColCache.Model0 = &TriMesh1->retrieveMeshBVTreeRef();
    ColCache.Model1 = &TriMesh2->retrieveMeshBVTreeRef();

    // Collision query
    Matrix4x4 amatrix, bmatrix;
    dVector3 TLOffsetPosition1 = { REAL(0.0), };
    dVector3 TLOffsetPosition2;
    dSubtractVectors3(TLOffsetPosition2, TLPosition2, TLPosition1);
    MakeMatrix(TLOffsetPosition1, TLRotation1, amatrix);
    MakeMatrix(TLOffsetPosition2, TLRotation2, bmatrix);
    BOOL IsOk = Collider.Collide(ColCache, &amatrix, &bmatrix);


    // Make "double" versions of these matrices, if appropriate
    dMatrix4 A, B;
    dMakeMatrix4(TLPosition1, TLRotation1, A);
    dMakeMatrix4(TLPosition2, TLRotation2, B);


    if (IsOk) {
        // Get collision status => if true, objects overlap
        if ( Collider.GetContactStatus() ) {
            // Number of colliding pairs and list of pairs
            int TriCount = Collider.GetNbPairs();
            const Pair* CollidingPairs = Collider.GetPairs();

            if (TriCount > 0) {
                // step through the pairs, adding contacts
                int             id1, id2;
                int             OutTriCount = 0;
                dVector3        v1[3], v2[3], CoplanarPt;
                dVector3        e1, e2, e3, n1, n2, n, ContactNormal;
                dReal           depth;
                dVector3        orig_pos, old_pos1, old_pos2, elt1, elt2, elt_sum;
                dVector3        elt_f1[3], elt_f2[3];
                dReal          contact_elt_length = SMALL_ELT;
                LineContactSet  firstClippedTri, secondClippedTri;
                dVector3       *firstClippedElt = new dVector3[LineContactSet::MAX_POINTS];
                dVector3       *secondClippedElt = new dVector3[LineContactSet::MAX_POINTS];


                // only do these expensive inversions once
                dMatrix4 InvMatrix1, InvMatrix2;
                dInvertMatrix4(A, InvMatrix1);
                dInvertMatrix4(B, InvMatrix2);


                for (int i = 0; i < TriCount; i++) {

                    id1 = CollidingPairs[i].id0;
                    id2 = CollidingPairs[i].id1;

                    // grab the colliding triangles
                    static_cast<dxTriMesh *>(g1)->fetchMeshTriangle(v1, id1, TLPosition1, TLRotation1);
                    static_cast<dxTriMesh *>(g2)->fetchMeshTriangle(v2, id2, TLPosition2, TLRotation2);

                    // Since we'll be doing matrix transformations, we need to
                    //  make sure that all vertices have four elements
                    for (int j=0; j<3; j++) {
                        v1[j][3] = 1.0;
                        v2[j][3] = 1.0;
                    }


                    int IsCoplanar = 0;
                    dReal IsectPt1[3], IsectPt2[3];

                    // Sometimes OPCODE makes mistakes, so we look at the return
                    //  value for TriTriIntersectWithIsectLine.  A retcode of "0"
                    //  means no intersection took place
                    if ( TriTriIntersectWithIsectLine( v1[0], v1[1], v1[2], v2[0], v2[1], v2[2],
                        &IsCoplanar,
                        IsectPt1, IsectPt2) ) {

                            // Compute the normals of the colliding faces
                            //
                            if (TriNormals1 == NULL) {
                                SUB( e1, v1[1], v1[0] );
                                SUB( e2, v1[2], v1[0] );
                                CROSS( n1, e1, e2 );
                                dNormalize3(n1);
                            }
                            else {
                                // If we were passed normals, we need to adjust them to take into
                                //  account the objects' current rotations
                                e1[0] = TriNormals1[id1*3];
                                e1[1] = TriNormals1[id1*3 + 1];
                                e1[2] = TriNormals1[id1*3 + 2];
                                e1[3] = 0.0;

                                //dMultiply1(n1, TLRotation1, e1, 3, 3, 1);
                                dMultiply0(n1, TLRotation1, e1, 3, 3, 1);
                                n1[3] = 1.0;
                            }

                            if (TriNormals2 == NULL)  {
                                SUB( e1, v2[1], v2[0] );
                                SUB( e2, v2[2], v2[0] );
                                CROSS( n2, e1, e2);
                                dNormalize3(n2);
                            }
                            else {
                                // If we were passed normals, we need to adjust them to take into
                                //  account the objects' current rotations
                                e2[0] = TriNormals2[id2*3];
                                e2[1] = TriNormals2[id2*3 + 1];
                                e2[2] = TriNormals2[id2*3 + 2];
                                e2[3] = 0.0;

                                //dMultiply1(n2, TLRotation2, e2, 3, 3, 1);
                                dMultiply0(n2, TLRotation2, e2, 3, 3, 1);
                                n2[3] = 1.0;
                            }


                            if (IsCoplanar) {
                                // We can reach this case if the faces are coplanar, OR
                                //  if they don't actually intersect.  (OPCODE can make
                                //  mistakes)
                                if (dFabs(dCalcVectorDot3(n1, n2)) > REAL(0.999)) {
                                    // If the faces are coplanar, we declare that the point of
                                    //  contact is at the average location of the vertices of
                                    //  both faces
                                    dVector3 ContactPt;
                                    for (int j=0; j<3; j++) {
                                        ContactPt[j] = 0.0;
                                        for (int k=0; k<3; k++)
                                            ContactPt[j] += v1[k][j] + v2[k][j];
                                        ContactPt[j] /= 6.0;
                                    }
                                    ContactPt[3] = 1.0;

                                    // and the contact normal is the normal of face 2
                                    //  (could be face 1, because they are the same)
                                    SET(n, n2);

                                    // and the penetration depth is the co-normal
                                    // distance between any two vertices A and B,
                                    // i.e.  d = DOT(n, (A-B))
                                    DEPTH(depth, v1[1], v2[1], n);
                                    if (depth < 0)
                                        depth *= -1.0;

                                    GenerateContact(Flags, Contacts, Stride,  TriMesh1,  TriMesh2, id1, id2,
                                        ContactPt, n, depth, OutTriCount);
                                }
                            }
                            else {
                                // Otherwise (in non-co-planar cases), we create a coplanar 
                                //  point -- the middle of the line of intersection -- that
                                //   will be used for various computations down the road
                                for (int j=0; j<3; j++)
                                    CoplanarPt[j] = ( (IsectPt1[j] + IsectPt2[j]) / REAL(2.0) );
                                CoplanarPt[3] = 1.0;

                                // Find the ELT of the coplanar point
                                //
                                dMultiply1(orig_pos, InvMatrix1, CoplanarPt, 4, 4, 1);
                                dMultiply1(old_pos1, ((dxTriMesh*)g1)->m_last_trans, orig_pos, 4, 4, 1);
                                SUB(elt1, CoplanarPt, old_pos1);

                                dMultiply1(orig_pos, InvMatrix2, CoplanarPt, 4, 4, 1);
                                dMultiply1(old_pos2, ((dxTriMesh*)g2)->m_last_trans, orig_pos, 4, 4, 1);
                                SUB(elt2, CoplanarPt, old_pos2);

                                SUB(elt_sum, elt1, elt2);  // net motion of the coplanar point
                                dReal elt_sum_len = LENGTH(elt_sum); // Could be calculated on demand but there is no good place...


                                // Calculate how much the vertices of each face moved in the
                                //  direction of the opposite face's normal
                                //
                                dReal    total_dp1, total_dp2;
                                total_dp1 = 0.0;
                                total_dp2 = 0.0;

                                for (int ii=0; ii<3; ii++) {
                                    // find the estimated linear translation (ELT) of the vertices
                                    //  on face 1, wrt to the center of face 2. 

                                    // un-transform this vertex by the current transform
                                    dMultiply1(orig_pos, InvMatrix1, v1[ii], 4, 4, 1 );

                                    // re-transform this vertex by last_trans (to get its old
                                    //  position)
                                    dMultiply1(old_pos1, ((dxTriMesh*)g1)->m_last_trans, orig_pos, 4, 4, 1);

                                    // Then subtract this position from our current one to find
                                    //  the elapsed linear translation (ELT)
                                    for (int k=0; k<3; k++) {
                                        elt_f1[ii][k] = (v1[ii][k] - old_pos1[k]) - elt2[k];
                                    }

                                    // Take the dot product of the ELT  for each vertex (wrt the
                                    //  center of face2)
                                    total_dp1 += dFabs( dCalcVectorDot3(elt_f1[ii], n2) );
                                }

                                for (int ii=0; ii<3; ii++) {
                                    // find the estimated linear translation (ELT) of the vertices
                                    //  on face 2, wrt to the center of face 1. 
                                    dMultiply1(orig_pos, InvMatrix2, v2[ii], 4, 4, 1);
                                    dMultiply1(old_pos2, ((dxTriMesh*)g2)->m_last_trans, orig_pos, 4, 4, 1);
                                    for (int k=0; k<3; k++) {
                                        elt_f2[ii][k] = (v2[ii][k] - old_pos2[k]) - elt1[k];
                                    }

                                    // Take the dot product of the ELT  for each vertex (wrt the
                                    //  center of face2) and add them
                                    total_dp2 += dFabs( dCalcVectorDot3(elt_f2[ii], n1) );
                                }


                                ////////
                                // Estimate the penetration depth.  
                                //                            
                                dReal    dp;
                                BOOL      badPen = true;
                                dVector3 *pen_v;   // the "penetrating vertices"
                                dVector3 *pen_elt; // the elt_f of the penetrating face
                                dVector3 *col_v;   // the "collision vertices" (the penetrated face)

                                SMULT(n2, n2, -1.0); // SF PATCH #1335183
                                depth = 0.0;
                                if ((total_dp1 > DISTANCE_EPSILON) || (total_dp2 > DISTANCE_EPSILON)) {
                                    ////////
                                    // Find the collision normal, by finding the face
                                    //  that is pointed "most" in the direction of travel
                                    //  of the two triangles
                                    //
                                    if (total_dp2 > total_dp1) {
                                        pen_v = v2;
                                        pen_elt = elt_f2;
                                        col_v = v1;
                                        SET(n, n1);
                                    }
                                    else {
                                        pen_v = v1;
                                        pen_elt = elt_f1;
                                        col_v = v2;
                                        SET(n, n2);
                                    }
                                }
                                else {
                                    // the total_dp is very small, so let's fall back
                                    //  to a different test
                                    if (LENGTH(elt2) > LENGTH(elt1)) {
                                        pen_v = v2;
                                        pen_elt = elt_f2;
                                        col_v = v1;
                                        SET(n, n1);
                                    }
                                    else {
                                        pen_v = v1;
                                        pen_elt = elt_f1;
                                        col_v = v2;
                                        SET(n, n2);
                                    }
                                }


                                for (int j=0; j<3; j++) {
                                    if (SimpleUnclippedTest(CoplanarPt, pen_v[j], pen_elt[j], n, col_v, depth)) {
                                        GenerateContact(Flags, Contacts, Stride,  TriMesh1,  TriMesh2, id1, id2,
                                            pen_v[j], n, depth, OutTriCount);
                                        badPen = false;

                                        if ((OutTriCount | CONTACTS_UNIMPORTANT) == (Flags & (NUMC_MASK | CONTACTS_UNIMPORTANT))) {
                                            break;
                                        }
                                    }
                                }

                                if (badPen) {
                                    // try the other normal
                                    SwapNormals(pen_v, col_v, v1, v2, pen_elt, elt_f1, elt_f2, n, n1, n2);

                                    for (int j=0; j<3; j++)
                                        if (SimpleUnclippedTest(CoplanarPt, pen_v[j], pen_elt[j], n, col_v, depth)) {
                                            GenerateContact(Flags, Contacts, Stride,  TriMesh1,  TriMesh2, id1, id2,
                                                pen_v[j], n, depth, OutTriCount);
                                            badPen = false;

                                            if ((OutTriCount | CONTACTS_UNIMPORTANT) == (Flags & (NUMC_MASK | CONTACTS_UNIMPORTANT))) {
                                                break;
                                            }
                                        }
                                }



                                ////////////////////////////////////////
                                //
                                // If we haven't found a good penetration, then we're probably straddling
                                //  the edge of one of the objects, or the penetraing face is big
                                //  enough that all of its vertices are outside the bounds of the
                                //  penetrated face.
                                // In these cases, we do a more expensive test. We clip the penetrating
                                //  triangle with a solid defined by the penetrated triangle, and repeat
                                //  the tests above on this new polygon
                                if (badPen) {

                                    // Switch pen_v and n back again
                                    SwapNormals(pen_v, col_v, v1, v2, pen_elt, elt_f1, elt_f2, n, n1, n2);


                                    // Find the three sides (no top or bottom) of the solid defined by 
                                    //  the edges of the penetrated triangle.

                                    // The dVector4 "plane" structures contain the following information:
                                    //  [0]-[2]: The normal of the face, pointing INWARDS (i.e.
                                    //           the inverse normal
                                    //  [3]: The distance between the face and the center of the
                                    //       solid, along the normal
                                    dVector4 SolidPlanes[3];
                                    dVector3 tmp1;
                                    dVector3 sn;

                                    for (int j=0; j<3; j++) {
                                        e1[j] = col_v[1][j] - col_v[0][j];
                                        e2[j] = col_v[0][j] - col_v[2][j];
                                        e3[j] = col_v[2][j] - col_v[1][j];
                                    }

                                    // side 1
                                    CROSS(sn, e1, n);
                                    dNormalize3(sn);
                                    SMULT( SolidPlanes[0], sn, -1.0 );

                                    ADD(tmp1, col_v[0], col_v[1]); 
                                    SMULT(tmp1, tmp1, 0.5); // center of edge
                                    // distance from center to edge along normal
                                    SolidPlanes[0][3] = dCalcVectorDot3(tmp1, SolidPlanes[0]);


                                    // side 2
                                    CROSS(sn, e2, n);
                                    dNormalize3(sn);
                                    SMULT( SolidPlanes[1], sn, -1.0 );

                                    ADD(tmp1, col_v[0], col_v[2]); 
                                    SMULT(tmp1, tmp1, 0.5); // center of edge
                                    // distance from center to edge along normal
                                    SolidPlanes[1][3] = dCalcVectorDot3(tmp1, SolidPlanes[1]);


                                    // side 3
                                    CROSS(sn, e3, n);
                                    dNormalize3(sn);
                                    SMULT( SolidPlanes[2], sn, -1.0 );

                                    ADD(tmp1, col_v[2], col_v[1]); 
                                    SMULT(tmp1, tmp1, 0.5); // center of edge
                                    // distance from center to edge along normal
                                    SolidPlanes[2][3] = dCalcVectorDot3(tmp1, SolidPlanes[2]);


                                    FindTriSolidIntrsection(pen_v, SolidPlanes, 3, firstClippedTri);

                                    for (int j=0; j<firstClippedTri.Count; j++) {
                                        firstClippedTri.Points[j][3] = 1.0; // because we will be doing matrix mults

                                        DEPTH(dp, CoplanarPt, firstClippedTri.Points[j], n);

                                        // if the penetration depth (calculated above) is more than the contact
                                        //  point's ELT, then we've chosen the wrong face and should switch faces
                                        if (pen_v == v1) {
                                            dMultiply1(orig_pos, InvMatrix1, firstClippedTri.Points[j], 4, 4, 1);
                                            dMultiply1(old_pos1, ((dxTriMesh*)g1)->m_last_trans, orig_pos, 4, 4, 1);
                                            for (int k=0; k<3; k++) {
                                                firstClippedElt[j][k] = (firstClippedTri.Points[j][k] - old_pos1[k]) - elt2[k];
                                            }
                                        }
                                        else {
                                            dMultiply1(orig_pos, InvMatrix2, firstClippedTri.Points[j], 4, 4, 1);
                                            dMultiply1(old_pos2, ((dxTriMesh*)g2)->m_last_trans, orig_pos, 4, 4, 1);
                                            for (int k=0; k<3; k++) {
                                                firstClippedElt[j][k] = (firstClippedTri.Points[j][k] - old_pos2[k]) - elt1[k];
                                            }
                                        }

                                        if (dp >= 0.0) {
                                            contact_elt_length = dFabs(dCalcVectorDot3(firstClippedElt[j], n));

                                            depth = dp;
                                            if (depth == 0.0)
                                                depth = dMin(DISTANCE_EPSILON, contact_elt_length);

                                            if ((contact_elt_length < SMALL_ELT) && (depth < EXPANDED_ELT_THRESH))
                                                depth = contact_elt_length;

                                            if (depth <= contact_elt_length) {
                                                // Add a contact
                                                GenerateContact(Flags, Contacts, Stride,  TriMesh1,  TriMesh2, id1, id2,
                                                    firstClippedTri.Points[j], n, depth, OutTriCount);
                                                badPen = false;

                                                if ((OutTriCount | CONTACTS_UNIMPORTANT) == (Flags & (NUMC_MASK | CONTACTS_UNIMPORTANT))) {
                                                    break;
                                                }
                                            }
                                        }

                                    }
                                }

                                if (badPen) {
                                    // Switch pen_v and n (again!)
                                    SwapNormals(pen_v, col_v, v1, v2, pen_elt, elt_f1, elt_f2, n, n1, n2);


                                    // Find the three sides (no top or bottom) of the solid created by 
                                    //  the penetrated triangle.
                                    // The dVector4 "plane" structures contain the following information:
                                    //  [0]-[2]: The normal of the face, pointing INWARDS (i.e.
                                    //           the inverse normal
                                    //  [3]: The distance between the face and the center of the
                                    //       solid, along the normal
                                    dVector4 SolidPlanes[3];
                                    dVector3 tmp1;

                                    dVector3 sn;
                                    for (int j=0; j<3; j++) {
                                        e1[j] = col_v[1][j] - col_v[0][j];
                                        e2[j] = col_v[0][j] - col_v[2][j];
                                        e3[j] = col_v[2][j] - col_v[1][j];
                                    }

                                    // side 1
                                    CROSS(sn, e1, n);
                                    dNormalize3(sn);
                                    SMULT( SolidPlanes[0], sn, -1.0 );

                                    ADD(tmp1, col_v[0], col_v[1]); 
                                    SMULT(tmp1, tmp1, 0.5); // center of edge
                                    // distance from center to edge along normal
                                    SolidPlanes[0][3] = dCalcVectorDot3(tmp1, SolidPlanes[0]);


                                    // side 2
                                    CROSS(sn, e2, n);
                                    dNormalize3(sn);
                                    SMULT( SolidPlanes[1], sn, -1.0 );

                                    ADD(tmp1, col_v[0], col_v[2]); 
                                    SMULT(tmp1, tmp1, 0.5); // center of edge
                                    // distance from center to edge along normal
                                    SolidPlanes[1][3] = dCalcVectorDot3(tmp1, SolidPlanes[1]);


                                    // side 3
                                    CROSS(sn, e3, n);
                                    dNormalize3(sn);
                                    SMULT( SolidPlanes[2], sn, -1.0 );

                                    ADD(tmp1, col_v[2], col_v[1]); 
                                    SMULT(tmp1, tmp1, 0.5); // center of edge
                                    // distance from center to edge along normal
                                    SolidPlanes[2][3] = dCalcVectorDot3(tmp1, SolidPlanes[2]);

                                    FindTriSolidIntrsection(pen_v, SolidPlanes, 3, secondClippedTri);

                                    for (int j=0; j<secondClippedTri.Count; j++) {
                                        secondClippedTri.Points[j][3] = 1.0; // because we will be doing matrix mults

                                        DEPTH(dp, CoplanarPt, secondClippedTri.Points[j], n);

                                        if (pen_v == v1) {
                                            dMultiply1(orig_pos, InvMatrix1, secondClippedTri.Points[j], 4, 4, 1);
                                            dMultiply1(old_pos1, ((dxTriMesh*)g1)->m_last_trans, orig_pos, 4, 4, 1);
                                            for (int k=0; k<3; k++) {
                                                secondClippedElt[j][k] = (secondClippedTri.Points[j][k] - old_pos1[k]) - elt2[k];
                                            }
                                        }
                                        else {
                                            dMultiply1(orig_pos, InvMatrix2, secondClippedTri.Points[j], 4, 4, 1);
                                            dMultiply1(old_pos2, ((dxTriMesh*)g2)->m_last_trans, orig_pos, 4, 4, 1);
                                            for (int k=0; k<3; k++) {
                                                secondClippedElt[j][k] = (secondClippedTri.Points[j][k] - old_pos2[k]) - elt1[k];
                                            }
                                        }


                                        if (dp >= 0.0) {
                                            contact_elt_length = dFabs(dCalcVectorDot3(secondClippedElt[j],n));

                                            depth = dp;
                                            if (depth == 0.0)
                                                depth = dMin(DISTANCE_EPSILON, contact_elt_length);

                                            if ((contact_elt_length < SMALL_ELT) && (depth < EXPANDED_ELT_THRESH))
                                                depth = contact_elt_length;

                                            if (depth <= contact_elt_length) {
                                                // Add a contact
                                                GenerateContact(Flags, Contacts, Stride,  TriMesh1,  TriMesh2, id1, id2,
                                                    secondClippedTri.Points[j], n, depth, OutTriCount);
                                                badPen = false;

                                                if ((OutTriCount | CONTACTS_UNIMPORTANT) == (Flags & (NUMC_MASK | CONTACTS_UNIMPORTANT))) {
                                                    break;
                                                }
                                            }
                                        }


                                    }
                                }



                                /////////////////
                                // All conventional tests have failed at this point, so now we deal with
                                //  cases on a more "heuristic" basis
                                //

                                if (badPen) {
                                    // Switch pen_v and n (for the fourth time, so they're
                                    //  what my original guess said they were)
                                    SwapNormals(pen_v, col_v, v1, v2, pen_elt, elt_f1, elt_f2, n, n1, n2);

                                    if (dFabs(dCalcVectorDot3(n1, n2)) < REAL(0.01)) {
                                        // If we reach this point, we have (close to) perpindicular
                                        //  faces, either resting on each other or sliding in a
                                        // direction orthogonal to both surface normals.
                                        if (elt_sum_len < DISTANCE_EPSILON) {
                                            depth = dFabs(dCalcVectorDot3(n, elt_sum));

                                            if (depth > REAL(1e-12)) {
                                                dNormalize3(n);
                                                GenerateContact(Flags, Contacts, Stride,  TriMesh1,  TriMesh2, id1, id2,
                                                    CoplanarPt, n, depth, OutTriCount);
                                                badPen = false;
                                            }
                                            else {
                                                // If the two faces are (nearly) perfectly at rest with
                                                //  respect to each other, then we ignore the contact,
                                                //  allowing the objects to slip a little in the hopes
                                                //  that next frame, they'll give us something to work
                                                //  with.
                                                badPen = false;
                                            }
                                        }
                                        else {
                                            // The faces are perpindicular, but moving significantly
                                            //  This can be sliding, or an unusual edge-straddling 
                                            //  penetration.
                                            dVector3 cn;

                                            CROSS(cn, n1, n2);
                                            dNormalize3(cn);
                                            SET(n, cn);

                                            // The shallowest ineterpenetration of the faces
                                            //  is the depth
                                            dVector3 ContactPt;
                                            dVector3 dvTmp;
                                            dReal    rTmp;
                                            depth = dInfinity;
                                            for (int j=0; j<3; j++) {
                                                for (int k=0; k<3; k++) {
                                                    SUB(dvTmp, col_v[k], pen_v[j]);

                                                    rTmp = dCalcVectorDot3(dvTmp, n);
                                                    if ( dFabs(rTmp) < dFabs(depth) ) {
                                                        depth = rTmp;
                                                        SET( ContactPt, pen_v[j] );
                                                        contact_elt_length = dFabs(dCalcVectorDot3(pen_elt[j], n));
                                                    }
                                                }
                                            }
                                            if (depth < 0.0) {
                                                SMULT(n, n, -1.0);
                                                depth *= -1.0;
                                            }

                                            if ((depth > 0.0) && (depth <= contact_elt_length)) {
                                                GenerateContact(Flags, Contacts, Stride,  TriMesh1,  TriMesh2, id1, id2,
                                                    ContactPt, n, depth, OutTriCount);
                                                badPen = false;
                                            }

                                        }
                                    }
                                }


                                if (badPen && elt_sum_len != 0.0) {
                                    // Use as the normal the direction of travel, rather than any particular
                                    //  face normal
                                    //
                                    dVector3 esn;

                                    if (pen_v == v1) {
                                        SMULT(esn, elt_sum, -1.0);
                                    }
                                    else {
                                        SET(esn, elt_sum);
                                    }
                                    dNormalize3(esn);


                                    // The shallowest ineterpenetration of the faces
                                    //  is the depth
                                    dVector3 ContactPt;
                                    depth = dInfinity;
                                    for (int j=0; j<3; j++) {
                                        for (int k=0; k<3; k++) {
                                            DEPTH(dp, col_v[k], pen_v[j], esn);
                                            if ( (ExamineContactPoint(col_v, esn, pen_v[j])) &&
                                                ( dFabs(dp) < dFabs(depth)) ) {
                                                    depth = dp;
                                                    SET( ContactPt, pen_v[j] );
                                                    contact_elt_length = dFabs(dCalcVectorDot3(pen_elt[j], esn));
                                            }
                                        }
                                    }

                                    if ((depth > 0.0) && (depth <= contact_elt_length)) {
                                        GenerateContact(Flags, Contacts, Stride,  TriMesh1,  TriMesh2, id1, id2,
                                            ContactPt, esn, depth, OutTriCount);
                                        badPen = false;
                                    }
                                }


                                if (badPen && elt_sum_len != 0.0) {
                                    // If the direction of motion is perpindicular to both normals
                                    if ( (dFabs(dCalcVectorDot3(n1, elt_sum)) < REAL(0.01)) && (dFabs(dCalcVectorDot3(n2, elt_sum)) < REAL(0.01)) ) {
                                        dVector3 esn;
                                        if (pen_v == v1) {
                                            SMULT(esn, elt_sum, -1.0);
                                        }
                                        else {
                                            SET(esn, elt_sum);
                                        }

                                        dNormalize3(esn);


                                        // Look at the clipped points again, checking them against this
                                        //  new normal
                                        for (int j=0; j<firstClippedTri.Count; j++) {
                                            DEPTH(dp, CoplanarPt, firstClippedTri.Points[j], esn);

                                            if (dp >= 0.0) {
                                                contact_elt_length = dFabs(dCalcVectorDot3(firstClippedElt[j], esn));

                                                depth = dp;
                                                //if (depth == 0.0)
                                                //depth = dMin(DISTANCE_EPSILON, contact_elt_length);

                                                if ((contact_elt_length < SMALL_ELT) && (depth < EXPANDED_ELT_THRESH))
                                                    depth = contact_elt_length;

                                                if (depth <= contact_elt_length) {
                                                    // Add a contact
                                                    GenerateContact(Flags, Contacts, Stride,  TriMesh1,  TriMesh2, id1, id2,
                                                        firstClippedTri.Points[j], esn, depth, OutTriCount);
                                                    badPen = false;

                                                    if ((OutTriCount | CONTACTS_UNIMPORTANT) == (Flags & (NUMC_MASK | CONTACTS_UNIMPORTANT))) {
                                                        break;
                                                    }
                                                }
                                            }
                                        }

                                        if (badPen) {
                                            // If this test failed, try it with the second set of clipped faces
                                            for (int j=0; j<secondClippedTri.Count; j++) {
                                                DEPTH(dp, CoplanarPt, secondClippedTri.Points[j], esn);

                                                if (dp >= 0.0) {
                                                    contact_elt_length = dFabs(dCalcVectorDot3(secondClippedElt[j], esn));

                                                    depth = dp;
                                                    //if (depth == 0.0)
                                                    //depth = dMin(DISTANCE_EPSILON, contact_elt_length);

                                                    if ((contact_elt_length < SMALL_ELT) && (depth < EXPANDED_ELT_THRESH))
                                                        depth = contact_elt_length;

                                                    if (depth <= contact_elt_length) {
                                                        // Add a contact
                                                        GenerateContact(Flags, Contacts, Stride,  TriMesh1,  TriMesh2, id1, id2,
                                                            secondClippedTri.Points[j], esn, depth, OutTriCount);
                                                        badPen = false;

                                                        if ((OutTriCount | CONTACTS_UNIMPORTANT) == (Flags & (NUMC_MASK | CONTACTS_UNIMPORTANT))) {
                                                            break;
                                                        }
                                                    }
                                                }
                                            }
                                        }
                                    }
                                }



                                if (badPen) {
                                    // if we have very little motion, we're dealing with resting contact
                                    //  and shouldn't reference the ELTs at all
                                    //
                                    if (elt_sum_len < VELOCITY_EPSILON) {

                                        // instead of a "contact_elt_length" threshhold, we'll use an
                                        //  arbitrary, small one
                                        for (int j=0; j<3; j++) {
                                            DEPTH(dp, CoplanarPt, pen_v[j], n);

                                            if (dp == 0.0)
                                                dp = TINY_PENETRATION;

                                            if ( (dp > 0.0) && (dp <= SMALL_ELT)) {
                                                // Add a contact
                                                GenerateContact(Flags, Contacts, Stride,  TriMesh1,  TriMesh2, id1, id2,
                                                    pen_v[j], n, dp, OutTriCount);
                                                badPen = false;

                                                if ((OutTriCount | CONTACTS_UNIMPORTANT) == (Flags & (NUMC_MASK | CONTACTS_UNIMPORTANT))) {
                                                    break;
                                                }
                                            }
                                        }


                                        if (badPen) {
                                            // try the other normal
                                            SwapNormals(pen_v, col_v, v1, v2, pen_elt, elt_f1, elt_f2, n, n1, n2);

                                            for (int j=0; j<3; j++) {
                                                DEPTH(dp, CoplanarPt, pen_v[j], n);

                                                if (dp == 0.0)
                                                    dp = TINY_PENETRATION;

                                                if ( (dp > 0.0) && (dp <= SMALL_ELT)) {
                                                    GenerateContact(Flags, Contacts, Stride,  TriMesh1,  TriMesh2, id1, id2,
                                                        pen_v[j], n, dp, OutTriCount);
                                                    badPen = false;

                                                    if ((OutTriCount | CONTACTS_UNIMPORTANT) == (Flags & (NUMC_MASK | CONTACTS_UNIMPORTANT))) {
                                                        break;
                                                    }
                                                }
                                            }
                                        }



                                    }
                                }

                                if (badPen) {
                                    // find the nearest existing contact, and replicate it's
                                    //  normal and depth
                                    //
                                    dContactGeom*  Contact;
                                    dVector3       pos_diff;
                                    dReal          min_dist, dist;

                                    min_dist = dInfinity;
                                    depth = 0.0;
                                    for (int j=0; j<OutTriCount; j++) {
                                        Contact = SAFECONTACT(Flags, Contacts, j, Stride);

                                        SUB(pos_diff,  Contact->pos, CoplanarPt);

                                        dist = dCalcVectorDot3(pos_diff, pos_diff);
                                        if (dist < min_dist) {
                                            min_dist = dist;
                                            depth = Contact->depth;
                                            SMULT(ContactNormal, Contact->normal, -1.0);
                                        }
                                    }

                                    if (depth > 0.0) {
                                        // Add a tiny contact at the coplanar point
                                        GenerateContact(Flags, Contacts, Stride,  TriMesh1,  TriMesh2, id1, id2,
                                            CoplanarPt, ContactNormal, depth, OutTriCount);
                                        badPen = false;
                                    }
                                }


                                if (badPen) {
                                    // Add a tiny contact at the coplanar point                                    
                                    if (-dCalcVectorDot3(elt_sum, n1) > -dCalcVectorDot3(elt_sum, n2)) {
                                        SET(ContactNormal, n1);
                                    }
                                    else {
                                        SET(ContactNormal, n2);
                                    }

                                    GenerateContact(Flags, Contacts, Stride,  TriMesh1,  TriMesh2, id1, id2,
                                        CoplanarPt, ContactNormal, TINY_PENETRATION, OutTriCount);
                                    badPen = false;
                                }


                            } // not coplanar (main loop)
                    } // TriTriIntersectWithIsectLine

                    if ((OutTriCount | CONTACTS_UNIMPORTANT) == (Flags & (NUMC_MASK | CONTACTS_UNIMPORTANT))) {
                        break;
                    }
                }

                // Free memory
                delete[] firstClippedElt;
                delete[] secondClippedElt;	

                // Return the number of contacts
                return OutTriCount; 
            }
        }
    }


    // There was some kind of failure during the Collide call or
    // there are no faces overlapping
    return 0;    
}


/* -- not used
static void
GetTriangleGeometryCallback(udword triangleindex, VertexPointers& triangle, udword user_data)
{
dVector3 Out[3];

FetchTriangle((dxTriMesh*) user_data, (int) triangleindex, Out);

for (int i = 0; i < 3; i++)
triangle.Vertex[i] =  (const Point*) ((dReal*) Out[i]);
}
*/

//
//
//
#define B11   B[0]
#define B12   B[1]
#define B13   B[2]
#define B14   B[3]
#define B21   B[4]
#define B22   B[5]
#define B23   B[6]
#define B24   B[7]
#define B31   B[8]
#define B32   B[9]
#define B33   B[10]
#define B34   B[11]
#define B41   B[12]
#define B42   B[13]
#define B43   B[14]
#define B44   B[15]

#define Binv11   Binv[0]
#define Binv12   Binv[1]
#define Binv13   Binv[2]
#define Binv14   Binv[3]
#define Binv21   Binv[4]
#define Binv22   Binv[5]
#define Binv23   Binv[6]
#define Binv24   Binv[7]
#define Binv31   Binv[8]
#define Binv32   Binv[9]
#define Binv33   Binv[10]
#define Binv34   Binv[11]
#define Binv41   Binv[12]
#define Binv42   Binv[13]
#define Binv43   Binv[14]
#define Binv44   Binv[15]

inline void
dMakeMatrix4(const dVector3 Position, const dMatrix3 Rotation, dMatrix4 &B)
{
    B11 = Rotation[0]; B21 = Rotation[1]; B31 = Rotation[2];    B41 = Position[0]; 
    B12 = Rotation[4]; B22 = Rotation[5]; B32 = Rotation[6];    B42 = Position[1];
    B13 = Rotation[8]; B23 = Rotation[9]; B33 = Rotation[10];   B43 = Position[2];

    B14 = 0.0;         B24 = 0.0;         B34 = 0.0;            B44 = 1.0;
}


static void
dInvertMatrix4( dMatrix4& B, dMatrix4& Binv )
{
    dReal det =  (B11 * B22 - B12 * B21) * (B33 * B44 - B34 * B43)
        -(B11 * B23 - B13 * B21) * (B32 * B44 - B34 * B42)
        +(B11 * B24 - B14 * B21) * (B32 * B43 - B33 * B42)
        +(B12 * B23 - B13 * B22) * (B31 * B44 - B34 * B41)
        -(B12 * B24 - B14 * B22) * (B31 * B43 - B33 * B41)
        +(B13 * B24 - B14 * B23) * (B31 * B42 - B32 * B41);

    dAASSERT (det != 0.0);    

    det = 1.0 / det;

    Binv11 = (dReal) (det * ((B22 * B33) - (B23 * B32)));
    Binv12 = (dReal) (det * ((B32 * B13) - (B33 * B12)));
    Binv13 = (dReal) (det * ((B12 * B23) - (B13 * B22)));
    Binv14 = 0.0f;
    Binv21 = (dReal) (det * ((B23 * B31) - (B21 * B33)));
    Binv22 = (dReal) (det * ((B33 * B11) - (B31 * B13)));
    Binv23 = (dReal) (det * ((B13 * B21) - (B11 * B23)));
    Binv24 = 0.0f;
    Binv31 = (dReal) (det * ((B21 * B32) - (B22 * B31)));
    Binv32 = (dReal) (det * ((B31 * B12) - (B32 * B11)));
    Binv33 = (dReal) (det * ((B11 * B22) - (B12 * B21)));
    Binv34 = 0.0f;
    Binv41 = (dReal) (det * (B21*(B33*B42 - B32*B43) + B22*(B31*B43 - B33*B41) + B23*(B32*B41 - B31*B42)));
    Binv42 = (dReal) (det * (B31*(B13*B42 - B12*B43) + B32*(B11*B43 - B13*B41) + B33*(B12*B41 - B11*B42)));
    Binv43 = (dReal) (det * (B41*(B13*B22 - B12*B23) + B42*(B11*B23 - B13*B21) + B43*(B12*B21 - B11*B22)));
    Binv44 = 1.0f;
}



/////////////////////////////////////////////////
//
// Triangle/Triangle intersection utilities
//
// From the article "A Fast Triangle-Triangle Intersection Test",
// Journal of Graphics Tools, 2(2), 1997
//
// Some of this functionality is duplicated in OPCODE (see
//  OPC_TriTriOverlap.h) but we have replicated it here so we don't
//  have to mess with the internals of OPCODE, as well as so we can
//  further optimize some of the functions.
// 
//  This version computes the line of intersection as well (if they
//  are not coplanar):
//  int TriTriIntersectWithIsectLine(dReal V0[3],dReal V1[3],dReal V2[3], 
//                                   dReal U0[3],dReal U1[3],dReal U2[3],
//                                   int *coplanar,
//                                   dReal isectpt1[3],dReal isectpt2[3]);
//
//  parameters: vertices of triangle 1: V0,V1,V2
//              vertices of triangle 2: U0,U1,U2
//
//  result    : returns 1 if the triangles intersect, otherwise 0
//              "coplanar" returns whether the tris are coplanar
//              isectpt1, isectpt2 are the endpoints of the line of
//              intersection
// 



/* if USE_EPSILON_TEST is true then we do a check: 
         if |dv|<EPSILON then dv=0.0;
   else no check is done (which is less robust)
*/
#define USE_EPSILON_TEST TRUE  
#define EPSILON REAL(0.000001)


/* sort so that a<=b */
#define SORT(a,b)       \
    if(a>b)    \
    {          \
        dReal c; \
        c=a;     \
        a=b;     \
        b=c;     \
    }

#define ISECT(VV0,VV1,VV2,D0,D1,D2,isect0,isect1) \
    isect0=VV0+(VV1-VV0)*D0/(D0-D1);    \
    isect1=VV0+(VV2-VV0)*D0/(D0-D2);


#define COMPUTE_INTERVALS(VV0,VV1,VV2,D0,D1,D2,D0D1,D0D2,isect0,isect1) \
    if(D0D1>0.0f)                                         \
    {                                                     \
        /* here we know that D0D2<=0.0 */                   \
        /* that is D0, D1 are on the same side, D2 on the other or on the plane */ \
        ISECT(VV2,VV0,VV1,D2,D0,D1,isect0,isect1);          \
    }                                                     \
    else if(D0D2>0.0f)                                    \
    {                                                     \
        /* here we know that d0d1<=0.0 */                   \
        ISECT(VV1,VV0,VV2,D1,D0,D2,isect0,isect1);          \
    }                                                     \
    else if(D1*D2>0.0f || D0!=0.0f)                       \
    {                                                     \
        /* here we know that d0d1<=0.0 or that D0!=0.0 */   \
        ISECT(VV0,VV1,VV2,D0,D1,D2,isect0,isect1);          \
    }                                                     \
    else if(D1!=0.0f)                                     \
    {                                                     \
        ISECT(VV1,VV0,VV2,D1,D0,D2,isect0,isect1);          \
    }                                                     \
    else if(D2!=0.0f)                                     \
    {                                                     \
        ISECT(VV2,VV0,VV1,D2,D0,D1,isect0,isect1);          \
    }                                                     \
    else                                                  \
    {                                                     \
        /* triangles are coplanar */                        \
        return coplanar_tri_tri(N1,V0,V1,V2,U0,U1,U2);      \
    }



/* this edge to edge test is based on Franlin Antonio's gem:
"Faster Line Segment Intersection", in Graphics Gems III,
pp. 199-202 */ 
#define EDGE_EDGE_TEST(V0,U0,U1)                      \
    Bx=U0[i0]-U1[i0];                                   \
    By=U0[i1]-U1[i1];                                   \
    Cx=V0[i0]-U0[i0];                                   \
    Cy=V0[i1]-U0[i1];                                   \
    f=Ay*Bx-Ax*By;                                      \
    d=By*Cx-Bx*Cy;                                      \
    if((f>0 && d>=0 && d<=f) || (f<0 && d<=0 && d>=f))  \
    {                                                   \
        e=Ax*Cy-Ay*Cx;                                    \
        if(f>0)                                           \
    {                                                 \
        if(e>=0 && e<=f) return 1;                      \
    }                                                 \
    else                                              \
    {                                                 \
        if(e<=0 && e>=f) return 1;                      \
    }                                                 \
}                                

#define EDGE_AGAINST_TRI_EDGES(V0,V1,U0,U1,U2) \
{                                              \
    dReal Ax,Ay,Bx,By,Cx,Cy,e,d,f;               \
    Ax=V1[i0]-V0[i0];                            \
    Ay=V1[i1]-V0[i1];                            \
    /* test edge U0,U1 against V0,V1 */          \
    EDGE_EDGE_TEST(V0,U0,U1);                    \
    /* test edge U1,U2 against V0,V1 */          \
    EDGE_EDGE_TEST(V0,U1,U2);                    \
    /* test edge U2,U1 against V0,V1 */          \
    EDGE_EDGE_TEST(V0,U2,U0);                    \
}

#define POINT_IN_TRI(V0,U0,U1,U2)           \
{                                           \
    dReal a,b,c,d0,d1,d2;                     \
    /* is T1 completly inside T2? */          \
    /* check if V0 is inside tri(U0,U1,U2) */ \
    a=U1[i1]-U0[i1];                          \
    b=-(U1[i0]-U0[i0]);                       \
    c=-a*U0[i0]-b*U0[i1];                     \
    d0=a*V0[i0]+b*V0[i1]+c;                   \
    \
    a=U2[i1]-U1[i1];                          \
    b=-(U2[i0]-U1[i0]);                       \
    c=-a*U1[i0]-b*U1[i1];                     \
    d1=a*V0[i0]+b*V0[i1]+c;                   \
    \
    a=U0[i1]-U2[i1];                          \
    b=-(U0[i0]-U2[i0]);                       \
    c=-a*U2[i0]-b*U2[i1];                     \
    d2=a*V0[i0]+b*V0[i1]+c;                   \
    if(d0*d1>0.0)                             \
    {                                         \
        if(d0*d2>0.0) return 1;                 \
    }                                         \
}

int coplanar_tri_tri(dReal N[3],dReal V0[3],dReal V1[3],dReal V2[3],
                     dReal U0[3],dReal U1[3],dReal U2[3])
{
    dReal A[3];
    short i0,i1;
    /* first project onto an axis-aligned plane, that maximizes the area */
    /* of the triangles, compute indices: i0,i1. */
    A[0]= dFabs(N[0]);
    A[1]= dFabs(N[1]);
    A[2]= dFabs(N[2]);
    if(A[0]>A[1])
    {
        if(A[0]>A[2])  
        {
            i0=1;      /* A[0] is greatest */
            i1=2;
        }
        else
        {
            i0=0;      /* A[2] is greatest */
            i1=1;
        }
    }
    else   /* A[0]<=A[1] */
    {
        if(A[2]>A[1])
        {
            i0=0;      /* A[2] is greatest */
            i1=1;                                           
        }
        else
        {
            i0=0;      /* A[1] is greatest */
            i1=2;
        }
    }               

    /* test all edges of triangle 1 against the edges of triangle 2 */
    EDGE_AGAINST_TRI_EDGES(V0,V1,U0,U1,U2);
    EDGE_AGAINST_TRI_EDGES(V1,V2,U0,U1,U2);
    EDGE_AGAINST_TRI_EDGES(V2,V0,U0,U1,U2);

    /* finally, test if tri1 is totally contained in tri2 or vice versa */
    POINT_IN_TRI(V0,U0,U1,U2);
    POINT_IN_TRI(U0,V0,V1,V2);

    return 0;
}



#define NEWCOMPUTE_INTERVALS(VV0,VV1,VV2,D0,D1,D2,D0D1,D0D2,A,B,C,X0,X1) \
{ \
    if(D0D1>0.0f) \
    { \
        /* here we know that D0D2<=0.0 */ \
        /* that is D0, D1 are on the same side, D2 on the other or on the plane */ \
        A=VV2; B=(VV0-VV2)*D2; C=(VV1-VV2)*D2; X0=D2-D0; X1=D2-D1; \
    } \
    else if(D0D2>0.0f)\
    { \
        /* here we know that d0d1<=0.0 */ \
        A=VV1; B=(VV0-VV1)*D1; C=(VV2-VV1)*D1; X0=D1-D0; X1=D1-D2; \
    } \
    else if(D1*D2>0.0f || D0!=0.0f) \
    { \
        /* here we know that d0d1<=0.0 or that D0!=0.0 */ \
        A=VV0; B=(VV1-VV0)*D0; C=(VV2-VV0)*D0; X0=D0-D1; X1=D0-D2; \
    } \
    else if(D1!=0.0f) \
    { \
        A=VV1; B=(VV0-VV1)*D1; C=(VV2-VV1)*D1; X0=D1-D0; X1=D1-D2; \
    } \
    else if(D2!=0.0f) \
    { \
        A=VV2; B=(VV0-VV2)*D2; C=(VV1-VV2)*D2; X0=D2-D0; X1=D2-D1; \
    } \
    else \
    { \
        /* triangles are coplanar */ \
        return coplanar_tri_tri(N1,V0,V1,V2,U0,U1,U2); \
    } \
}




/* sort so that a<=b */
#define SORT2(a,b,smallest)       \
    if(a>b)       \
    {             \
        dReal c;    \
        c=a;        \
        a=b;        \
        b=c;        \
        smallest=1; \
    }             \
    else smallest=0;


inline void isect2(dReal VTX0[3],dReal VTX1[3],dReal VTX2[3],dReal VV0,dReal VV1,dReal VV2,
                   dReal D0,dReal D1,dReal D2,dReal *isect0,dReal *isect1,dReal isectpoint0[3],dReal isectpoint1[3]) 
{
    dReal tmp=D0/(D0-D1);          
    dReal diff[3];
    *isect0=VV0+(VV1-VV0)*tmp;         
    SUB(diff,VTX1,VTX0);              
    MULT(diff,diff,tmp);               
    ADD(isectpoint0,diff,VTX0);        
    tmp=D0/(D0-D2);                    
    *isect1=VV0+(VV2-VV0)*tmp;          
    SUB(diff,VTX2,VTX0);                   
    MULT(diff,diff,tmp);                 
    ADD(isectpoint1,VTX0,diff);          
}


#if 0
#define ISECT2(VTX0,VTX1,VTX2,VV0,VV1,VV2,D0,D1,D2,isect0,isect1,isectpoint0,isectpoint1) \
    tmp=D0/(D0-D1);                \
    isect0=VV0+(VV1-VV0)*tmp;      \
    SUB(diff,VTX1,VTX0);               \
    MULT(diff,diff,tmp);               \
    ADD(isectpoint0,diff,VTX0);    \
    tmp=D0/(D0-D2);
    /*isect1=VV0+(VV2-VV0)*tmp;          \ */
    /*SUB(diff,VTX2,VTX0);               \ */
    /*MULT(diff,diff,tmp);               \ */
    /*ADD(isectpoint1,VTX0,diff);          */
#endif

inline int compute_intervals_isectline(dReal VERT0[3],dReal VERT1[3],dReal VERT2[3],
                                       dReal VV0,dReal VV1,dReal VV2,dReal D0,dReal D1,dReal D2,
                                       dReal D0D1,dReal D0D2,dReal *isect0,dReal *isect1,
                                       dReal isectpoint0[3],dReal isectpoint1[3])
{
    if(D0D1>0.0f)                                        
    {                                                    
        /* here we know that D0D2<=0.0 */                  
        /* that is D0, D1 are on the same side, D2 on the other or on the plane */
        isect2(VERT2,VERT0,VERT1,VV2,VV0,VV1,D2,D0,D1,isect0,isect1,isectpoint0,isectpoint1);
    } 
    else if(D0D2>0.0f)                                   
    {                                                   
        /* here we know that d0d1<=0.0 */             
        isect2(VERT1,VERT0,VERT2,VV1,VV0,VV2,D1,D0,D2,isect0,isect1,isectpoint0,isectpoint1);
    }                                                  
    else if(D1*D2>0.0f || D0!=0.0f)   
    {                                   
        /* here we know that d0d1<=0.0 or that D0!=0.0 */
        isect2(VERT0,VERT1,VERT2,VV0,VV1,VV2,D0,D1,D2,isect0,isect1,isectpoint0,isectpoint1);   
    }                                                  
    else if(D1!=0.0f)                                  
    {                                               
        isect2(VERT1,VERT0,VERT2,VV1,VV0,VV2,D1,D0,D2,isect0,isect1,isectpoint0,isectpoint1); 
    }                                         
    else if(D2!=0.0f)                                  
    {                                                   
        isect2(VERT2,VERT0,VERT1,VV2,VV0,VV1,D2,D0,D1,isect0,isect1,isectpoint0,isectpoint1);     
    }                                                 
    else                                               
    {                                                   
        /* triangles are coplanar */    
        return 1;
    }
    return 0;
}

#define COMPUTE_INTERVALS_ISECTLINE(VERT0,VERT1,VERT2,VV0,VV1,VV2,D0,D1,D2,D0D1,D0D2,isect0,isect1,isectpoint0,isectpoint1) \
    if(D0D1>0.0f)                                         \
    {                                                     \
        /* here we know that D0D2<=0.0 */                   \
        /* that is D0, D1 are on the same side, D2 on the other or on the plane */ \
        isect2(VERT2,VERT0,VERT1,VV2,VV0,VV1,D2,D0,D1,&isect0,&isect1,isectpoint0,isectpoint1);          \
    }                                                     
#if 0
    else if(D0D2>0.0f)                                    \
    {                                                     \
    /* here we know that d0d1<=0.0 */                   \
    isect2(VERT1,VERT0,VERT2,VV1,VV0,VV2,D1,D0,D2,&isect0,&isect1,isectpoint0,isectpoint1);          \
    }                                                     \
    else if(D1*D2>0.0f || D0!=0.0f)                       \
    {                                                     \
    /* here we know that d0d1<=0.0 or that D0!=0.0 */   \
    isect2(VERT0,VERT1,VERT2,VV0,VV1,VV2,D0,D1,D2,&isect0,&isect1,isectpoint0,isectpoint1);          \
    }                                                     \
    else if(D1!=0.0f)                                     \
    {                                                     \
    isect2(VERT1,VERT0,VERT2,VV1,VV0,VV2,D1,D0,D2,&isect0,&isect1,isectpoint0,isectpoint1);          \
    }                                                     \
    else if(D2!=0.0f)                                     \
    {                                                     \
    isect2(VERT2,VERT0,VERT1,VV2,VV0,VV1,D2,D0,D1,&isect0,&isect1,isectpoint0,isectpoint1);          \
    }                                                     \
    else                                                  \
    {                                                     \
    /* triangles are coplanar */                        \
    coplanar=1;                                         \
    return coplanar_tri_tri(N1,V0,V1,V2,U0,U1,U2);      \
    }
#endif



static int TriTriIntersectWithIsectLine(dReal V0[3],dReal V1[3],dReal V2[3],
    dReal U0[3],dReal U1[3],dReal U2[3],int *coplanar,
    dReal isectpt1[3],dReal isectpt2[3])
{
    dReal E1[3],E2[3];
    dReal N1[3],N2[3],d1,d2;
    dReal du0,du1,du2,dv0,dv1,dv2;
    dReal D[3];
    dReal isect1[2]={0,0}, isect2[2]={0,0};
    dReal isectpointA1[3],isectpointA2[3];
    dReal isectpointB1[3]={0,0,0},isectpointB2[3]={0,0,0};
    dReal du0du1,du0du2,dv0dv1,dv0dv2;
    short index;
    dReal vp0,vp1,vp2;
    dReal up0,up1,up2;
    dReal b,c,max;
    int smallest1,smallest2;

    /* compute plane equation of triangle(V0,V1,V2) */
    SUB(E1,V1,V0);
    SUB(E2,V2,V0);
    CROSS(N1,E1,E2);

    // Even though all triangles might be initially valid, 
    // a triangle may degenerate into a segment after applying 
    // space transformation.
    //
    // Oleh_Derevenko: 
    // I'm not quite sure if this routine will fail/assert for zero normal
    // (it's too large and complex to be fully analyzed).
    // However in such a large code block three extra float comparisons
    // will not have any noticeable influence on performance.
    if (IS_ZERO(N1))
        return 0;

    d1=-DOT(N1,V0);
    /* plane equation 1: N1.X+d1=0 */

    /* put U0,U1,U2 into plane equation 1 to compute signed distances to the plane*/
    du0=DOT(N1,U0)+d1;
    du1=DOT(N1,U1)+d1;
    du2=DOT(N1,U2)+d1;

    /* coplanarity robustness check */
#if USE_EPSILON_TEST==TRUE
    if(dFabs(du0)<EPSILON) du0=0.0;
    if(dFabs(du1)<EPSILON) du1=0.0;
    if(dFabs(du2)<EPSILON) du2=0.0;
#endif
    du0du1=du0*du1;
    du0du2=du0*du2;

    if(du0du1>0.0f && du0du2>0.0f) /* same sign on all of them + not equal 0 ? */
        return 0;                    /* no intersection occurs */

    /* compute plane of triangle (U0,U1,U2) */
    SUB(E1,U1,U0);
    SUB(E2,U2,U0);
    CROSS(N2,E1,E2);

    // Even though all triangles might be initially valid, 
    // a triangle may degenerate into a segment after applying 
    // space transformation.
    //
    // Oleh_Derevenko: 
    // I'm not quite sure if this routine will fail/assert for zero normal
    // (it's too large and complex to be fully analyzed).
    // However in such a large code block three extra float comparisons
    // will not have any noticeable influence on performance.
    if (IS_ZERO(N2))
        return 0;

    d2=-DOT(N2,U0);
    /* plane equation 2: N2.X+d2=0 */

    /* put V0,V1,V2 into plane equation 2 */
    dv0=DOT(N2,V0)+d2;
    dv1=DOT(N2,V1)+d2;
    dv2=DOT(N2,V2)+d2;

#if USE_EPSILON_TEST==TRUE
    if(dFabs(dv0)<EPSILON) dv0=0.0;
    if(dFabs(dv1)<EPSILON) dv1=0.0;
    if(dFabs(dv2)<EPSILON) dv2=0.0;
#endif

    dv0dv1=dv0*dv1;
    dv0dv2=dv0*dv2;

    if(dv0dv1>0.0f && dv0dv2>0.0f) /* same sign on all of them + not equal 0 ? */
        return 0;                    /* no intersection occurs */

    /* compute direction of intersection line */
    CROSS(D,N1,N2);

    /* compute and index to the largest component of D */
    max= dFabs(D[0]);
    index=0;
    b= dFabs(D[1]);
    c= dFabs(D[2]);
    if(b>max) max=b,index=1;
    if(c>max) max=c,index=2;

    /* this is the simplified projection onto L*/
    vp0=V0[index];
    vp1=V1[index];
    vp2=V2[index];

    up0=U0[index];
    up1=U1[index];
    up2=U2[index];

    /* compute interval for triangle 1 */
    *coplanar=compute_intervals_isectline(V0,V1,V2,vp0,vp1,vp2,dv0,dv1,dv2,
        dv0dv1,dv0dv2,&isect1[0],&isect1[1],isectpointA1,isectpointA2);
    if(*coplanar) return coplanar_tri_tri(N1,V0,V1,V2,U0,U1,U2);     


    /* compute interval for triangle 2 */
    compute_intervals_isectline(U0,U1,U2,up0,up1,up2,du0,du1,du2,
        du0du1,du0du2,&isect2[0],&isect2[1],isectpointB1,isectpointB2);

    SORT2(isect1[0],isect1[1],smallest1);
    SORT2(isect2[0],isect2[1],smallest2);

    if(isect1[1]<isect2[0] || isect2[1]<isect1[0]) return 0;

    /* at this point, we know that the triangles intersect */

    if(isect2[0]<isect1[0])
    {
        if(smallest1==0) { SET(isectpt1,isectpointA1); }
        else { SET(isectpt1,isectpointA2); }

        if(isect2[1]<isect1[1])
        {
            if(smallest2==0) { SET(isectpt2,isectpointB2); }
            else { SET(isectpt2,isectpointB1); }
        }
        else
        {
            if(smallest1==0) { SET(isectpt2,isectpointA2); }
            else { SET(isectpt2,isectpointA1); }
        }
    }
    else
    {
        if(smallest2==0) { SET(isectpt1,isectpointB1); }
        else { SET(isectpt1,isectpointB2); }

        if(isect2[1]>isect1[1])
        {
            if(smallest1==0) { SET(isectpt2,isectpointA2); }
            else { SET(isectpt2,isectpointA1); }      
        }
        else
        {
            if(smallest2==0) { SET(isectpt2,isectpointB2); }
            else { SET(isectpt2,isectpointB1); } 
        }
    }
    return 1;
}





// Find the intersectiojn point between a coplanar line segement,
// defined by X1 and X2, and a ray defined by X3 and direction N.
//
// This forumla for this calculation is:
//               (c x b) . (a x b)
//   Q = x1 + a -------------------
//                  | a x b | ^2
//
// where a = x2 - x1
//       b = x4 - x3
//       c = x3 - x1
// x1 and x2 are the edges of the triangle, and x3 is CoplanarPt
//  and x4 is (CoplanarPt - n)
#if 0 // not used anywhere
static int
    IntersectLineSegmentRay(dVector3 x1, dVector3 x2, dVector3 x3, dVector3 n, 
    dVector3 out_pt)
{
    dVector3 a, b, c, x4;

    ADD(x4, x3, n);  // x4 = x3 + n

    SUB(a, x2, x1);  // a = x2 - x1
    SUB(b, x4, x3);
    SUB(c, x3, x1);

    dVector3 tmp1, tmp2;
    CROSS(tmp1, c, b);
    CROSS(tmp2, a, b);

    dReal num, denom;
    num = dCalcVectorDot3(tmp1, tmp2);
    denom = LENGTH( tmp2 ); 

    dReal s;
    s = num /(denom*denom);

    for (int i=0; i<3; i++)
        out_pt[i] = x1[i] + a[i]*s;

    // Test if this intersection is "behind" x3, w.r.t. n
    SUB(a, x3, out_pt);
    if (dCalcVectorDot3(a, n) > 0.0)
        return 0;

    // Test if this intersection point is outside the edge limits,
    //  if (dot( (out_pt-x1), (out_pt-x2) ) < 0) it's inside
    //  else outside
    SUB(a, out_pt, x1);
    SUB(b, out_pt, x2);
    if (dCalcVectorDot3(a,b) < 0.0)
        return 1;
    else
        return 0;
}
#endif

// FindTriSolidIntersection - Clips the input trinagle TRI with the 
//  sides of a convex bounding solid, described by PLANES, returning
//  the (convex) clipped polygon in CLIPPEDPOLYGON
//
static bool
    FindTriSolidIntrsection(const dVector3 Tri[3], 
    const dVector4 Planes[6], int numSides,
    LineContactSet& ClippedPolygon )
{ 
    // Set up the LineContactSet structure
    for (int k=0; k<3; k++) {
        SET(ClippedPolygon.Points[k], Tri[k]);
    }
    ClippedPolygon.Count = 3;

    // Clip wrt the sides
    for ( int i = 0; i < numSides; i++ )
        ClipConvexPolygonAgainstPlane( Planes[i], Planes[i][3], ClippedPolygon );

    return (ClippedPolygon.Count > 0);
}




// ClipConvexPolygonAgainstPlane - Clip a a convex polygon, described by
//  CONTACTS, with a plane (described by N and C).  Note:  the input 
//  vertices are assumed to be in counterclockwise order.  
//
// This code is taken from The Nebula Device:
//  http://nebuladevice.sourceforge.net/cgi-bin/twiki/view/Nebula/WebHome
// and is licensed under the following license:
//  http://nebuladevice.sourceforge.net/doc/source/license.txt
//
static void ClipConvexPolygonAgainstPlane( const dVector3 N, dReal C, LineContactSet& Contacts )
{
    // test on which side of line are the vertices
    int Positive = 0, Negative = 0, PIndex = -1;
    int Quantity = Contacts.Count;

    dReal Test[8];
    for ( int i = 0; i < Contacts.Count; i++ ) {
        // An epsilon is used here because it is possible for the dot product
        // and C to be exactly equal to each other (in theory), but differ
        // slightly because of floating point problems.  Thus, add a little
        // to the test number to push actually equal numbers over the edge
        // towards the positive.  This should probably be somehow a relative
        // tolerance, and I don't think multiplying by the constant is the best
        // way to do this.
        Test[i] = dCalcVectorDot3(N, Contacts.Points[i]) - C + dFabs(C)*REAL(1e-08);

        if (Test[i] >= REAL(0.0)) {
            Positive++;
            if (PIndex < 0) {
                PIndex = i;
            }
        }
        else Negative++;
    }

    if (Positive > 0) {
        if (Negative > 0) {
            // plane transversely intersects polygon
            dVector3 CV[8];
            int CQuantity = 0, Cur, Prv;
            dReal T;

            if (PIndex > 0) {
                // first clip vertex on line
                Cur = PIndex;
                Prv = Cur - 1;
                T = Test[Cur] / (Test[Cur] - Test[Prv]);
                CV[CQuantity][0] = Contacts.Points[Cur][0] 
                    + T * (Contacts.Points[Prv][0] - Contacts.Points[Cur][0]);
                CV[CQuantity][1] = Contacts.Points[Cur][1] 
                    + T * (Contacts.Points[Prv][1] - Contacts.Points[Cur][1]);
                CV[CQuantity][2] = Contacts.Points[Cur][2] 
                    + T * (Contacts.Points[Prv][2] - Contacts.Points[Cur][2]);
                CV[CQuantity][3] = Contacts.Points[Cur][3] 
                    + T * (Contacts.Points[Prv][3] - Contacts.Points[Cur][3]);
                CQuantity++;

                // vertices on positive side of line
                while (Cur < Quantity && Test[Cur] >= REAL(0.0)) {
                    CV[CQuantity][0] = Contacts.Points[Cur][0];
                    CV[CQuantity][1] = Contacts.Points[Cur][1];
                    CV[CQuantity][2] = Contacts.Points[Cur][2];
                    CV[CQuantity][3] = Contacts.Points[Cur][3];
                    CQuantity++;
                    Cur++;
                }

                // last clip vertex on line
                if (Cur < Quantity) {
                    Prv = Cur - 1;
                }
                else {
                    Cur = 0;
                    Prv = Quantity - 1;
                }

                T = Test[Cur] / (Test[Cur] - Test[Prv]);
                CV[CQuantity][0] = Contacts.Points[Cur][0] 
                    + T * (Contacts.Points[Prv][0] - Contacts.Points[Cur][0]);
                CV[CQuantity][1] = Contacts.Points[Cur][1] 
                    + T * (Contacts.Points[Prv][1] - Contacts.Points[Cur][1]);
                CV[CQuantity][2] = Contacts.Points[Cur][2] 
                    + T * (Contacts.Points[Prv][2] - Contacts.Points[Cur][2]);
                CV[CQuantity][3] = Contacts.Points[Cur][3] 
                    + T * (Contacts.Points[Prv][3] - Contacts.Points[Cur][3]);
                CQuantity++;
            }
            else {
                // iPIndex is 0
                // vertices on positive side of line
                Cur = 0;
                while (Cur < Quantity && Test[Cur] >= REAL(0.0)) {
                    CV[CQuantity][0] = Contacts.Points[Cur][0];
                    CV[CQuantity][1] = Contacts.Points[Cur][1];
                    CV[CQuantity][2] = Contacts.Points[Cur][2];
                    CV[CQuantity][3] = Contacts.Points[Cur][3];
                    CQuantity++;
                    Cur++;
                }

                // last clip vertex on line
                Prv = Cur - 1;
                T = Test[Cur] / (Test[Cur] - Test[Prv]);
                CV[CQuantity][0] = Contacts.Points[Cur][0] 
                    + T * (Contacts.Points[Prv][0] - Contacts.Points[Cur][0]);
                CV[CQuantity][1] = Contacts.Points[Cur][1] 
                    + T * (Contacts.Points[Prv][1] - Contacts.Points[Cur][1]);
                CV[CQuantity][2] = Contacts.Points[Cur][2] 
                    + T * (Contacts.Points[Prv][2] - Contacts.Points[Cur][2]);
                CV[CQuantity][3] = Contacts.Points[Cur][3] 
                    + T * (Contacts.Points[Prv][3] - Contacts.Points[Cur][3]);
                CQuantity++;

                // skip vertices on negative side
                while (Cur < Quantity && Test[Cur] < REAL(0.0)) {
                    Cur++;
                }

                // first clip vertex on line
                if (Cur < Quantity) {
                    Prv = Cur - 1;
                    T = Test[Cur] / (Test[Cur] - Test[Prv]);
                    CV[CQuantity][0] = Contacts.Points[Cur][0] 
                        + T * (Contacts.Points[Prv][0] - Contacts.Points[Cur][0]);
                    CV[CQuantity][1] = Contacts.Points[Cur][1] 
                              + T * (Contacts.Points[Prv][1] - Contacts.Points[Cur][1]);
                    CV[CQuantity][2] = Contacts.Points[Cur][2] 
                        + T * (Contacts.Points[Prv][2] - Contacts.Points[Cur][2]);
                    CV[CQuantity][3] = Contacts.Points[Cur][3] 
                        + T * (Contacts.Points[Prv][3] - Contacts.Points[Cur][3]);
                    CQuantity++;

                    // vertices on positive side of line
                    while (Cur < Quantity && Test[Cur] >= REAL(0.0)) {
                        CV[CQuantity][0] = Contacts.Points[Cur][0];
                        CV[CQuantity][1] = Contacts.Points[Cur][1];
                        CV[CQuantity][2] = Contacts.Points[Cur][2];
                        CV[CQuantity][3] = Contacts.Points[Cur][3];
                        CQuantity++;
                        Cur++;
                    }
                }
                else {
                    // iCur = 0
                    Prv = Quantity - 1;
                    T = Test[0] / (Test[0] - Test[Prv]);
                    CV[CQuantity][0] = Contacts.Points[0][0] 
                        + T * (Contacts.Points[Prv][0] - Contacts.Points[0][0]);
                    CV[CQuantity][1] = Contacts.Points[0][1] 
                              + T * (Contacts.Points[Prv][1] - Contacts.Points[0][1]);
                    CV[CQuantity][2] = Contacts.Points[0][2] 
                        + T * (Contacts.Points[Prv][2] - Contacts.Points[0][2]);
                    CV[CQuantity][3] = Contacts.Points[0][3] 
                        + T * (Contacts.Points[Prv][3] - Contacts.Points[0][3]);
                    CQuantity++;
                }
            }
            Quantity = CQuantity;
            memcpy( Contacts.Points, CV, CQuantity * sizeof(dVector3) );
        }
        // else polygon fully on positive side of plane, nothing to do    
        Contacts.Count = Quantity;
    }
    else {
        Contacts.Count = 0; // This should not happen, but for safety
    }

}



// Determine if a potential collision point is 
//
//
static int
ExamineContactPoint(dVector3* v_col, dVector3 in_n, dVector3 in_point)
{
    // Cast a ray from in_point, along the collison normal. Does it intersect the
    //  collision face.
    dReal t, u, v;

    if (!RayTriangleIntersect(in_point, in_n, v_col[0], v_col[1], v_col[2],
        &t, &u, &v))
        return 0;
    else
        return 1;
}



// RayTriangleIntersect - If an intersection is found, t contains the
//   distance along the ray (dir) and u/v contain u/v coordinates into
//   the triangle.  Returns 0 if no hit is found
//   From "Real-Time Rendering," page 305
//
static int
RayTriangleIntersect(const dVector3 orig, const dVector3 dir,
                     const dVector3 vert0, const dVector3 vert1,const dVector3 vert2,
                     dReal *t,dReal *u,dReal *v)

{
    dReal edge1[3], edge2[3], tvec[3], pvec[3], qvec[3];
    dReal det,inv_det;

    // find vectors for two edges sharing vert0
    SUB(edge1, vert1, vert0);
    SUB(edge2, vert2, vert0);

    // begin calculating determinant - also used to calculate U parameter
    CROSS(pvec, dir, edge2);

    // if determinant is near zero, ray lies in plane of triangle
    det = DOT(edge1, pvec);

    if ((det > REAL(-0.001)) && (det < REAL(0.001)))
        return 0;
    inv_det = 1.0 / det;

    // calculate distance from vert0 to ray origin 
    SUB(tvec, orig, vert0);

    // calculate U parameter and test bounds
    *u = DOT(tvec, pvec) * inv_det;
    if ((*u < 0.0) || (*u > 1.0))
        return 0;

    // prepare to test V parameter
    CROSS(qvec, tvec, edge1);

    // calculate V parameter and test bounds
    *v = DOT(dir, qvec) * inv_det;
    if ((*v < 0.0) || ((*u + *v) > 1.0))
        return 0;

    // calculate t, ray intersects triangle
    *t = DOT(edge2, qvec) * inv_det;

    return 1;
}



static bool
SimpleUnclippedTest(dVector3 in_CoplanarPt, dVector3 in_v, dVector3 in_elt,
                    dVector3 in_n, dVector3* in_col_v, dReal &out_depth)
{
    dReal dp = 0.0;
    dReal contact_elt_length;

    DEPTH(dp, in_CoplanarPt, in_v, in_n);

    if (dp >= 0.0) {
        // if the penetration depth (calculated above) is more than
        //  the contact point's ELT, then we've chosen the wrong face
        //  and should switch faces
        contact_elt_length = dFabs(dCalcVectorDot3(in_elt, in_n));

        if (dp == 0.0)
            dp = dMin(DISTANCE_EPSILON, contact_elt_length);

        if ((contact_elt_length < SMALL_ELT) && (dp < EXPANDED_ELT_THRESH))
            dp = contact_elt_length;

        if ( (dp > 0.0) && (dp <= contact_elt_length)) {
            // Add a contact

            if ( ExamineContactPoint(in_col_v, in_n, in_v) ) {
                out_depth = dp;
                return true;
            }
        }
    }

    return false;
}




// Generate a "unique" contact.  A unique contact has a unique
//   position or normal.  If the potential contact has the same
//   position and normal as an existing contact, but a larger
//   penetration depth, this new depth is used instead
//
static void
GenerateContact(int in_Flags, dContactGeom* in_Contacts, int in_Stride,  
                dxTriMesh* in_TriMesh1,  dxTriMesh* in_TriMesh2,
                int TriIndex1, int TriIndex2,
                const dVector3 in_ContactPos, const dVector3 in_Normal, dReal in_Depth,
                int& OutTriCount)
{
    /*
    NOTE by Oleh_Derevenko:
    This function is called after maximal number of contacts has already been 
    collected because it has a side effect of replacing penetration depth of
    existing contact with larger penetration depth of another matching normal contact.
    If this logic is not necessary any more, you can bail out on reach of contact
    number maximum immediately in dCollideTTL(). You will also need to correct 
    conditional statements after invocations of GenerateContact() in dCollideTTL().
    */
    dIASSERT(in_Depth >= 0.0);
    //if (in_Depth < 0.0) -- the function is always called with depth >= 0
    //    return;

    do 
    {
        dContactGeom* Contact;
        dVector3 diff;

        if (!(in_Flags & CONTACTS_UNIMPORTANT))
        {
            bool duplicate = false;

            for (int i=0; i<OutTriCount; i++) 
            {
                Contact = SAFECONTACT(in_Flags, in_Contacts, i, in_Stride);

                // same position?
                SUB(diff, in_ContactPos, Contact->pos);
                if (dCalcVectorDot3(diff, diff) < dEpsilon) 
                {
                    // same normal?
                    if (REAL(1.0) - dFabs(dCalcVectorDot3(in_Normal, Contact->normal)) < dEpsilon)
                    {
                        if (in_Depth > Contact->depth) {
                            Contact->depth = in_Depth;
                            SMULT( Contact->normal, in_Normal, -1.0);
                            Contact->normal[3] = 0.0;
                        }
                        duplicate = true;
                        /*
                        NOTE by Oleh_Derevenko:
                        There may be a case when two normals are close to each other but no duplicate
                        while third normal is detected to be duplicate for both of them.
                        This is the only reason I can think of, there is no "break" statement.
                        Perhaps author considered it to be logical that the third normal would 
                        replace the depth in both of initial contacts. 
                        However, I consider it a questionable practice which should not
                        be applied without deep understanding of underlaying physics.
                        Even more, is this situation with close normal triplet acceptable at all?
                        Should not be two initial contacts reduced to one (replaced with the latter)?
                        If you know the answers for these questions, you may want to change this code.
                        See the same statement in GenerateContact() of collision_trimesh_box.cpp
                        */
                    }
                }
            }

            if (duplicate || OutTriCount == (in_Flags & NUMC_MASK))
            {
                break;
            }
        }
        else 
        {
            dIASSERT(OutTriCount < (in_Flags & NUMC_MASK));
        }

        // Add a new contact
        Contact = SAFECONTACT(in_Flags, in_Contacts, OutTriCount, in_Stride);

        SET( Contact->pos, in_ContactPos );
        Contact->pos[3] = 0.0;

        SMULT( Contact->normal, in_Normal, -1.0);
        Contact->normal[3] = 0.0;

        Contact->depth = in_Depth;

        Contact->g1 = in_TriMesh1;
        Contact->g2 = in_TriMesh2;

        Contact->side1 = TriIndex1;
        Contact->side2 = TriIndex2;

        OutTriCount++;
    }
    while (false);
}


#endif // dTRIMESH_OPCODE_USE_OLD_TRIMESH_TRIMESH_COLLIDER


#endif // dTRIMESH_OPCODE


#endif // dTRIMESH_ENABLED