1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
|
/*************************************************************************
* *
* Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. *
* All rights reserved. Email: russ@q12.org Web: www.q12.org *
* *
* This library is free software; you can redistribute it and/or *
* modify it under the terms of EITHER: *
* (1) The GNU Lesser General Public License as published by the Free *
* Software Foundation; either version 2.1 of the License, or (at *
* your option) any later version. The text of the GNU Lesser *
* General Public License is included with this library in the *
* file LICENSE.TXT. *
* (2) The BSD-style license that is included with this library in *
* the file LICENSE-BSD.TXT. *
* *
* This library is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files *
* LICENSE.TXT and LICENSE-BSD.TXT for more details. *
* *
*************************************************************************/
#include <ode/odeconfig.h>
#include "config.h"
#include "piston.h"
#include "joint_internal.h"
//****************************************************************************
// Piston
//
dxJointPiston::dxJointPiston ( dxWorld *w ) :
dxJoint ( w )
{
dSetZero ( axis1, 4 );
dSetZero ( axis2, 4 );
axis1[0] = 1;
axis2[0] = 1;
dSetZero ( qrel, 4 );
dSetZero ( anchor1, 4 );
dSetZero ( anchor2, 4 );
limotP.init ( world );
limotR.init ( world );
}
dReal dJointGetPistonPosition ( dJointID j )
{
dxJointPiston* joint = ( dxJointPiston* ) j;
dUASSERT ( joint, "bad joint argument" );
checktype ( joint, Piston );
if ( joint->node[0].body )
{
dVector3 q;
// get the anchor (or offset) in global coordinates
dMultiply0_331 ( q, joint->node[0].body->posr.R, joint->anchor1 );
if ( joint->node[1].body )
{
dVector3 anchor2;
// get the anchor2 in global coordinates
dMultiply0_331 ( anchor2, joint->node[1].body->posr.R, joint->anchor2 );
q[0] = ( ( joint->node[0].body->posr.pos[0] + q[0] ) -
( joint->node[1].body->posr.pos[0] + anchor2[0] ) );
q[1] = ( ( joint->node[0].body->posr.pos[1] + q[1] ) -
( joint->node[1].body->posr.pos[1] + anchor2[1] ) );
q[2] = ( ( joint->node[0].body->posr.pos[2] + q[2] ) -
( joint->node[1].body->posr.pos[2] + anchor2[2] ) );
}
else
{
// N.B. When there is no body 2 the joint->anchor2 is already in
// global coordinates
q[0] = ( ( joint->node[0].body->posr.pos[0] + q[0] ) -
( joint->anchor2[0] ) );
q[1] = ( ( joint->node[0].body->posr.pos[1] + q[1] ) -
( joint->anchor2[1] ) );
q[2] = ( ( joint->node[0].body->posr.pos[2] + q[2] ) -
( joint->anchor2[2] ) );
if ( joint->flags & dJOINT_REVERSE )
{
q[0] = -q[0];
q[1] = -q[1];
q[2] = -q[2];
}
}
// get axis in global coordinates
dVector3 ax;
dMultiply0_331 ( ax, joint->node[0].body->posr.R, joint->axis1 );
return dCalcVectorDot3 ( ax, q );
}
dDEBUGMSG ( "The function always return 0 since no body are attached" );
return 0;
}
dReal dJointGetPistonPositionRate ( dJointID j )
{
dxJointPiston* joint = ( dxJointPiston* ) j;
dUASSERT ( joint, "bad joint argument" );
checktype ( joint, Piston );
// get axis in global coordinates
dVector3 ax;
dMultiply0_331 ( ax, joint->node[0].body->posr.R, joint->axis1 );
// The linear velocity created by the rotation can be discarded since
// the rotation is along the prismatic axis and this rotation don't create
// linear velocity in the direction of the prismatic axis.
if ( joint->node[1].body )
{
return ( dCalcVectorDot3 ( ax, joint->node[0].body->lvel ) -
dCalcVectorDot3 ( ax, joint->node[1].body->lvel ) );
}
else
{
dReal rate = dCalcVectorDot3 ( ax, joint->node[0].body->lvel );
return ( (joint->flags & dJOINT_REVERSE) ? -rate : rate);
}
}
dReal dJointGetPistonAngle ( dJointID j )
{
dxJointPiston* joint = ( dxJointPiston * ) j;
dAASSERT ( joint );
checktype ( joint, Piston );
if ( joint->node[0].body )
{
dReal ang = getHingeAngle ( joint->node[0].body, joint->node[1].body, joint->axis1,
joint->qrel );
if ( joint->flags & dJOINT_REVERSE )
return -ang;
else
return ang;
}
else return 0;
}
dReal dJointGetPistonAngleRate ( dJointID j )
{
dxJointPiston* joint = ( dxJointPiston* ) j;
dAASSERT ( joint );
checktype ( joint, Piston );
if ( joint->node[0].body )
{
dVector3 axis;
dMultiply0_331 ( axis, joint->node[0].body->posr.R, joint->axis1 );
dReal rate = dCalcVectorDot3 ( axis, joint->node[0].body->avel );
if ( joint->node[1].body ) rate -= dCalcVectorDot3 ( axis, joint->node[1].body->avel );
if ( joint->flags & dJOINT_REVERSE ) rate = - rate;
return rate;
}
else return 0;
}
void
dxJointPiston::getSureMaxInfo( SureMaxInfo* info )
{
info->max_m = 6;
}
void
dxJointPiston::getInfo1 ( dxJoint::Info1 *info )
{
info->nub = 4; // Number of unbound variables
// The only bound variable is one linear displacement
info->m = 4; // Default number of constraint row
// see if we're at a joint limit.
limotP.limit = 0;
if ( ( limotP.lostop > -dInfinity || limotP.histop < dInfinity ) &&
limotP.lostop <= limotP.histop )
{
// measure joint position
dReal pos = dJointGetPistonPosition ( this );
limotP.testRotationalLimit ( pos ); // N.B. The fucntion is ill named
}
// powered Piston or at limits needs an extra constraint row
if ( limotP.limit || limotP.fmax > 0 ) info->m++;
// see if we're at a joint limit.
limotR.limit = 0;
if ( ( limotR.lostop > -dInfinity || limotR.histop < dInfinity ) &&
limotR.lostop <= limotR.histop )
{
// measure joint position
dReal angle = getHingeAngle ( node[0].body, node[1].body, axis1,
qrel );
limotR.testRotationalLimit ( angle );
}
// powered Piston or at limits needs an extra constraint row
if ( limotR.limit || limotR.fmax > 0 ) info->m++;
}
void
dxJointPiston::getInfo2 ( dReal worldFPS, dReal worldERP,
int rowskip, dReal *J1, dReal *J2,
int pairskip, dReal *pairRhsCfm, dReal *pairLoHi,
int *findex )
{
const dReal k = worldFPS * worldERP;
// Pull out pos and R for both bodies. also get the `connection'
// vector pos2-pos1.
dVector3 dist; // Current position of body_1 w.r.t "anchor"
// 2 bodies anchor is center of body 2
// 1 bodies anchor is origin
dVector3 lanchor2 = { 0,0,0 };
dReal *pos1 = node[0].body->posr.pos;
dReal *R1 = node[0].body->posr.R;
dReal *R2 = NULL;
dxBody *body1 = node[1].body;
if ( body1 )
{
dReal *pos2 = body1->posr.pos;
R2 = body1->posr.R;
dMultiply0_331 ( lanchor2, R2, anchor2 );
dist[0] = lanchor2[0] + pos2[0] - pos1[0];
dist[1] = lanchor2[1] + pos2[1] - pos1[1];
dist[2] = lanchor2[2] + pos2[2] - pos1[2];
}
else
{
// pos2 = 0; // N.B. We can do that to be safe but it is no necessary
// R2 = 0; // N.B. We can do that to be safe but it is no necessary
if ( (flags & dJOINT_REVERSE) != 0 )
{
dSubtractVectors3(dist, pos1, anchor2); // Invert the value
}
else
{
dSubtractVectors3(dist, anchor2, pos1);
}
}
// ======================================================================
// Work on the angular part (i.e. row 0, 1)
// Set the two orientation rows. The rotoide axis should be the only
// unconstrained rotational axis, the angular velocity of the two bodies
// perpendicular to the rotoide axis should be equal.
// Thus the constraint equations are:
// p*w1 - p*w2 = 0
// q*w1 - q*w2 = 0
// where p and q are unit vectors normal to the rotoide axis, and w1 and w2
// are the angular velocity vectors of the two bodies.
// Since the rotoide axis is the same as the prismatic axis.
//
//
// Also, compute the right hand side (RHS) of the rotation constraint equation set.
// The first 2 element will result in the relative angular velocity of the two
// bodies along axis p and q. This is set to bring the rotoide back into alignment.
// if `theta' is the angle between ax1 and ax2, we need an angular velocity
// along u to cover angle erp*theta in one step :
// |angular_velocity| = angle/time = erp*theta / stepsize
// = (erp*fps) * theta
// angular_velocity = |angular_velocity| * u
// = (erp*fps) * theta * u
// where rotation along unit length axis u by theta brings body 2's frame
//
// if theta is smallish, sin(theta) ~= theta and cos(theta) ~= 1
// where the quaternion of the relative rotation between the two bodies is
// quat = [cos(theta/2) sin(theta/2)*u]
// quat = [1 theta/2*u]
// => q[0] ~= 1
// 2 * q[1+i] = theta * u[i]
//
// Since there is no constraint along the rotoide axis
// only along p and q that we want the same angular velocity and need to reduce
// the error
dVector3 b, ax1, p, q;
dMultiply0_331 ( ax1, node[0].body->posr.R, axis1 );
// Find the 2 axis perpendicular to the rotoide axis.
dPlaneSpace ( ax1, p, q );
// LHS
dCopyVector3 ( J1 + GI2__JA_MIN, p );
if ( body1 )
{
dCopyNegatedVector3 ( J2 + GI2__JA_MIN, p );
}
dCopyVector3 ( J1 + rowskip + GI2__JA_MIN, q );
if ( body1 )
{
dCopyNegatedVector3 ( J2 + rowskip + GI2__JA_MIN, q );
// Some math for the RHS
dVector3 ax2;
dMultiply0_331 ( ax2, R2, axis2 );
dCalcVectorCross3( b, ax1, ax2 );
}
else
{
// Some math for the RHS
dCalcVectorCross3( b, ax1, axis2 );
}
// RHS
pairRhsCfm[GI2_RHS] = k * dCalcVectorDot3 ( p, b );
pairRhsCfm[pairskip + GI2_RHS] = k * dCalcVectorDot3 ( q, b );
// ======================================================================
// Work on the linear part (i.e row 2,3)
// p2 + R2 anchor2' = p1 + R1 dist'
// v2 + w2 R2 anchor2' + R2 d(anchor2')/dt = v1 + w1 R1 dist' + R1 d(dist')/dt
// v2 + w2 x anchor2 = v1 + w1 x dist + v_p
// v_p is speed of prismatic joint (i.e. elongation rate)
// Since the constraints are perpendicular to v_p we have:
// p . v_p = 0 and q . v_p = 0
// Along p and q we have (since sliding along the prismatic axis is disregarded):
// u . ( v2 + w2 x anchor2 = v1 + w1 x dist + v_p) ( where u is p or q )
// Simplify
// u . v2 + u. w2 x anchor2 = u . v1 + u . w1 x dist
// or
// u . v1 - u . v2 + u . w1 x dist - u2 . w2 x anchor2 = 0
// using the fact that (a x b = - b x a)
// u . v1 - u . v2 - u . dist x w1 + u . anchor2 x w2 = 0
// With the help of the triple product:
// i.e. a . b x c = b . c x a = c . a x b or a . b x c = a x b . c
// Ref: http://mathworld.wolfram.com/ScalarTripleProduct.html
// u . v1 - u . v2 - u x dist . w1 + u x anchor2 . w2 = 0
// u . v1 - u . v2 + dist x u . w1 - u x anchor2 . w2 = 0
//
// Coeff for 1er line of: J1l => p, J2l => -p
// Coeff for 2er line of: J1l => q, J2l => -q
// Coeff for 1er line of: J1a => dist x p, J2a => p x anchor2
// Coeff for 2er line of: J1a => dist x q, J2a => q x anchor2
int currRowSkip = 2 * rowskip;
{
dCopyVector3 ( J1 + currRowSkip + GI2__JL_MIN, p );
dCalcVectorCross3( J1 + currRowSkip + GI2__JA_MIN, dist, p );
if ( body1 )
{
// info->J2l[s2+i] = -p[i];
dCopyNegatedVector3 ( J2 + currRowSkip + GI2__JL_MIN, p );
// q x anchor2 instead of anchor2 x q since we want the negative value
dCalcVectorCross3( J2 + currRowSkip + GI2__JA_MIN, p, lanchor2 );
}
}
currRowSkip += rowskip;
{
dCopyVector3 ( J1 + currRowSkip + GI2__JL_MIN, q );
dCalcVectorCross3( J1 + currRowSkip + GI2__JA_MIN, dist, q );
if ( body1 )
{
// info->J2l[s3+i] = -q[i];
dCopyNegatedVector3 ( J2 + currRowSkip + GI2__JL_MIN, q );
// The cross product is in reverse order since we want the negative value
dCalcVectorCross3( J2 + currRowSkip + GI2__JA_MIN, q, lanchor2 );
}
}
// We want to make correction for motion not in the line of the axis
// We calculate the displacement w.r.t. the "anchor" pt.
// i.e. Find the difference between the current position and the initial
// position along the constrained axies (i.e. axis p and q).
// The bodies can move w.r.t each other only along the prismatic axis
//
// Compute the RHS of rows 2 and 3
dVector3 err;
dMultiply0_331 ( err, R1, anchor1 );
dSubtractVectors3( err, dist, err );
int currPairSkip = 2 * pairskip;
{
pairRhsCfm[currPairSkip + GI2_RHS] = k * dCalcVectorDot3 ( p, err );
}
currPairSkip += pairskip;
{
pairRhsCfm[currPairSkip + GI2_RHS] = k * dCalcVectorDot3 ( q, err );
}
currRowSkip += rowskip; currPairSkip += pairskip;
if ( body1 || (flags & dJOINT_REVERSE) == 0 )
{
if (limotP.addLimot ( this, worldFPS, J1 + currRowSkip, J2 + currRowSkip, pairRhsCfm + currPairSkip, pairLoHi + currPairSkip, ax1, 0 ))
{
currRowSkip += rowskip; currPairSkip += pairskip;
}
}
else
{
dVector3 rAx1;
dCopyNegatedVector3(rAx1, ax1);
if (limotP.addLimot ( this, worldFPS, J1 + currRowSkip, J2 + currRowSkip, pairRhsCfm + currPairSkip, pairLoHi + currPairSkip, rAx1, 0 ))
{
currRowSkip += rowskip; currPairSkip += pairskip;
}
}
limotR.addLimot ( this, worldFPS, J1 + currRowSkip, J2 + currRowSkip, pairRhsCfm + currPairSkip, pairLoHi + currPairSkip, ax1, 1 );
}
void dJointSetPistonAnchor ( dJointID j, dReal x, dReal y, dReal z )
{
dxJointPiston* joint = ( dxJointPiston* ) j;
dUASSERT ( joint, "bad joint argument" );
checktype ( joint, Piston );
setAnchors ( joint, x, y, z, joint->anchor1, joint->anchor2 );
joint->computeInitialRelativeRotation();
}
void dJointSetPistonAnchorOffset (dJointID j, dReal x, dReal y, dReal z,
dReal dx, dReal dy, dReal dz)
{
dxJointPiston* joint = (dxJointPiston*) j;
dUASSERT (joint,"bad joint argument");
checktype ( joint, Piston );
if (joint->flags & dJOINT_REVERSE)
{
dx = -dx;
dy = -dy;
dz = -dz;
}
if (joint->node[0].body)
{
joint->node[0].body->posr.pos[0] -= dx;
joint->node[0].body->posr.pos[1] -= dy;
joint->node[0].body->posr.pos[2] -= dz;
}
setAnchors (joint,x ,y, z, joint->anchor1, joint->anchor2);
if (joint->node[0].body)
{
joint->node[0].body->posr.pos[0] += dx;
joint->node[0].body->posr.pos[1] += dy;
joint->node[0].body->posr.pos[2] += dz;
}
joint->computeInitialRelativeRotation();
}
void dJointGetPistonAnchor ( dJointID j, dVector3 result )
{
dxJointPiston* joint = ( dxJointPiston* ) j;
dUASSERT ( joint, "bad joint argument" );
dUASSERT ( result, "bad result argument" );
checktype ( joint, Piston );
if ( joint->flags & dJOINT_REVERSE )
getAnchor2 ( joint, result, joint->anchor2 );
else
getAnchor ( joint, result, joint->anchor1 );
}
void dJointGetPistonAnchor2 ( dJointID j, dVector3 result )
{
dxJointPiston* joint = ( dxJointPiston* ) j;
dUASSERT ( joint, "bad joint argument" );
dUASSERT ( result, "bad result argument" );
checktype ( joint, Piston );
if ( joint->flags & dJOINT_REVERSE )
getAnchor ( joint, result, joint->anchor1 );
else
getAnchor2 ( joint, result, joint->anchor2 );
}
void dJointSetPistonAxis ( dJointID j, dReal x, dReal y, dReal z )
{
dxJointPiston* joint = ( dxJointPiston* ) j;
dUASSERT ( joint, "bad joint argument" );
checktype ( joint, Piston );
setAxes ( joint, x, y, z, joint->axis1, joint->axis2 );
joint->computeInitialRelativeRotation();
}
void dJointSetPistonAxisDelta ( dJointID j, dReal x, dReal y, dReal z,
dReal dx, dReal dy, dReal dz )
{
dxJointPiston* joint = ( dxJointPiston* ) j;
dUASSERT ( joint, "bad joint argument" );
checktype ( joint, Piston );
setAxes ( joint, x, y, z, joint->axis1, joint->axis2 );
joint->computeInitialRelativeRotation();
dVector3 c = {0,0,0};
if ( joint->node[1].body )
{
c[0] = ( joint->node[0].body->posr.pos[0] -
joint->node[1].body->posr.pos[0] - dx );
c[1] = ( joint->node[0].body->posr.pos[1] -
joint->node[1].body->posr.pos[1] - dy );
c[2] = ( joint->node[0].body->posr.pos[2] -
joint->node[1].body->posr.pos[2] - dz );
}
else /*if ( joint->node[0].body )*/ // -- body[0] should always be present -- there is a matrix multiplication below
{
c[0] = joint->node[0].body->posr.pos[0] - dx;
c[1] = joint->node[0].body->posr.pos[1] - dy;
c[2] = joint->node[0].body->posr.pos[2] - dz;
}
// Convert into frame of body 1
dMultiply1_331 ( joint->anchor1, joint->node[0].body->posr.R, c );
}
void dJointGetPistonAxis ( dJointID j, dVector3 result )
{
dxJointPiston* joint = ( dxJointPiston* ) j;
dUASSERT ( joint, "bad joint argument" );
dUASSERT ( result, "bad result argument" );
checktype ( joint, Piston );
getAxis ( joint, result, joint->axis1 );
}
void dJointSetPistonParam ( dJointID j, int parameter, dReal value )
{
dxJointPiston* joint = ( dxJointPiston* ) j;
dUASSERT ( joint, "bad joint argument" );
checktype ( joint, Piston );
if ( ( parameter & 0xff00 ) == 0x100 )
{
joint->limotR.set ( parameter & 0xff, value );
}
else
{
joint->limotP.set ( parameter, value );
}
}
dReal dJointGetPistonParam ( dJointID j, int parameter )
{
dxJointPiston* joint = ( dxJointPiston* ) j;
dUASSERT ( joint, "bad joint argument" );
checktype ( joint, Piston );
if ( ( parameter & 0xff00 ) == 0x100 )
{
return joint->limotR.get ( parameter & 0xff );
}
else
{
return joint->limotP.get ( parameter );
}
}
void dJointAddPistonForce ( dJointID j, dReal force )
{
dxJointPiston* joint = ( dxJointPiston* ) j;
dUASSERT ( joint, "bad joint argument" );
checktype ( joint, Piston );
if ( joint->flags & dJOINT_REVERSE )
force -= force;
dVector3 axis;
getAxis ( joint, axis, joint->axis1 );
// axis[i] *= force
dScaleVector3( axis, force );
if ( joint->node[0].body != 0 )
dBodyAddForce ( joint->node[0].body, axis[0], axis[1], axis[2] );
if ( joint->node[1].body != 0 )
dBodyAddForce ( joint->node[1].body, -axis[0], -axis[1], -axis[2] );
if ( joint->node[0].body != 0 && joint->node[1].body != 0 )
{
// Case where we don't need ltd since center of mass of both bodies
// pass by the anchor point '*' when travelling along the prismatic axis.
// Body_2
// Body_1 -----
// --- |-- | |
// | |---------------*-------------| | ---> prismatic axis
// --- |-- | |
// -----
// Body_2
// Case where we need ltd
// Body_1
// ---
// | |---------
// --- |
// | |--
// -----*----- ---> prismatic axis
// |-- |
// |
// |
// | -----
// | | |
// -------| |
// | |
// -----
// Body_2
//
// In real life force apply at the '*' point
// But in ODE the force are applied on the center of mass of Body_1 and Body_2
// So we have to add torques on both bodies to compensate for that when there
// is an offset between the anchor point and the center of mass of both bodies.
//
// We need to add to each body T = r x F
// Where r is the distance between the cm and '*'
dVector3 ltd; // Linear Torque Decoupling vector (a torque)
dVector3 c; // Distance of the body w.r.t the anchor
// N.B. The distance along the prismatic axis might not
// not be included in this variable since it won't add
// anything to the ltd.
// Calculate the distance of the body w.r.t the anchor
// The anchor1 of body1 can be used since:
// Real anchor = Position of body 1 + anchor + d* axis1 = anchor in world frame
// d is the position of the prismatic joint (i.e. elongation)
// Since axis1 x axis1 == 0
// We can do the following.
dMultiply0_331 ( c, joint->node[0].body->posr.R, joint->anchor1 );
dCalcVectorCross3( ltd, c, axis );
dBodyAddTorque ( joint->node[0].body, ltd[0], ltd[1], ltd[2] );
dMultiply0_331 ( c, joint->node[1].body->posr.R, joint->anchor2 );
dCalcVectorCross3( ltd, c, axis );
dBodyAddTorque ( joint->node[1].body, ltd[0], ltd[1], ltd[2] );
}
}
dJointType
dxJointPiston::type() const
{
return dJointTypePiston;
}
sizeint
dxJointPiston::size() const
{
return sizeof ( *this );
}
void
dxJointPiston::setRelativeValues()
{
dVector3 vec;
dJointGetPistonAnchor(this, vec);
setAnchors( this, vec[0], vec[1], vec[2], anchor1, anchor2 );
dJointGetPistonAxis(this, vec);
setAxes( this, vec[0], vec[1], vec[2], axis1, axis2 );
computeInitialRelativeRotation();
}
void
dxJointPiston::computeInitialRelativeRotation()
{
if ( node[0].body )
{
if ( node[1].body )
{
dQMultiply1 ( qrel, node[0].body->q, node[1].body->q );
}
else
{
// set joint->qrel to the transpose of the first body q
qrel[0] = node[0].body->q[0];
for ( int i = 1; i < 4; i++ )
qrel[i] = -node[0].body->q[i];
// WARNING do we need the - in -joint->node[0].body->q[i]; or not
}
}
}
|