1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
|
/*************************************************************************
* *
* Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. *
* All rights reserved. Email: russ@q12.org Web: www.q12.org *
* *
* This library is free software; you can redistribute it and/or *
* modify it under the terms of EITHER: *
* (1) The GNU Lesser General Public License as published by the Free *
* Software Foundation; either version 2.1 of the License, or (at *
* your option) any later version. The text of the GNU Lesser *
* General Public License is included with this library in the *
* file LICENSE.TXT. *
* (2) The BSD-style license that is included with this library in *
* the file LICENSE-BSD.TXT. *
* *
* This library is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files *
* LICENSE.TXT and LICENSE-BSD.TXT for more details. *
* *
*************************************************************************/
#include <ode/odeconfig.h>
#include "config.h"
#include "hinge.h"
#include "joint_internal.h"
//****************************************************************************
// hinge
dxJointHinge::dxJointHinge( dxWorld *w ) :
dxJoint( w )
{
dSetZero( anchor1, 4 );
dSetZero( anchor2, 4 );
dSetZero( axis1, 4 );
axis1[0] = 1;
dSetZero( axis2, 4 );
axis2[0] = 1;
dSetZero( qrel, 4 );
limot.init( world );
}
void
dxJointHinge::getSureMaxInfo( SureMaxInfo* info )
{
info->max_m = 6;
}
void
dxJointHinge::getInfo1( dxJoint::Info1 *info )
{
info->nub = 5;
// see if joint is powered
if ( limot.fmax > 0 )
info->m = 6; // powered hinge needs an extra constraint row
else info->m = 5;
// see if we're at a joint limit.
if (( limot.lostop >= -M_PI || limot.histop <= M_PI ) &&
limot.lostop <= limot.histop )
{
dReal angle = getHingeAngle( node[0].body,
node[1].body,
axis1, qrel );
if ( limot.testRotationalLimit( angle ) )
info->m = 6;
}
}
void dxJointHinge::getInfo2( dReal worldFPS, dReal worldERP,
int rowskip, dReal *J1, dReal *J2,
int pairskip, dReal *pairRhsCfm, dReal *pairLoHi,
int *findex )
{
// set the three ball-and-socket rows
setBall( this, worldFPS, worldERP, rowskip, J1, J2, pairskip, pairRhsCfm, anchor1, anchor2 );
// set the two hinge rows. the hinge axis should be the only unconstrained
// rotational axis, the angular velocity of the two bodies perpendicular to
// the hinge axis should be equal. thus the constraint equations are
// p*w1 - p*w2 = 0
// q*w1 - q*w2 = 0
// where p and q are unit vectors normal to the hinge axis, and w1 and w2
// are the angular velocity vectors of the two bodies.
dVector3 ax1; // length 1 joint axis in global coordinates, from 1st body
dVector3 p, q; // plane space vectors for ax1
dMultiply0_331( ax1, node[0].body->posr.R, axis1 );
dPlaneSpace( ax1, p, q );
dxBody *body1 = node[1].body;
int currRowSkip = 3 * rowskip;
dCopyVector3(J1 + currRowSkip + GI2__JA_MIN, p);
if ( body1 ) {
dCopyNegatedVector3(J2 + currRowSkip + GI2__JA_MIN, p);
}
currRowSkip += rowskip;
dCopyVector3(J1 + currRowSkip + GI2__JA_MIN, q);
if ( body1 ) {
dCopyNegatedVector3(J2 + currRowSkip + GI2__JA_MIN, q);
}
// compute the right hand side of the constraint equation. set relative
// body velocities along p and q to bring the hinge back into alignment.
// if ax1,ax2 are the unit length hinge axes as computed from body1 and
// body2, we need to rotate both bodies along the axis u = (ax1 x ax2).
// if `theta' is the angle between ax1 and ax2, we need an angular velocity
// along u to cover angle erp*theta in one step :
// |angular_velocity| = angle/time = erp*theta / stepsize
// = (erp*fps) * theta
// angular_velocity = |angular_velocity| * (ax1 x ax2) / |ax1 x ax2|
// = (erp*fps) * theta * (ax1 x ax2) / sin(theta)
// ...as ax1 and ax2 are unit length. if theta is smallish,
// theta ~= sin(theta), so
// angular_velocity = (erp*fps) * (ax1 x ax2)
// ax1 x ax2 is in the plane space of ax1, so we project the angular
// velocity to p and q to find the right hand side.
dVector3 b;
if ( body1 ) {
dVector3 ax2;
dMultiply0_331( ax2, body1->posr.R, axis2 );
dCalcVectorCross3( b, ax1, ax2 );
} else {
dCalcVectorCross3( b, ax1, axis2 );
}
dReal k = worldFPS * worldERP;
int currPairSkip = 3 * pairskip;
pairRhsCfm[currPairSkip + GI2_RHS] = k * dCalcVectorDot3( b, p );
currPairSkip += pairskip;
pairRhsCfm[currPairSkip + GI2_RHS] = k * dCalcVectorDot3( b, q );
// if the hinge is powered, or has joint limits, add in the stuff
currRowSkip += rowskip;
currPairSkip += pairskip;
limot.addLimot( this, worldFPS, J1 + currRowSkip, J2 + currRowSkip, pairRhsCfm + currPairSkip, pairLoHi + currPairSkip, ax1, 1 );
}
void dJointSetHingeAnchor( dJointID j, dReal x, dReal y, dReal z )
{
dxJointHinge* joint = ( dxJointHinge* )j;
dUASSERT( joint, "bad joint argument" );
checktype( joint, Hinge );
setAnchors( joint, x, y, z, joint->anchor1, joint->anchor2 );
joint->computeInitialRelativeRotation();
}
void dJointSetHingeAnchorDelta( dJointID j, dReal x, dReal y, dReal z, dReal dx, dReal dy, dReal dz )
{
dxJointHinge* joint = ( dxJointHinge* )j;
dUASSERT( joint, "bad joint argument" );
checktype( joint, Hinge );
if ( joint->node[0].body )
{
dReal q[4];
q[0] = x - joint->node[0].body->posr.pos[0];
q[1] = y - joint->node[0].body->posr.pos[1];
q[2] = z - joint->node[0].body->posr.pos[2];
q[3] = 0;
dMultiply1_331( joint->anchor1, joint->node[0].body->posr.R, q );
if ( joint->node[1].body )
{
q[0] = x - joint->node[1].body->posr.pos[0];
q[1] = y - joint->node[1].body->posr.pos[1];
q[2] = z - joint->node[1].body->posr.pos[2];
q[3] = 0;
dMultiply1_331( joint->anchor2, joint->node[1].body->posr.R, q );
}
else
{
// Move the relative displacement between the passive body and the
// anchor in the same direction as the passive body has just moved
joint->anchor2[0] = x + dx;
joint->anchor2[1] = y + dy;
joint->anchor2[2] = z + dz;
}
}
joint->anchor1[3] = 0;
joint->anchor2[3] = 0;
joint->computeInitialRelativeRotation();
}
void dJointSetHingeAxis( dJointID j, dReal x, dReal y, dReal z )
{
dxJointHinge* joint = ( dxJointHinge* )j;
dUASSERT( joint, "bad joint argument" );
checktype( joint, Hinge );
setAxes( joint, x, y, z, joint->axis1, joint->axis2 );
joint->computeInitialRelativeRotation();
}
void dJointSetHingeAxisOffset( dJointID j, dReal x, dReal y, dReal z, dReal dangle )
{
dxJointHinge* joint = ( dxJointHinge* )j;
dUASSERT( joint, "bad joint argument" );
checktype( joint, Hinge );
setAxes( joint, x, y, z, joint->axis1, joint->axis2 );
joint->computeInitialRelativeRotation();
if ( joint->flags & dJOINT_REVERSE ) dangle = -dangle;
dQuaternion qAngle, qOffset;
dQFromAxisAndAngle(qAngle, x, y, z, dangle);
dQMultiply3(qOffset, qAngle, joint->qrel);
joint->qrel[0] = qOffset[0];
joint->qrel[1] = qOffset[1];
joint->qrel[2] = qOffset[2];
joint->qrel[3] = qOffset[3];
}
void dJointGetHingeAnchor( dJointID j, dVector3 result )
{
dxJointHinge* joint = ( dxJointHinge* )j;
dUASSERT( joint, "bad joint argument" );
dUASSERT( result, "bad result argument" );
checktype( joint, Hinge );
if ( joint->flags & dJOINT_REVERSE )
getAnchor2( joint, result, joint->anchor2 );
else
getAnchor( joint, result, joint->anchor1 );
}
void dJointGetHingeAnchor2( dJointID j, dVector3 result )
{
dxJointHinge* joint = ( dxJointHinge* )j;
dUASSERT( joint, "bad joint argument" );
dUASSERT( result, "bad result argument" );
checktype( joint, Hinge );
if ( joint->flags & dJOINT_REVERSE )
getAnchor( joint, result, joint->anchor1 );
else
getAnchor2( joint, result, joint->anchor2 );
}
void dJointGetHingeAxis( dJointID j, dVector3 result )
{
dxJointHinge* joint = ( dxJointHinge* )j;
dUASSERT( joint, "bad joint argument" );
dUASSERT( result, "bad result argument" );
checktype( joint, Hinge );
getAxis( joint, result, joint->axis1 );
}
void dJointSetHingeParam( dJointID j, int parameter, dReal value )
{
dxJointHinge* joint = ( dxJointHinge* )j;
dUASSERT( joint, "bad joint argument" );
checktype( joint, Hinge );
joint->limot.set( parameter, value );
}
dReal dJointGetHingeParam( dJointID j, int parameter )
{
dxJointHinge* joint = ( dxJointHinge* )j;
dUASSERT( joint, "bad joint argument" );
checktype( joint, Hinge );
return joint->limot.get( parameter );
}
dReal dJointGetHingeAngle( dJointID j )
{
dxJointHinge* joint = ( dxJointHinge* )j;
dAASSERT( joint );
checktype( joint, Hinge );
if ( joint->node[0].body )
{
dReal ang = getHingeAngle( joint->node[0].body,
joint->node[1].body,
joint->axis1,
joint->qrel );
if ( joint->flags & dJOINT_REVERSE )
return -ang;
else
return ang;
}
else return 0;
}
dReal dJointGetHingeAngleRate( dJointID j )
{
dxJointHinge* joint = ( dxJointHinge* )j;
dAASSERT( joint );
checktype( joint, Hinge );
if ( joint->node[0].body )
{
dVector3 axis;
dMultiply0_331( axis, joint->node[0].body->posr.R, joint->axis1 );
dReal rate = dCalcVectorDot3( axis, joint->node[0].body->avel );
if ( joint->node[1].body ) rate -= dCalcVectorDot3( axis, joint->node[1].body->avel );
if ( joint->flags & dJOINT_REVERSE ) rate = - rate;
return rate;
}
else return 0;
}
void dJointAddHingeTorque( dJointID j, dReal torque )
{
dxJointHinge* joint = ( dxJointHinge* )j;
dVector3 axis;
dAASSERT( joint );
checktype( joint, Hinge );
if ( joint->flags & dJOINT_REVERSE )
torque = -torque;
getAxis( joint, axis, joint->axis1 );
axis[0] *= torque;
axis[1] *= torque;
axis[2] *= torque;
if ( joint->node[0].body != 0 )
dBodyAddTorque( joint->node[0].body, axis[0], axis[1], axis[2] );
if ( joint->node[1].body != 0 )
dBodyAddTorque( joint->node[1].body, -axis[0], -axis[1], -axis[2] );
}
dJointType
dxJointHinge::type() const
{
return dJointTypeHinge;
}
sizeint
dxJointHinge::size() const
{
return sizeof( *this );
}
void
dxJointHinge::setRelativeValues()
{
dVector3 vec;
dJointGetHingeAnchor(this, vec);
setAnchors( this, vec[0], vec[1], vec[2], anchor1, anchor2 );
dJointGetHingeAxis(this, vec);
setAxes( this, vec[0], vec[1], vec[2], axis1, axis2 );
computeInitialRelativeRotation();
}
/// Compute initial relative rotation body1 -> body2, or env -> body1
void
dxJointHinge::computeInitialRelativeRotation()
{
if ( node[0].body )
{
if ( node[1].body )
{
dQMultiply1( qrel, node[0].body->q, node[1].body->q );
}
else
{
// set qrel to the transpose of the first body q
qrel[0] = node[0].body->q[0];
qrel[1] = -node[0].body->q[1];
qrel[2] = -node[0].body->q[2];
qrel[3] = -node[0].body->q[3];
}
}
}
|