1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
|
/*************************************************************************
* *
* Open Dynamics Engine, Copyright (C) 2001-2003 Russell L. Smith. *
* All rights reserved. Email: russ@q12.org Web: www.q12.org *
* *
* This library is free software; you can redistribute it and/or *
* modify it under the terms of EITHER: *
* (1) The GNU Lesser General Public License as published by the Free *
* Software Foundation; either version 2.1 of the License, or (at *
* your option) any later version. The text of the GNU Lesser *
* General Public License is included with this library in the *
* file LICENSE.TXT. *
* (2) The BSD-style license that is included with this library in *
* the file LICENSE-BSD.TXT. *
* *
* This library is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files *
* LICENSE.TXT and LICENSE-BSD.TXT for more details. *
* *
*************************************************************************/
/*
Code for Convex Collision Detection
By Rodrigo Hernandez
*/
#include <ode/common.h>
#include <ode/collision.h>
#include <ode/rotation.h>
#include "config.h"
#include "matrix.h"
#include "odemath.h"
#include "collision_kernel.h"
#include "collision_std.h"
#include "collision_util.h"
#ifdef _MSC_VER
#pragma warning(disable:4291) // for VC++, no complaints about "no matching operator delete found"
#endif
#if 1
#define dMIN(A,B) ((A)>(B) ? (B) : (A))
#define dMAX(A,B) ((A)>(B) ? (A) : (B))
#else
#define dMIN(A,B) std::min(A,B)
#define dMAX(A,B) std::max(A,B)
#endif
//****************************************************************************
// Convex public API
dxConvex::dxConvex (dSpaceID space,
const dReal *_planes,
unsigned int _planecount,
const dReal *_points,
unsigned int _pointcount,
const unsigned int *_polygons) :
dxGeom (space,1)
{
dAASSERT (_planes != NULL);
dAASSERT (_points != NULL);
dAASSERT (_polygons != NULL);
//fprintf(stdout,"dxConvex Constructor planes %X\n",_planes);
type = dConvexClass;
planes = _planes;
planecount = _planecount;
// we need points as well
points = _points;
pointcount = _pointcount;
polygons=_polygons;
edges = NULL;
FillEdges();
#ifndef dNODEBUG
// Check for properly build polygons by calculating the determinant
// of the 3x3 matrix composed of the first 3 points in the polygon.
const unsigned int *points_in_poly=polygons;
const unsigned int *index=polygons+1;
for(unsigned int i=0;i<planecount;++i)
{
dAASSERT (*points_in_poly > 2 );
if((
points[(index[0]*3)+0]*points[(index[1]*3)+1]*points[(index[2]*3)+2] +
points[(index[0]*3)+1]*points[(index[1]*3)+2]*points[(index[2]*3)+0] +
points[(index[0]*3)+2]*points[(index[1]*3)+0]*points[(index[2]*3)+1] -
points[(index[0]*3)+2]*points[(index[1]*3)+1]*points[(index[2]*3)+0] -
points[(index[0]*3)+1]*points[(index[1]*3)+0]*points[(index[2]*3)+2] -
points[(index[0]*3)+0]*points[(index[1]*3)+2]*points[(index[2]*3)+1])<0)
{
fprintf(stdout,"WARNING: Polygon %d is not defined counterclockwise\n",i);
}
points_in_poly+=(*points_in_poly+1);
index=points_in_poly+1;
if(planes[(i*4)+3]<0) fprintf(stdout,"WARNING: Plane %d does not contain the origin\n",i);
}
#endif
//CreateTree();
}
void dxConvex::computeAABB()
{
// this can, and should be optimized
dVector3 point;
dMultiply0_331 (point,final_posr->R,points);
aabb[0] = point[0]+final_posr->pos[0];
aabb[1] = point[0]+final_posr->pos[0];
aabb[2] = point[1]+final_posr->pos[1];
aabb[3] = point[1]+final_posr->pos[1];
aabb[4] = point[2]+final_posr->pos[2];
aabb[5] = point[2]+final_posr->pos[2];
for(unsigned int i=3;i<(pointcount*3);i+=3)
{
dMultiply0_331 (point,final_posr->R,&points[i]);
aabb[0] = dMIN(aabb[0],point[0]+final_posr->pos[0]);
aabb[1] = dMAX(aabb[1],point[0]+final_posr->pos[0]);
aabb[2] = dMIN(aabb[2],point[1]+final_posr->pos[1]);
aabb[3] = dMAX(aabb[3],point[1]+final_posr->pos[1]);
aabb[4] = dMIN(aabb[4],point[2]+final_posr->pos[2]);
aabb[5] = dMAX(aabb[5],point[2]+final_posr->pos[2]);
}
}
/*! \brief Populates the edges set, should be called only once whenever the polygon array gets updated */
void dxConvex::FillEdges()
{
const unsigned int *points_in_poly=polygons;
const unsigned int *index=polygons+1;
if (edges!=NULL) delete[] edges;
edgecount = 0;
edge e;
bool isinset;
for(unsigned int i=0;i<planecount;++i)
{
for(unsigned int j=0;j<*points_in_poly;++j)
{
e.first = dMIN(index[j],index[(j+1)%*points_in_poly]);
e.second = dMAX(index[j],index[(j+1)%*points_in_poly]);
isinset=false;
for(unsigned int k=0;k<edgecount;++k)
{
if((edges[k].first==e.first)&&(edges[k].second==e.second))
{
isinset=true;
break;
}
}
if(!isinset)
{
edge* tmp = new edge[edgecount+1];
if(edgecount!=0)
{
memcpy(tmp,edges,(edgecount)*sizeof(edge));
delete[] edges;
}
tmp[edgecount].first=e.first;
tmp[edgecount].second=e.second;
edges = tmp;
++edgecount;
}
}
points_in_poly+=(*points_in_poly+1);
index=points_in_poly+1;
}
}
#if 0
dxConvex::BSPNode* dxConvex::CreateNode(std::vector<Arc> Arcs,std::vector<Polygon> Polygons)
{
#if 0
dVector3 ea,eb,e;
dVector3Copy(points+((edges.begin()+Arcs[0].edge)first*3),ea);
dMultiply0_331(e1b,cvx1.final_posr->R,cvx1.points+(i->second*3));
dVector3Copy(points[edges[Arcs[0].edge]
#endif
return NULL;
}
void dxConvex::CreateTree()
{
std::vector<Arc> A;
A.reserve(edgecount);
for(unsigned int i=0;i<edgecount;++i)
{
this->GetFacesSharedByEdge(i,A[i].normals);
A[i].edge = i;
}
std::vector<Polygon> S;
S.reserve(pointcount);
for(unsigned int i=0;i<pointcount;++i)
{
this->GetFacesSharedByVertex(i,S[i].normals);
S[i].vertex=i;
}
this->tree = CreateNode(A,S);
}
void dxConvex::GetFacesSharedByVertex(int i, std::vector<int> f)
{
}
void dxConvex::GetFacesSharedByEdge(int i, int* f)
{
}
void dxConvex::GetFaceNormal(int i, dVector3 normal)
{
}
#endif
dGeomID dCreateConvex (dSpaceID space,const dReal *_planes,unsigned int _planecount,
const dReal *_points,
unsigned int _pointcount,
const unsigned int *_polygons)
{
//fprintf(stdout,"dxConvex dCreateConvex\n");
return new dxConvex(space,_planes, _planecount,
_points,
_pointcount,
_polygons);
}
void dGeomSetConvex (dGeomID g,const dReal *_planes,unsigned int _planecount,
const dReal *_points,
unsigned int _pointcount,
const unsigned int *_polygons)
{
//fprintf(stdout,"dxConvex dGeomSetConvex\n");
dUASSERT (g && g->type == dConvexClass,"argument not a convex shape");
dxConvex *s = (dxConvex*) g;
s->planes = _planes;
s->planecount = _planecount;
s->points = _points;
s->pointcount = _pointcount;
s->polygons=_polygons;
}
//****************************************************************************
// Helper Inlines
//
/*! \brief Returns Whether or not the segment ab intersects plane p
\param a origin of the segment
\param b segment destination
\param p plane to test for intersection
\param t returns the time "t" in the segment ray that gives us the intersecting
point
\param q returns the intersection point
\return true if there is an intersection, otherwise false.
*/
bool IntersectSegmentPlane(dVector3 a,
dVector3 b,
dVector4 p,
dReal &t,
dVector3 q)
{
// Compute the t value for the directed line ab intersecting the plane
dVector3 ab;
ab[0]= b[0] - a[0];
ab[1]= b[1] - a[1];
ab[2]= b[2] - a[2];
t = (p[3] - dCalcVectorDot3(p,a)) / dCalcVectorDot3(p,ab);
// If t in [0..1] compute and return intersection point
if (t >= 0.0 && t <= 1.0)
{
q[0] = a[0] + t * ab[0];
q[1] = a[1] + t * ab[1];
q[2] = a[2] + t * ab[2];
return true;
}
// Else no intersection
return false;
}
/*! \brief Returns the Closest Point in Ray 1 to Ray 2
\param Origin1 The origin of Ray 1
\param Direction1 The direction of Ray 1
\param Origin1 The origin of Ray 2
\param Direction1 The direction of Ray 3
\param t the time "t" in Ray 1 that gives us the closest point
(closest_point=Origin1+(Direction1*t).
\return true if there is a closest point, false if the rays are paralell.
*/
inline bool ClosestPointInRay(const dVector3 Origin1,
const dVector3 Direction1,
const dVector3 Origin2,
const dVector3 Direction2,
dReal& t)
{
dVector3 w = {Origin1[0]-Origin2[0],
Origin1[1]-Origin2[1],
Origin1[2]-Origin2[2]};
dReal a = dCalcVectorDot3(Direction1 , Direction1);
dReal b = dCalcVectorDot3(Direction1 , Direction2);
dReal c = dCalcVectorDot3(Direction2 , Direction2);
dReal d = dCalcVectorDot3(Direction1 , w);
dReal e = dCalcVectorDot3(Direction2 , w);
dReal denominator = (a*c)-(b*b);
if(denominator==0.0f)
{
return false;
}
t = ((a*e)-(b*d))/denominator;
return true;
}
/*! \brief Returns the Closest Points from Segment 1 to Segment 2
\param p1 start of segment 1
\param q1 end of segment 1
\param p2 start of segment 2
\param q2 end of segment 2
\param t the time "t" in Ray 1 that gives us the closest point
(closest_point=Origin1+(Direction1*t).
\return true if there is a closest point, false if the rays are paralell.
\note Adapted from Christer Ericson's Real Time Collision Detection Book.
*/
inline void ClosestPointBetweenSegments(dVector3& p1,
dVector3& q1,
dVector3& p2,
dVector3& q2,
dVector3& c1,
dVector3& c2)
{
// s & t were originaly part of the output args, but since
// we don't really need them, we'll just declare them in here
dReal s;
dReal t;
dVector3 d1 = {q1[0] - p1[0],
q1[1] - p1[1],
q1[2] - p1[2]};
dVector3 d2 = {q2[0] - p2[0],
q2[1] - p2[1],
q2[2] - p2[2]};
dVector3 r = {p1[0] - p2[0],
p1[1] - p2[1],
p1[2] - p2[2]};
dReal a = dCalcVectorDot3(d1, d1);
dReal e = dCalcVectorDot3(d2, d2);
dReal f = dCalcVectorDot3(d2, r);
// Check if either or both segments degenerate into points
if (a <= dEpsilon && e <= dEpsilon)
{
// Both segments degenerate into points
s = t = 0.0f;
dVector3Copy(p1,c1);
dVector3Copy(p2,c2);
return;
}
if (a <= dEpsilon)
{
// First segment degenerates into a point
s = 0.0f;
t = f / e; // s = 0 => t = (b*s + f) / e = f / e
t = dxClamp(t, 0.0f, 1.0f);
}
else
{
dReal c = dCalcVectorDot3(d1, r);
if (e <= dEpsilon)
{
// Second segment degenerates into a point
t = 0.0f;
s = dxClamp(-c / a, 0.0f, 1.0f); // t = 0 => s = (b*t - c) / a = -c / a
}
else
{
// The general non degenerate case starts here
dReal b = dCalcVectorDot3(d1, d2);
dReal denom = a*e-b*b; // Always nonnegative
// If segments not parallel, compute closest point on L1 to L2, and
// clamp to segment S1. Else pick arbitrary s (here 0)
if (denom != 0.0f)
{
s = dxClamp((b*f - c*e) / denom, 0.0f, 1.0f);
}
else s = 0.0f;
#if 0
// Compute point on L2 closest to S1(s) using
// t = Dot((P1+D1*s)-P2,D2) / Dot(D2,D2) = (b*s + f) / e
t = (b*s + f) / e;
// If t in [0,1] done. Else clamp t, recompute s for the new value
// of t using s = Dot((P2+D2*t)-P1,D1) / Dot(D1,D1)= (t*b - c) / a
// and clamp s to [0, 1]
if (t < 0.0f) {
t = 0.0f;
s = dxClamp(-c / a, 0.0f, 1.0f);
} else if (t > 1.0f) {
t = 1.0f;
s = dxClamp((b - c) / a, 0.0f, 1.0f);
}
#else
dReal tnom = b*s + f;
if (tnom < 0.0f)
{
t = 0.0f;
s = dxClamp(-c / a, 0.0f, 1.0f);
}
else if (tnom > e)
{
t = 1.0f;
s = dxClamp((b - c) / a, 0.0f, 1.0f);
}
else
{
t = tnom / e;
}
#endif
}
}
c1[0] = p1[0] + d1[0] * s;
c1[1] = p1[1] + d1[1] * s;
c1[2] = p1[2] + d1[2] * s;
c2[0] = p2[0] + d2[0] * t;
c2[1] = p2[1] + d2[1] * t;
c2[2] = p2[2] + d2[2] * t;
}
#if 0
dReal tnom = b*s + f;
if (tnom < 0.0f) {
t = 0.0f;
s = dxClamp(-c / a, 0.0f, 1.0f);
} else if (tnom > e) {
t = 1.0f;
s = dxClamp((b - c) / a, 0.0f, 1.0f);
} else {
t = tnom / e;
}
#endif
/*! \brief Returns the Ray on which 2 planes intersect if they do.
\param p1 Plane 1
\param p2 Plane 2
\param p Contains the origin of the ray upon returning if planes intersect
\param d Contains the direction of the ray upon returning if planes intersect
\return true if the planes intersect, false if paralell.
*/
inline bool IntersectPlanes(const dVector4 p1, const dVector4 p2, dVector3 p, dVector3 d)
{
// Compute direction of intersection line
dCalcVectorCross3(d,p1,p2);
// If d is (near) zero, the planes are parallel (and separated)
// or coincident, so they're not considered intersecting
dReal denom = dCalcVectorDot3(d, d);
if (denom < dEpsilon) return false;
dVector3 n;
n[0]=p1[3]*p2[0] - p2[3]*p1[0];
n[1]=p1[3]*p2[1] - p2[3]*p1[1];
n[2]=p1[3]*p2[2] - p2[3]*p1[2];
// Compute point on intersection line
dCalcVectorCross3(p,n,d);
p[0]/=denom;
p[1]/=denom;
p[2]/=denom;
return true;
}
#if 0
/*! \brief Finds out if a point lies inside a convex
\param p Point to test
\param convex a pointer to convex to test against
\return true if the point lies inside the convex, false if not.
*/
inline bool IsPointInConvex(dVector3 p,
dxConvex *convex)
{
dVector3 lp,tmp;
// move point into convex space to avoid plane local to world calculations
tmp[0] = p[0] - convex->final_posr->pos[0];
tmp[1] = p[1] - convex->final_posr->pos[1];
tmp[2] = p[2] - convex->final_posr->pos[2];
dMultiply1_331 (lp,convex->final_posr->R,tmp);
for(unsigned int i=0;i<convex->planecount;++i)
{
if((
((convex->planes+(i*4))[0]*lp[0])+
((convex->planes+(i*4))[1]*lp[1])+
((convex->planes+(i*4))[2]*lp[2])+
-(convex->planes+(i*4))[3]
)>0)
{
return false;
}
}
return true;
}
#endif
/*! \brief Finds out if a point lies inside a 2D polygon
\param p Point to test
\param polygon a pointer to the start of the convex polygon index buffer
\param out the closest point in the polygon if the point is not inside
\return true if the point lies inside of the polygon, false if not.
*/
inline bool IsPointInPolygon(dVector3 p,
const unsigned int *polygon,
dReal *plane,
dxConvex *convex,
dVector3 out)
{
// p is the point we want to check,
// polygon is a pointer to the polygon we
// are checking against, remember it goes
// number of vertices then that many indexes
// out returns the closest point on the border of the
// polygon if the point is not inside it.
dVector3 a;
dVector3 b;
dVector3 ab;
dVector3 ap;
dVector3 v;
unsigned pointcount=polygon[0];
dIASSERT(pointcount != 0);
polygon++; // skip past pointcount
dMultiply0_331 (b,convex->final_posr->R,
&convex->points[(polygon[pointcount-1]*3)]);
b[0]=convex->final_posr->pos[0]+b[0];
b[1]=convex->final_posr->pos[1]+b[1];
b[2]=convex->final_posr->pos[2]+b[2];
for(unsigned i=0; i != pointcount; ++i)
{
a[0] = b[0];
a[1] = b[1];
a[2] = b[2];
dMultiply0_331 (b,convex->final_posr->R,&convex->points[(polygon[i]*3)]);
b[0]=convex->final_posr->pos[0]+b[0];
b[1]=convex->final_posr->pos[1]+b[1];
b[2]=convex->final_posr->pos[2]+b[2];
ab[0] = b[0] - a[0];
ab[1] = b[1] - a[1];
ab[2] = b[2] - a[2];
ap[0] = p[0] - a[0];
ap[1] = p[1] - a[1];
ap[2] = p[2] - a[2];
dCalcVectorCross3(v, ab, plane);
if (dCalcVectorDot3(ap, v) > REAL(0.0))
{
dReal ab_m2 = dCalcVectorDot3(ab, ab);
dReal s = ab_m2 != REAL(0.0) ? dCalcVectorDot3(ab, ap) / ab_m2 : REAL(0.0);
if (s <= REAL(0.0))
{
out[0] = a[0];
out[1] = a[1];
out[2] = a[2];
}
else if (s >= REAL(1.0))
{
out[0] = b[0];
out[1] = b[1];
out[2] = b[2];
}
else
{
out[0] = a[0] + ab[0] * s;
out[1] = a[1] + ab[1] * s;
out[2] = a[2] + ab[2] * s;
}
return false;
}
}
return true;
}
int dCollideConvexPlane (dxGeom *o1, dxGeom *o2, int flags,
dContactGeom *contact, int skip)
{
dIASSERT (skip >= (int)sizeof(dContactGeom));
dIASSERT (o1->type == dConvexClass);
dIASSERT (o2->type == dPlaneClass);
dIASSERT ((flags & NUMC_MASK) >= 1);
dxConvex *Convex = (dxConvex*) o1;
dxPlane *Plane = (dxPlane*) o2;
unsigned int contacts=0;
unsigned int maxc = flags & NUMC_MASK;
dVector3 v2;
#define LTEQ_ZERO 0x10000000
#define GTEQ_ZERO 0x20000000
#define BOTH_SIGNS (LTEQ_ZERO | GTEQ_ZERO)
dIASSERT((BOTH_SIGNS & NUMC_MASK) == 0); // used in conditional operator later
unsigned int totalsign = 0;
for(unsigned int i=0;i<Convex->pointcount;++i)
{
dMultiply0_331 (v2,Convex->final_posr->R,&Convex->points[(i*3)]);
dVector3Add(Convex->final_posr->pos, v2, v2);
unsigned int distance2sign = GTEQ_ZERO;
dReal distance2 = dVector3Dot(Plane->p, v2) - Plane->p[3]; // Ax + By + Cz - D
if((distance2 <= REAL(0.0)))
{
distance2sign = distance2 != REAL(0.0) ? LTEQ_ZERO : BOTH_SIGNS;
if (contacts != maxc)
{
dContactGeom *target = SAFECONTACT(flags, contact, contacts, skip);
dVector3Copy(Plane->p, target->normal);
dVector3Copy(v2, target->pos);
target->depth = -distance2;
target->g1 = Convex;
target->g2 = Plane;
target->side1 = -1; // TODO: set plane index?
target->side2 = -1;
contacts++;
}
}
// Take new sign into account
totalsign |= distance2sign;
// Check if contacts are full and both signs have been already found
if (((contacts ^ maxc) | totalsign) == BOTH_SIGNS) // harder to comprehend but requires one register less
{
break; // Nothing can be changed any more
}
}
if (totalsign == BOTH_SIGNS) return contacts;
return 0;
#undef BOTH_SIGNS
#undef GTEQ_ZERO
#undef LTEQ_ZERO
}
int dCollideSphereConvex (dxGeom *o1, dxGeom *o2, int flags,
dContactGeom *contact, int skip)
{
dIASSERT (skip >= (int)sizeof(dContactGeom));
dIASSERT (o1->type == dSphereClass);
dIASSERT (o2->type == dConvexClass);
dIASSERT ((flags & NUMC_MASK) >= 1);
dxSphere *Sphere = (dxSphere*) o1;
dxConvex *Convex = (dxConvex*) o2;
dReal dist,closestdist=dInfinity;
dVector4 plane;
// dVector3 contactpoint;
dVector3 offsetpos,out,temp;
const unsigned int *pPoly=Convex->polygons;
int closestplane=-1;
bool sphereinside=true;
/*
Do a good old sphere vs plane check first,
if a collision is found then check if the contact point
is within the polygon
*/
// offset the sphere final_posr->position into the convex space
offsetpos[0]=Sphere->final_posr->pos[0]-Convex->final_posr->pos[0];
offsetpos[1]=Sphere->final_posr->pos[1]-Convex->final_posr->pos[1];
offsetpos[2]=Sphere->final_posr->pos[2]-Convex->final_posr->pos[2];
for(unsigned int i=0;i<Convex->planecount;++i)
{
// apply rotation to the plane
dMultiply0_331(plane,Convex->final_posr->R,&Convex->planes[(i*4)]);
plane[3]=(&Convex->planes[(i*4)])[3];
// Get the distance from the sphere origin to the plane
dist = dVector3Dot(plane, offsetpos) - plane[3]; // Ax + By + Cz - D
if(dist>0)
{
// if we get here, we know the center of the sphere is
// outside of the convex hull.
if(dist<Sphere->radius)
{
// if we get here we know the sphere surface penetrates
// the plane
if(IsPointInPolygon(Sphere->final_posr->pos,pPoly,plane,Convex,out))
{
// finally if we get here we know that the
// sphere is directly touching the inside of the polyhedron
contact->normal[0] = plane[0];
contact->normal[1] = plane[1];
contact->normal[2] = plane[2];
contact->pos[0] = Sphere->final_posr->pos[0]+
(-contact->normal[0]*Sphere->radius);
contact->pos[1] = Sphere->final_posr->pos[1]+
(-contact->normal[1]*Sphere->radius);
contact->pos[2] = Sphere->final_posr->pos[2]+
(-contact->normal[2]*Sphere->radius);
contact->depth = Sphere->radius-dist;
contact->g1 = Sphere;
contact->g2 = Convex;
contact->side1 = -1;
contact->side2 = -1; // TODO: set plane index?
return 1;
}
else
{
// the sphere may not be directly touching
// the polyhedron, but it may be touching
// a point or an edge, if the distance between
// the closest point on the poly (out) and the
// center of the sphere is less than the sphere
// radius we have a hit.
temp[0] = (Sphere->final_posr->pos[0]-out[0]);
temp[1] = (Sphere->final_posr->pos[1]-out[1]);
temp[2] = (Sphere->final_posr->pos[2]-out[2]);
dist=(temp[0]*temp[0])+(temp[1]*temp[1])+(temp[2]*temp[2]);
// avoid the sqrt unless really necesary
if(dist<(Sphere->radius*Sphere->radius))
{
// We got an indirect hit
dist=dSqrt(dist);
contact->normal[0] = temp[0]/dist;
contact->normal[1] = temp[1]/dist;
contact->normal[2] = temp[2]/dist;
contact->pos[0] = Sphere->final_posr->pos[0]+
(-contact->normal[0]*Sphere->radius);
contact->pos[1] = Sphere->final_posr->pos[1]+
(-contact->normal[1]*Sphere->radius);
contact->pos[2] = Sphere->final_posr->pos[2]+
(-contact->normal[2]*Sphere->radius);
contact->depth = Sphere->radius-dist;
contact->g1 = Sphere;
contact->g2 = Convex;
contact->side1 = -1;
contact->side2 = -1; // TODO: set plane index?
return 1;
}
}
}
sphereinside=false;
}
if(sphereinside)
{
if(closestdist>dFabs(dist))
{
closestdist=dFabs(dist);
closestplane=i;
}
}
pPoly+=pPoly[0]+1;
}
if(sphereinside)
{
// if the center of the sphere is inside
// the Convex, we need to pop it out
dMultiply0_331(contact->normal,
Convex->final_posr->R,
&Convex->planes[(closestplane*4)]);
contact->pos[0] = Sphere->final_posr->pos[0];
contact->pos[1] = Sphere->final_posr->pos[1];
contact->pos[2] = Sphere->final_posr->pos[2];
contact->depth = closestdist+Sphere->radius;
contact->g1 = Sphere;
contact->g2 = Convex;
contact->side1 = -1;
contact->side2 = -1; // TODO: set plane index?
return 1;
}
return 0;
}
int dCollideConvexBox (dxGeom *o1, dxGeom *o2, int flags,
dContactGeom * /*contact*/, int skip)
{
dIASSERT (skip >= (int)sizeof(dContactGeom));
dIASSERT (o1->type == dConvexClass);
dIASSERT (o2->type == dBoxClass);
dIASSERT ((flags & NUMC_MASK) >= 1);
//dxConvex *Convex = (dxConvex*) o1;
//dxBox *Box = (dxBox*) o2;
return 0;
}
int dCollideConvexCapsule (dxGeom *o1, dxGeom *o2,
int flags, dContactGeom * /*contact*/, int skip)
{
dIASSERT (skip >= (int)sizeof(dContactGeom));
dIASSERT (o1->type == dConvexClass);
dIASSERT (o2->type == dCapsuleClass);
dIASSERT ((flags & NUMC_MASK) >= 1);
//dxConvex *Convex = (dxConvex*) o1;
//dxCapsule *Capsule = (dxCapsule*) o2;
return 0;
}
inline void ComputeInterval(dxConvex& cvx,dVector4 axis,dReal& min,dReal& max)
{
/* TODO: Use Support points here */
dVector3 point;
dReal value;
//fprintf(stdout,"Compute Interval Axis %f,%f,%f\n",axis[0],axis[1],axis[2]);
dMultiply0_331(point,cvx.final_posr->R,cvx.points);
//fprintf(stdout,"initial point %f,%f,%f\n",point[0],point[1],point[2]);
point[0]+=cvx.final_posr->pos[0];
point[1]+=cvx.final_posr->pos[1];
point[2]+=cvx.final_posr->pos[2];
max = min = dCalcVectorDot3(point,axis)-axis[3];//(*)
for (unsigned int i = 1; i < cvx.pointcount; ++i)
{
dMultiply0_331(point,cvx.final_posr->R,cvx.points+(i*3));
point[0]+=cvx.final_posr->pos[0];
point[1]+=cvx.final_posr->pos[1];
point[2]+=cvx.final_posr->pos[2];
value=dCalcVectorDot3(point,axis)-axis[3];//(*)
if(value<min)
{
min=value;
}
else if(value>max)
{
max=value;
}
}
// *: usually using the distance part of the plane (axis) is
// not necesary, however, here we need it here in order to know
// which face to pick when there are 2 parallel sides.
}
bool CheckEdgeIntersection(dxConvex& cvx1,dxConvex& cvx2, int flags,int& curc,
dContactGeom *contact, int skip)
{
int maxc = flags & NUMC_MASK;
dIASSERT(maxc != 0);
dVector3 e1,e2,q;
dVector4 plane,depthplane;
dReal t;
for(unsigned int i = 0;i<cvx1.edgecount;++i)
{
// Rotate
dMultiply0_331(e1,cvx1.final_posr->R,cvx1.points+(cvx1.edges[i].first*3));
// translate
e1[0]+=cvx1.final_posr->pos[0];
e1[1]+=cvx1.final_posr->pos[1];
e1[2]+=cvx1.final_posr->pos[2];
// Rotate
dMultiply0_331(e2,cvx1.final_posr->R,cvx1.points+(cvx1.edges[i].second*3));
// translate
e2[0]+=cvx1.final_posr->pos[0];
e2[1]+=cvx1.final_posr->pos[1];
e2[2]+=cvx1.final_posr->pos[2];
const unsigned int* pPoly=cvx2.polygons;
for(sizeint j=0;j<cvx2.planecount;++j)
{
// Rotate
dMultiply0_331(plane,cvx2.final_posr->R,cvx2.planes+(j*4));
dNormalize3(plane);
// Translate
plane[3]=
(cvx2.planes[(j*4)+3])+
((plane[0] * cvx2.final_posr->pos[0]) +
(plane[1] * cvx2.final_posr->pos[1]) +
(plane[2] * cvx2.final_posr->pos[2]));
dContactGeom *target = SAFECONTACT(flags, contact, curc, skip);
target->g1=&cvx1; // g1 is the one pushed
target->g2=&cvx2;
if(IntersectSegmentPlane(e1,e2,plane,t,target->pos))
{
if(IsPointInPolygon(target->pos,pPoly,plane,&cvx2,q))
{
target->depth = dInfinity;
for(sizeint k=0;k<cvx2.planecount;++k)
{
if(k==j) continue; // we're already at 0 depth on this plane
// Rotate
dMultiply0_331(depthplane,cvx2.final_posr->R,cvx2.planes+(k*4));
dNormalize3(depthplane);
// Translate
depthplane[3]=
(cvx2.planes[(k*4)+3])+
((plane[0] * cvx2.final_posr->pos[0]) +
(plane[1] * cvx2.final_posr->pos[1]) +
(plane[2] * cvx2.final_posr->pos[2]));
dReal depth = (dVector3Dot(depthplane, target->pos) - depthplane[3]); // Ax + By + Cz - D
if((fabs(depth)<fabs(target->depth))&&((depth<-dEpsilon)||(depth>dEpsilon)))
{
target->depth=depth;
dVector3Copy(depthplane,target->normal);
}
}
++curc;
if(curc==maxc)
return true;
}
}
pPoly+=pPoly[0]+1;
}
}
return false;
}
/*
Helper struct
*/
struct ConvexConvexSATOutput
{
dReal min_depth;
int depth_type;
dVector3 dist; // distance from center to center, from cvx1 to cvx2
dVector3 e1a,e1b,e2a,e2b; // e1a to e1b = edge in cvx1,e2a to e2b = edge in cvx2.
};
/*! \brief Does an axis separation test using cvx1 planes on cvx1 and cvx2, returns true for a collision false for no collision
\param cvx1 [IN] First Convex object, its planes are used to do the tests
\param cvx2 [IN] Second Convex object
\param min_depth [IN/OUT] Used to input as well as output the minimum depth so far, must be set to a huge value such as dInfinity for initialization.
\param g1 [OUT] Pointer to the convex which should be used in the returned contact as g1
\param g2 [OUT] Pointer to the convex which should be used in the returned contact as g2
*/
inline bool CheckSATConvexFaces(dxConvex& cvx1,
dxConvex& cvx2,
ConvexConvexSATOutput& ccso)
{
dReal min,max,min1,max1,min2,max2,depth;
dVector4 plane;
for(unsigned int i=0;i<cvx1.planecount;++i)
{
// -- Apply Transforms --
// Rotate
dMultiply0_331(plane,cvx1.final_posr->R,cvx1.planes+(i*4));
dNormalize3(plane);
// Translate
plane[3]=
(cvx1.planes[(i*4)+3])+
((plane[0] * cvx1.final_posr->pos[0]) +
(plane[1] * cvx1.final_posr->pos[1]) +
(plane[2] * cvx1.final_posr->pos[2]));
ComputeInterval(cvx1,plane,min1,max1);
ComputeInterval(cvx2,plane,min2,max2);
if(max2<min1 || max1<min2) return false;
min = dMAX(min1, min2);
max = dMIN(max1, max2);
depth = max-min;
/*
Take only into account the faces that penetrate cvx1 to determine
minimum depth
((max2*min2)<=0) = different sign, or one is zero and thus
cvx2 barelly touches cvx1
*/
if (((max2*min2)<=0) && (dFabs(depth)<dFabs(ccso.min_depth)))
{
// Flip plane because the contact normal must point INTO g1,
// plus the integrator seems to like positive depths better than negative ones
ccso.min_depth=-depth;
ccso.depth_type = 1; // 1 = face-something
}
}
return true;
}
/*! \brief Does an axis separation test using cvx1 and cvx2 edges, returns true for a collision false for no collision
\param cvx1 [IN] First Convex object
\param cvx2 [IN] Second Convex object
\param min_depth [IN/OUT] Used to input as well as output the minimum depth so far, must be set to a huge value such as dInfinity for initialization.
\param g1 [OUT] Pointer to the convex which should be used in the returned contact as g1
\param g2 [OUT] Pointer to the convex which should be used in the returned contact as g2
*/
inline bool CheckSATConvexEdges(dxConvex& cvx1,
dxConvex& cvx2,
ConvexConvexSATOutput& ccso)
{
// Test cross products of pairs of edges
dReal depth,min,max,min1,max1,min2,max2;
dVector4 plane;
dVector3 e1,e2,e1a,e1b,e2a,e2b;
dVector3 dist;
dVector3Copy(ccso.dist,dist);
unsigned int s1 = cvx1.SupportIndex(dist);
// invert direction
dVector3Inv(dist);
unsigned int s2 = cvx2.SupportIndex(dist);
for(unsigned int i = 0;i<cvx1.edgecount;++i)
{
// Skip edge if it doesn't contain the extremal vertex
if((cvx1.edges[i].first!=s1)&&(cvx1.edges[i].second!=s1)) continue;
// we only need to apply rotation here
dMultiply0_331(e1a,cvx1.final_posr->R,cvx1.points+(cvx1.edges[i].first*3));
dMultiply0_331(e1b,cvx1.final_posr->R,cvx1.points+(cvx1.edges[i].second*3));
e1[0]=e1b[0]-e1a[0];
e1[1]=e1b[1]-e1a[1];
e1[2]=e1b[2]-e1a[2];
for(unsigned int j = 0;j<cvx2.edgecount;++j)
{
// Skip edge if it doesn't contain the extremal vertex
if((cvx2.edges[j].first!=s2)&&(cvx2.edges[j].second!=s2)) continue;
// we only need to apply rotation here
dMultiply0_331 (e2a,cvx2.final_posr->R,cvx2.points+(cvx2.edges[j].first*3));
dMultiply0_331 (e2b,cvx2.final_posr->R,cvx2.points+(cvx2.edges[j].second*3));
e2[0]=e2b[0]-e2a[0];
e2[1]=e2b[1]-e2a[1];
e2[2]=e2b[2]-e2a[2];
dCalcVectorCross3(plane,e1,e2);
if(dCalcVectorDot3(plane,plane)<dEpsilon) /* edges are parallel */ continue;
dNormalize3(plane);
plane[3]=0;
ComputeInterval(cvx1,plane,min1,max1);
ComputeInterval(cvx2,plane,min2,max2);
if(max2 < min1 || max1 < min2) return false;
min = dMAX(min1, min2);
max = dMIN(max1, max2);
depth = max-min;
if (((dFabs(depth)+dEpsilon)<dFabs(ccso.min_depth)))
{
ccso.min_depth=depth;
ccso.depth_type = 2; // 2 means edge-edge
// use cached values, add position
dVector3Copy(e1a,ccso.e1a);
dVector3Copy(e1b,ccso.e1b);
ccso.e1a[0]+=cvx1.final_posr->pos[0];
ccso.e1a[1]+=cvx1.final_posr->pos[1];
ccso.e1a[2]+=cvx1.final_posr->pos[2];
ccso.e1b[0]+=cvx1.final_posr->pos[0];
ccso.e1b[1]+=cvx1.final_posr->pos[1];
ccso.e1b[2]+=cvx1.final_posr->pos[2];
dVector3Copy(e2a,ccso.e2a);
dVector3Copy(e2b,ccso.e2b);
ccso.e2a[0]+=cvx2.final_posr->pos[0];
ccso.e2a[1]+=cvx2.final_posr->pos[1];
ccso.e2a[2]+=cvx2.final_posr->pos[2];
ccso.e2b[0]+=cvx2.final_posr->pos[0];
ccso.e2b[1]+=cvx2.final_posr->pos[1];
ccso.e2b[2]+=cvx2.final_posr->pos[2];
}
}
}
return true;
}
#if 0
/*! \brief Returns the index of the plane/side of the incident convex (ccso.g2)
* which is closer to the reference convex (ccso.g1) side
*
* This function just looks for the incident face that is facing the reference face
* and is the closest to being parallel to it, which sometimes is.
*/
inline unsigned int GetIncidentSide(ConvexConvexSATOutput& ccso)
{
dVector3 nis; // (N)ormal in (I)ncident convex (S)pace
dReal SavedDot;
dReal Dot;
unsigned int incident_side=0;
// Rotate the plane normal into incident convex space
// (things like this should be done all over this file,
// will look into that)
dMultiply1_331(nis,ccso.g2->final_posr->R,ccso.plane);
SavedDot = dCalcVectorDot3(nis,ccso.g2->planes);
for(unsigned int i=1;i<ccso.g2->planecount;++i)
{
Dot = dCalcVectorDot3(nis,ccso.g2->planes+(i*4));
if(Dot>SavedDot)
{
SavedDot=Dot;
incident_side=i;
}
}
return incident_side;
}
#endif
inline unsigned int GetSupportSide(dVector3& dir,dxConvex& cvx)
{
dVector3 dics,tmp; // Direction in convex space
dReal SavedDot;
dReal Dot;
unsigned int side=0;
dVector3Copy(dir,tmp);
dNormalize3(tmp);
dMultiply1_331(dics,cvx.final_posr->R,tmp);
SavedDot = dCalcVectorDot3(dics,cvx.planes);
for(unsigned int i=1;i<cvx.planecount;++i)
{
Dot = dCalcVectorDot3(dics,cvx.planes+(i*4));
if(Dot>SavedDot)
{
SavedDot=Dot;
side=i;
}
}
return side;
}
/*! \brief Does an axis separation test between the 2 convex shapes
using faces and edges */
int TestConvexIntersection(dxConvex& cvx1,dxConvex& cvx2, int flags,
dContactGeom *contact, int skip)
{
ConvexConvexSATOutput ccso;
#ifndef dNDEBUG
memset(&ccso, 0, sizeof(ccso)); // get rid of 'uninitialized values' warning
#endif
ccso.min_depth=dInfinity; // Min not min at all
ccso.depth_type=0; // no type
// precompute distance vector
dSubtractVectors3(ccso.dist, cvx2.final_posr->pos, cvx1.final_posr->pos);
int maxc = flags & NUMC_MASK;
dIASSERT(maxc != 0);
dVector3 i1,i2,r1,r2; // edges of incident and reference faces respectively
int contacts=0;
if(!CheckSATConvexFaces(cvx1,cvx2,ccso))
{
return 0;
}
else
if(!CheckSATConvexFaces(cvx2,cvx1,ccso))
{
return 0;
}
else if(!CheckSATConvexEdges(cvx1,cvx2,ccso))
{
return 0;
}
// If we get here, there was a collision
if(ccso.depth_type==1) // face-face
{
// cvx1 MUST always be in contact->g1 and cvx2 in contact->g2
// This was learned the hard way :(
unsigned int incident_side;
const unsigned int* pIncidentPoly;
const unsigned int* pIncidentPoints;
unsigned int reference_side;
const unsigned int* pReferencePoly;
const unsigned int* pReferencePoints;
dVector4 plane,rplane,iplane;
dVector3 tmp;
dVector3 dist,p;
dReal t,d,d1,d2;
bool outside,out;
dVector3Copy(ccso.dist,dist);
reference_side = GetSupportSide(dist,cvx1);
dNegateVector3(dist);
incident_side = GetSupportSide(dist,cvx2);
pReferencePoly = cvx1.polygons;
pIncidentPoly = cvx2.polygons;
// Get Reference plane (We may not have to apply transforms Optimization Oportunity)
// Rotate
dMultiply0_331(rplane,cvx1.final_posr->R,cvx1.planes+(reference_side*4));
dNormalize3(rplane);
// Translate
rplane[3]=
(cvx1.planes[(reference_side*4)+3])+
((rplane[0] * cvx1.final_posr->pos[0]) +
(rplane[1] * cvx1.final_posr->pos[1]) +
(rplane[2] * cvx1.final_posr->pos[2]));
// flip
rplane[0]=-rplane[0];
rplane[1]=-rplane[1];
rplane[2]=-rplane[2];
rplane[3]=-rplane[3];
for(unsigned int i=0;i<incident_side;++i)
{
pIncidentPoly+=pIncidentPoly[0]+1;
}
pIncidentPoints = pIncidentPoly+1;
// Get the first point of the incident face
dMultiply0_331(i2,cvx2.final_posr->R,&cvx2.points[(pIncidentPoints[0]*3)]);
dVector3Add(i2,cvx2.final_posr->pos,i2);
// Get the same point in the reference convex space
dVector3Copy(i2,r2);
dVector3Subtract(r2,cvx1.final_posr->pos,r2);
dVector3Copy(r2,tmp);
dMultiply1_331(r2,cvx1.final_posr->R,tmp);
for(unsigned int i=0;i<pIncidentPoly[0];++i)
{
// Move i2 to i1, r2 to r1
dVector3Copy(i2,i1);
dVector3Copy(r2,r1);
dMultiply0_331(i2,cvx2.final_posr->R,&cvx2.points[(pIncidentPoints[(i+1)%pIncidentPoly[0]]*3)]);
dVector3Add(i2,cvx2.final_posr->pos,i2);
// Get the same point in the reference convex space
dVector3Copy(i2,r2);
dVector3Subtract(r2,cvx1.final_posr->pos,r2);
dVector3Copy(r2,tmp);
dMultiply1_331(r2,cvx1.final_posr->R,tmp);
outside=false;
for(unsigned int j=0;j<cvx1.planecount;++j)
{
plane[0]=cvx1.planes[(j*4)+0];
plane[1]=cvx1.planes[(j*4)+1];
plane[2]=cvx1.planes[(j*4)+2];
plane[3]=cvx1.planes[(j*4)+3];
// Get the distance from the points to the plane
d1 = r1[0]*plane[0]+
r1[1]*plane[1]+
r1[2]*plane[2]-
plane[3];
d2 = r2[0]*plane[0]+
r2[1]*plane[1]+
r2[2]*plane[2]-
plane[3];
if(d1*d2<0)
{
out = false;
// Edge intersects plane
if (!IntersectSegmentPlane(r1,r2,plane,t,p))
{
out = true;
}
if (!out)
{
// Check the resulting point again to make sure it is inside the reference convex
for (unsigned int k = 0; k < cvx1.planecount; ++k)
{
d = p[0]*cvx1.planes[(k*4)+0]+
p[1]*cvx1.planes[(k*4)+1]+
p[2]*cvx1.planes[(k*4)+2]-
cvx1.planes[(k*4)+3];
if(d>0)
{
out = true;
break;
}
}
}
if(!out)
{
#if 0
// Use t to move p into global space
p[0] = i1[0]+((i2[0]-i1[0])*t);
p[1] = i1[1]+((i2[1]-i1[1])*t);
p[2] = i1[2]+((i2[2]-i1[2])*t);
#else
// Apply reference convex transformations to p
// The commented out piece of code is likelly to
// produce less operations than this one, but
// this way we know we are getting the right data
dMultiply0_331(tmp,cvx1.final_posr->R,p);
dVector3Add(tmp,cvx1.final_posr->pos,p);
#endif
// get p's distance to reference plane
d = p[0]*rplane[0]+
p[1]*rplane[1]+
p[2]*rplane[2]-
rplane[3];
if(d>0)
{
dContactGeom *target = SAFECONTACT(flags, contact, contacts, skip);
dVector3Copy(p, target->pos);
dVector3Copy(rplane, target->normal);
target->g1 = &cvx1;
target->g2 = &cvx2;
target->depth = d;
++contacts;
if (contacts==maxc) return contacts;
}
}
}
if(d1>0)
{
outside=true;
}
}
if(outside) continue;
d = i1[0]*rplane[0]+
i1[1]*rplane[1]+
i1[2]*rplane[2]-
rplane[3];
if(d>0)
{
dContactGeom *target = SAFECONTACT(flags, contact, contacts, skip);
dVector3Copy(i1, target->pos);
dVector3Copy(rplane, target->normal);
target->g1 = &cvx1;
target->g2 = &cvx2;
target->depth = d;
++contacts;
if (contacts==maxc) return contacts;
}
}
// IF we get here, we got the easiest contacts to calculate,
// but there is still space in the contacts array for more.
// So, project the Reference's face points onto the Incident face
// plane and test them for inclusion in the reference plane as well.
// We already have computed intersections so, skip those.
/* Get Incident plane, we need it for projection */
/* Rotate */
dMultiply0_331(iplane,cvx2.final_posr->R,cvx2.planes+(incident_side*4));
dNormalize3(iplane);
/* Translate */
iplane[3]=
(cvx2.planes[(incident_side*4)+3]) +
((iplane[0] * cvx2.final_posr->pos[0]) +
(iplane[1] * cvx2.final_posr->pos[1]) +
(iplane[2] * cvx2.final_posr->pos[2]));
// get reference face
for(unsigned int i=0;i<reference_side;++i)
{
pReferencePoly+=pReferencePoly[0]+1;
}
pReferencePoints = pReferencePoly+1;
for(unsigned int i=0;i<pReferencePoly[0];++i)
{
dMultiply0_331(i1,cvx1.final_posr->R,&cvx1.points[(pReferencePoints[i]*3)]);
dVector3Add(cvx1.final_posr->pos,i1,i1);
// Project onto Incident face plane
t = -(i1[0]*iplane[0]+
i1[1]*iplane[1]+
i1[2]*iplane[2]-
iplane[3]);
i1[0]+=iplane[0]*t;
i1[1]+=iplane[1]*t;
i1[2]+=iplane[2]*t;
// Get the same point in the incident convex space
dVector3Copy(i1,r1);
dVector3Subtract(r1,cvx2.final_posr->pos,r1);
dVector3Copy(r1,tmp);
dMultiply1_331(r1,cvx2.final_posr->R,tmp);
// Check if it is outside the incident convex
out = false;
for(unsigned int j=0;j<cvx2.planecount;++j)
{
d = r1[0]*cvx2.planes[(j*4)+0]+
r1[1]*cvx2.planes[(j*4)+1]+
r1[2]*cvx2.planes[(j*4)+2]-
cvx2.planes[(j*4)+3];
if(d>=0){out = true;break;};
}
if(!out)
{
// check that the point is not a duplicate
outside = false;
for(int j=0;j<contacts;++j)
{
dContactGeom *cur_contact = SAFECONTACT(flags, contact, j, skip);
if((cur_contact->pos[0] == i1[0]) &&
(cur_contact->pos[1] == i1[1]) &&
(cur_contact->pos[2] == i1[2]))
{
outside=true;
}
}
if(!outside)
{
d = i1[0]*rplane[0]+
i1[1]*rplane[1]+
i1[2]*rplane[2]-
rplane[3];
if(d>0)
{
dContactGeom *target = SAFECONTACT(flags, contact, contacts, skip);
dVector3Copy(i1, target->pos);
dVector3Copy(rplane, target->normal);
target->g1 = &cvx1;
target->g2 = &cvx2;
target->depth = d;
++contacts;
if (contacts==maxc) return contacts;
}
}
}
}
}
else if (ccso.depth_type == 2) // edge-edge
{
dVector3 c1, c2;
ClosestPointBetweenSegments(ccso.e1a, ccso.e1b, ccso.e2a, ccso.e2b, c1, c2);
dContactGeom *target = SAFECONTACT(flags, contact, contacts, skip);
dSubtractVectors3(target->normal, c2, c1);
dReal depth_square = dCalcVectorLengthSquare3(target->normal);
if (dxSafeNormalize3(target->normal))
{
target->depth = dSqrt(depth_square);
}
else
{
// If edges coincide return direction from one center to the other as the contact normal
dVector3Copy(ccso.dist, target->normal);
if (!dxSafeNormalize3(target->normal))
{
// If the both centers coincide as well return an arbitrary vector. The depth is going to be zero anyway.
dAssignVector3(target->normal, 1, 0, 0);
}
target->depth = 0; // Since the edges coincide, return a contact of zero depth
}
target->g1 = &cvx1;
target->g2 = &cvx2;
dVector3Copy(c1, target->pos);
contacts++;
}
return contacts;
}
int dCollideConvexConvex (dxGeom *o1, dxGeom *o2, int flags,
dContactGeom *contact, int skip)
{
dIASSERT (skip >= (int)sizeof(dContactGeom));
dIASSERT (o1->type == dConvexClass);
dIASSERT (o2->type == dConvexClass);
dIASSERT ((flags & NUMC_MASK) >= 1);
dxConvex *Convex1 = (dxConvex*) o1;
dxConvex *Convex2 = (dxConvex*) o2;
return TestConvexIntersection(*Convex1,*Convex2,flags,
contact,skip);
}
#if 0
int dCollideRayConvex (dxGeom *o1, dxGeom *o2, int flags,
dContactGeom *contact, int skip)
{
dIASSERT (skip >= (int)sizeof(dContactGeom));
dIASSERT( o1->type == dRayClass );
dIASSERT( o2->type == dConvexClass );
dIASSERT ((flags & NUMC_MASK) >= 1);
dxRay* ray = (dxRay*) o1;
dxConvex* convex = (dxConvex*) o2;
dVector3 origin,destination,contactpoint,out;
dReal depth;
dVector4 plane;
unsigned int *pPoly=convex->polygons;
// Calculate ray origin and destination
destination[0]=0;
destination[1]=0;
destination[2]= ray->length;
// -- Rotate --
dMultiply0_331(destination,ray->final_posr->R,destination);
origin[0]=ray->final_posr->pos[0];
origin[1]=ray->final_posr->pos[1];
origin[2]=ray->final_posr->pos[2];
destination[0]+=origin[0];
destination[1]+=origin[1];
destination[2]+=origin[2];
for(int i=0;i<convex->planecount;++i)
{
// Rotate
dMultiply0_331(plane,convex->final_posr->R,convex->planes+(i*4));
// Translate
plane[3]=
(convex->planes[(i*4)+3])+
((plane[0] * convex->final_posr->pos[0]) +
(plane[1] * convex->final_posr->pos[1]) +
(plane[2] * convex->final_posr->pos[2]));
if(IntersectSegmentPlane(origin,
destination,
plane,
depth,
contactpoint))
{
if(IsPointInPolygon(contactpoint,pPoly,plane,convex,out))
{
contact->pos[0]=contactpoint[0];
contact->pos[1]=contactpoint[1];
contact->pos[2]=contactpoint[2];
contact->normal[0]=plane[0];
contact->normal[1]=plane[1];
contact->normal[2]=plane[2];
contact->depth=depth;
contact->g1 = ray;
contact->g2 = convex;
contact->side1 = -1;
contact->side2 = -1; // TODO: set plane index?
return 1;
}
}
pPoly+=pPoly[0]+1;
}
return 0;
}
#else
// Ray - Convex collider by David Walters, June 2006
int dCollideRayConvex(dxGeom *o1, dxGeom *o2,
int flags, dContactGeom *contact, int skip)
{
dIASSERT(skip >= (int)sizeof(dContactGeom));
dIASSERT(o1->type == dRayClass);
dIASSERT(o2->type == dConvexClass);
dIASSERT((flags & NUMC_MASK) >= 1);
dxRay* ray = (dxRay*)o1;
dxConvex* convex = (dxConvex*)o2;
contact->g1 = ray;
contact->g2 = convex;
contact->side1 = -1;
contact->side2 = -1; // TODO: set plane index?
dReal alpha, beta, nsign;
int flag = 0;
//
// Compute some useful info
//
dVector3 ray_pos = {
ray->final_posr->pos[0] - convex->final_posr->pos[0],
ray->final_posr->pos[1] - convex->final_posr->pos[1],
ray->final_posr->pos[2] - convex->final_posr->pos[2]
};
dVector3 ray_dir = {
ray->final_posr->R[0 * 4 + 2],
ray->final_posr->R[1 * 4 + 2],
ray->final_posr->R[2 * 4 + 2]
};
dMultiply1_331(ray_pos, convex->final_posr->R, ray_pos);
dMultiply1_331(ray_dir, convex->final_posr->R, ray_dir);
for (unsigned int i = 0; i < convex->planecount; ++i)
{
// Alias this plane.
const dReal* plane = convex->planes + (i * 4);
// If alpha >= 0 then start point is outside of plane.
alpha = dCalcVectorDot3(plane, ray_pos) - plane[3];
// If any alpha is positive, then
// the ray start is _outside_ of the hull
if (alpha >= 0)
{
flag = 1;
break;
}
}
// If the ray starts inside the convex hull, then everything is flipped.
nsign = (flag) ? REAL(1.0) : REAL(-1.0);
//
// Find closest contact point
//
// Assume no contacts.
contact->depth = dInfinity;
for (unsigned int i = 0; i < convex->planecount; ++i)
{
// Alias this plane.
const dReal* plane = convex->planes + (i * 4);
// If alpha >= 0 then point is outside of plane.
alpha = nsign * (dCalcVectorDot3(plane, ray_pos) - plane[3]);
// Compute [ plane-normal DOT ray-normal ], (/flip)
beta = dCalcVectorDot3(plane, ray_dir) * nsign;
// Ray is pointing at the plane? ( beta < 0 )
// Ray start to plane is within maximum ray length?
// Ray start to plane is closer than the current best distance?
if (beta < -dEpsilon &&
alpha >= 0 && alpha <= ray->length &&
alpha < contact->depth)
{
// Compute contact point on convex hull surface.
contact->pos[0] = ray_pos[0] + alpha * ray_dir[0];
contact->pos[1] = ray_pos[1] + alpha * ray_dir[1];
contact->pos[2] = ray_pos[2] + alpha * ray_dir[2];
flag = 0;
// For all _other_ planes.
for (unsigned int j = 0; j < convex->planecount; ++j)
{
if (i == j)
continue; // Skip self.
// Alias this plane.
const dReal* planej = convex->planes + (j * 4);
// If beta >= 0 then start is outside of plane.
beta = dCalcVectorDot3(planej, contact->pos) - planej[3];
// If any beta is positive, then the contact point
// is not on the surface of the convex hull - it's just
// intersecting some part of its infinite extent.
if (beta > dEpsilon)
{
flag = 1;
break;
}
}
// Contact point isn't outside hull's surface? then it's a good contact!
if (flag == 0)
{
// Store the contact normal, possibly flipped.
contact->normal[0] = nsign * plane[0];
contact->normal[1] = nsign * plane[1];
contact->normal[2] = nsign * plane[2];
// Store depth
contact->depth = alpha;
if ((flags & CONTACTS_UNIMPORTANT) && contact->depth <= ray->length)
{
// Break on any contact if contacts are not important
break;
}
}
}
}
// Contact?
if (contact->depth <= ray->length)
{
// Adjust contact position and normal back to global space
dMultiply0_331(contact->pos, convex->final_posr->R, contact->pos);
dMultiply0_331(contact->normal, convex->final_posr->R, contact->normal);
contact->pos[0] += convex->final_posr->pos[0];
contact->pos[1] += convex->final_posr->pos[1];
contact->pos[2] += convex->final_posr->pos[2];
return true;
}
return false;
}
#endif
//<-- Convex Collision
|