summaryrefslogtreecommitdiff
path: root/src/mesh/assimp-master/code/AssetLib/3MF/XmlSerializer.cpp
blob: 9bd1c5bb03d8f26a453be81f6e2651a1913ebcf7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
/*
Open Asset Import Library (assimp)
----------------------------------------------------------------------

Copyright (c) 2006-2022, assimp team

All rights reserved.

Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the
following conditions are met:

* Redistributions of source code must retain the above
  copyright notice, this list of conditions and the
  following disclaimer.

* Redistributions in binary form must reproduce the above
  copyright notice, this list of conditions and the
  following disclaimer in the documentation and/or other
  materials provided with the distribution.

* Neither the name of the assimp team, nor the names of its
  contributors may be used to endorse or promote products
  derived from this software without specific prior
  written permission of the assimp team.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

----------------------------------------------------------------------
*/
#include "XmlSerializer.h"
#include "D3MFOpcPackage.h"
#include "3MFXmlTags.h"
#include "3MFTypes.h"
#include <assimp/scene.h>

namespace Assimp {
namespace D3MF {

static const int IdNotSet = -1;

namespace {

static const size_t ColRGBA_Len = 9;
static const size_t ColRGB_Len = 7;

// format of the color string: #RRGGBBAA or #RRGGBB (3MF Core chapter 5.1.1)
bool validateColorString(const char *color) {
    const size_t len = strlen(color);
    if (ColRGBA_Len != len && ColRGB_Len != len) {
        return false;
    }

    return true;
}

aiFace ReadTriangle(XmlNode &node) {
    aiFace face;

    face.mNumIndices = 3;
    face.mIndices = new unsigned int[face.mNumIndices];
    face.mIndices[0] = static_cast<unsigned int>(std::atoi(node.attribute(XmlTag::v1).as_string()));
    face.mIndices[1] = static_cast<unsigned int>(std::atoi(node.attribute(XmlTag::v2).as_string()));
    face.mIndices[2] = static_cast<unsigned int>(std::atoi(node.attribute(XmlTag::v3).as_string()));

    return face;
}

aiVector3D ReadVertex(XmlNode &node) {
    aiVector3D vertex;
    vertex.x = ai_strtof(node.attribute(XmlTag::x).as_string(), nullptr);
    vertex.y = ai_strtof(node.attribute(XmlTag::y).as_string(), nullptr);
    vertex.z = ai_strtof(node.attribute(XmlTag::z).as_string(), nullptr);

    return vertex;
}

bool getNodeAttribute(const XmlNode &node, const std::string &attribute, std::string &value) {
    pugi::xml_attribute objectAttribute = node.attribute(attribute.c_str());
    if (!objectAttribute.empty()) {
        value = objectAttribute.as_string();
        return true;
    }

    return false;
}

bool getNodeAttribute(const XmlNode &node, const std::string &attribute, int &value) {
    std::string strValue;
    const bool ret = getNodeAttribute(node, attribute, strValue);
    if (ret) {
        value = std::atoi(strValue.c_str());
        return true;
    }

    return false;
}

aiMatrix4x4 parseTransformMatrix(std::string matrixStr) {
    // split the string
    std::vector<float> numbers;
    std::string currentNumber;
    for (char c : matrixStr) {
        if (c == ' ') {
            if (!currentNumber.empty()) {
                float f = std::stof(currentNumber);
                numbers.push_back(f);
                currentNumber.clear();
            }
        } else {
            currentNumber.push_back(c);
        }
    }
    if (!currentNumber.empty()) {
        const float f = std::stof(currentNumber);
        numbers.push_back(f);
    }

    aiMatrix4x4 transformMatrix;
    transformMatrix.a1 = numbers[0];
    transformMatrix.b1 = numbers[1];
    transformMatrix.c1 = numbers[2];
    transformMatrix.d1 = 0;

    transformMatrix.a2 = numbers[3];
    transformMatrix.b2 = numbers[4];
    transformMatrix.c2 = numbers[5];
    transformMatrix.d2 = 0;

    transformMatrix.a3 = numbers[6];
    transformMatrix.b3 = numbers[7];
    transformMatrix.c3 = numbers[8];
    transformMatrix.d3 = 0;

    transformMatrix.a4 = numbers[9];
    transformMatrix.b4 = numbers[10];
    transformMatrix.c4 = numbers[11];
    transformMatrix.d4 = 1;

    return transformMatrix;
}

bool parseColor(const char *color, aiColor4D &diffuse) {
    if (nullptr == color) {
        return false;
    }

    if (!validateColorString(color)) {
        return false;
    }

    if ('#' != color[0]) {
        return false;
    }

    char r[3] = { color[1], color[2], '\0' };
    diffuse.r = static_cast<ai_real>(strtol(r, nullptr, 16)) / ai_real(255.0);

    char g[3] = { color[3], color[4], '\0' };
    diffuse.g = static_cast<ai_real>(strtol(g, nullptr, 16)) / ai_real(255.0);

    char b[3] = { color[5], color[6], '\0' };
    diffuse.b = static_cast<ai_real>(strtol(b, nullptr, 16)) / ai_real(255.0);
    const size_t len = strlen(color);
    if (ColRGB_Len == len) {
        return true;
    }

    char a[3] = { color[7], color[8], '\0' };
    diffuse.a = static_cast<ai_real>(strtol(a, nullptr, 16)) / ai_real(255.0);

    return true;
}

void assignDiffuseColor(XmlNode &node, aiMaterial *mat) {
    const char *color = node.attribute(XmlTag::basematerials_displaycolor).as_string();
    aiColor4D diffuse;
    if (parseColor(color, diffuse)) {
        mat->AddProperty<aiColor4D>(&diffuse, 1, AI_MATKEY_COLOR_DIFFUSE);
    }
}

} // namespace

XmlSerializer::XmlSerializer(XmlParser *xmlParser) :
        mResourcesDictionnary(),
        mMeshCount(0),
        mXmlParser(xmlParser) {
    ai_assert(nullptr != xmlParser);
}

XmlSerializer::~XmlSerializer() {
    for (auto &it : mResourcesDictionnary) {
        delete it.second;
    }
}

void XmlSerializer::ImportXml(aiScene *scene) {
    if (nullptr == scene) {
        return;
    }
    
    scene->mRootNode = new aiNode(XmlTag::RootTag);
    XmlNode node = mXmlParser->getRootNode().child(XmlTag::model);
    if (node.empty()) {
        return;
    }

    XmlNode resNode = node.child(XmlTag::resources);
    for (auto &currentNode : resNode.children()) {
        const std::string currentNodeName = currentNode.name();
        if (currentNodeName == XmlTag::texture_2d) {
            ReadEmbeddecTexture(currentNode);
        } else if (currentNodeName == XmlTag::texture_group) {
            ReadTextureGroup(currentNode);
        } else if (currentNodeName == XmlTag::object) {
            ReadObject(currentNode);
        } else if (currentNodeName == XmlTag::basematerials) {
            ReadBaseMaterials(currentNode);
        } else if (currentNodeName == XmlTag::meta) {
            ReadMetadata(currentNode);
        }
    }
    StoreMaterialsInScene(scene);
    XmlNode buildNode = node.child(XmlTag::build);
    if (buildNode.empty()) {
        return;
    }

    for (auto &currentNode : buildNode.children()) {
        const std::string currentNodeName = currentNode.name();
        if (currentNodeName == XmlTag::item) {
            int objectId = IdNotSet;
            std::string transformationMatrixStr;
            aiMatrix4x4 transformationMatrix;
            getNodeAttribute(currentNode, D3MF::XmlTag::objectid, objectId);
            bool hasTransform = getNodeAttribute(currentNode, D3MF::XmlTag::transform, transformationMatrixStr);

            auto it = mResourcesDictionnary.find(objectId);
            if (it != mResourcesDictionnary.end() && it->second->getType() == ResourceType::RT_Object) {
                Object *obj = static_cast<Object *>(it->second);
                if (hasTransform) {
                    transformationMatrix = parseTransformMatrix(transformationMatrixStr);
                }

                addObjectToNode(scene->mRootNode, obj, transformationMatrix);
            }
        }
    }

    // import the metadata
    if (!mMetaData.empty()) {
        const size_t numMeta = mMetaData.size();
        scene->mMetaData = aiMetadata::Alloc(static_cast<unsigned int>(numMeta));
        for (size_t i = 0; i < numMeta; ++i) {
            aiString val(mMetaData[i].value);
            scene->mMetaData->Set(static_cast<unsigned int>(i), mMetaData[i].name, val);
        }
    }

    // import the meshes, materials are already stored
    scene->mNumMeshes = static_cast<unsigned int>(mMeshCount);
    if (scene->mNumMeshes != 0) {
        scene->mMeshes = new aiMesh *[scene->mNumMeshes]();
        for (auto &it : mResourcesDictionnary) {
            if (it.second->getType() == ResourceType::RT_Object) {
                Object *obj = static_cast<Object *>(it.second);
                ai_assert(nullptr != obj);
                for (unsigned int i = 0; i < obj->mMeshes.size(); ++i) {
                    scene->mMeshes[obj->mMeshIndex[i]] = obj->mMeshes[i];
                }
            }
        }
    }
}

void XmlSerializer::addObjectToNode(aiNode *parent, Object *obj, aiMatrix4x4 nodeTransform) {
    ai_assert(nullptr != obj);

    aiNode *sceneNode = new aiNode(obj->mName);
    sceneNode->mNumMeshes = static_cast<unsigned int>(obj->mMeshes.size());
    sceneNode->mMeshes = new unsigned int[sceneNode->mNumMeshes];
    std::copy(obj->mMeshIndex.begin(), obj->mMeshIndex.end(), sceneNode->mMeshes);

    sceneNode->mTransformation = nodeTransform;
    if (nullptr != parent) {
        parent->addChildren(1, &sceneNode);
    }

    for (Assimp::D3MF::Component c : obj->mComponents) {
        auto it = mResourcesDictionnary.find(c.mObjectId);
        if (it != mResourcesDictionnary.end() && it->second->getType() == ResourceType::RT_Object) {
            addObjectToNode(sceneNode, static_cast<Object *>(it->second), c.mTransformation);
        }
    }
}

void XmlSerializer::ReadObject(XmlNode &node) {
    int id = IdNotSet, pid = IdNotSet, pindex = IdNotSet;
    bool hasId = getNodeAttribute(node, XmlTag::id, id);
    if (!hasId) {
        return;
    }

    bool hasPid = getNodeAttribute(node, XmlTag::pid, pid);
    bool hasPindex = getNodeAttribute(node, XmlTag::pindex, pindex);

    Object *obj = new Object(id);
    for (XmlNode &currentNode : node.children()) {
        const std::string currentName = currentNode.name();
        if (currentName == D3MF::XmlTag::mesh) {
            auto mesh = ReadMesh(currentNode);
            mesh->mName.Set(ai_to_string(id));

            if (hasPid) {
                auto it = mResourcesDictionnary.find(pid);
                if (hasPindex && it != mResourcesDictionnary.end() && it->second->getType() == ResourceType::RT_BaseMaterials) {
                    BaseMaterials *materials = static_cast<BaseMaterials *>(it->second);
                    mesh->mMaterialIndex = materials->mMaterialIndex[pindex];
                }
            }

            obj->mMeshes.push_back(mesh);
            obj->mMeshIndex.push_back(mMeshCount);
            mMeshCount++;
        } else if (currentName == D3MF::XmlTag::components) {
            for (XmlNode &currentSubNode : currentNode.children()) {
                const std::string subNodeName = currentSubNode.name();
                if (subNodeName == D3MF::XmlTag::component) {
                    int objectId = IdNotSet;
                    std::string componentTransformStr;
                    aiMatrix4x4 componentTransform;
                    if (getNodeAttribute(currentSubNode, D3MF::XmlTag::transform, componentTransformStr)) {
                        componentTransform = parseTransformMatrix(componentTransformStr);
                    }

                    if (getNodeAttribute(currentSubNode, D3MF::XmlTag::objectid, objectId)) {
                        obj->mComponents.push_back({ objectId, componentTransform });
                    }
                }
            }
        }
    }

    mResourcesDictionnary.insert(std::make_pair(id, obj));
}

aiMesh *XmlSerializer::ReadMesh(XmlNode &node) {
    if (node.empty()) {
        return nullptr;
    }

    aiMesh *mesh = new aiMesh();
    for (XmlNode &currentNode : node.children()) {
        const std::string currentName = currentNode.name();
        if (currentName == XmlTag::vertices) {
            ImportVertices(currentNode, mesh);
        } else if (currentName == XmlTag::triangles) {
            ImportTriangles(currentNode, mesh);
        }
    }

    return mesh;
}

void XmlSerializer::ReadMetadata(XmlNode &node) {
    pugi::xml_attribute attribute = node.attribute(D3MF::XmlTag::meta_name);
    const std::string name = attribute.as_string();
    const std::string value = node.value();
    if (name.empty()) {
        return;
    }

    MetaEntry entry;
    entry.name = name;
    entry.value = value;
    mMetaData.push_back(entry);
}

void XmlSerializer::ImportVertices(XmlNode &node, aiMesh *mesh) {
    ai_assert(nullptr != mesh);

    std::vector<aiVector3D> vertices;
    for (XmlNode &currentNode : node.children()) {
        const std::string currentName = currentNode.name();
        if (currentName == XmlTag::vertex) {
            vertices.push_back(ReadVertex(currentNode));
        }
    }

    mesh->mNumVertices = static_cast<unsigned int>(vertices.size());
    mesh->mVertices = new aiVector3D[mesh->mNumVertices];
    std::copy(vertices.begin(), vertices.end(), mesh->mVertices);
}

void XmlSerializer::ImportTriangles(XmlNode &node, aiMesh *mesh) {
    std::vector<aiFace> faces;
    for (XmlNode &currentNode : node.children()) {
        const std::string currentName = currentNode.name();
        if (currentName == XmlTag::triangle) {
            int pid = IdNotSet, p1 = IdNotSet;
            bool hasPid = getNodeAttribute(currentNode, D3MF::XmlTag::pid, pid);
            bool hasP1 = getNodeAttribute(currentNode, D3MF::XmlTag::p1, p1);

            if (hasPid && hasP1) {
                auto it = mResourcesDictionnary.find(pid);
                if (it != mResourcesDictionnary.end()) {
                    if (it->second->getType() == ResourceType::RT_BaseMaterials) {
                        BaseMaterials *baseMaterials = static_cast<BaseMaterials *>(it->second);
                        mesh->mMaterialIndex = baseMaterials->mMaterialIndex[p1];
                    } else if (it->second->getType() == ResourceType::RT_Texture2DGroup) {
                        if (mesh->mTextureCoords[0] == nullptr) {
                            Texture2DGroup *group = static_cast<Texture2DGroup *>(it->second);
                            const std::string name = ai_to_string(group->mTexId);
                            for (size_t i = 0; i < mMaterials.size(); ++i) {
                                if (name == mMaterials[i]->GetName().C_Str()) {
                                    mesh->mMaterialIndex = static_cast<unsigned int>(i);
                                }
                            }
                            mesh->mTextureCoords[0] = new aiVector3D[group->mTex2dCoords.size()];
                            for (unsigned int i = 0; i < group->mTex2dCoords.size(); ++i) {
                                mesh->mTextureCoords[0][i] = aiVector3D(group->mTex2dCoords[i].x, group->mTex2dCoords[i].y, 0);
                            }
                        }
                    } 
                }
            }

            aiFace face = ReadTriangle(currentNode);
            faces.push_back(face);
        }
    }

    mesh->mNumFaces = static_cast<unsigned int>(faces.size());
    mesh->mFaces = new aiFace[mesh->mNumFaces];
    mesh->mPrimitiveTypes = aiPrimitiveType_TRIANGLE;

    std::copy(faces.begin(), faces.end(), mesh->mFaces);
}

void XmlSerializer::ReadBaseMaterials(XmlNode &node) {
    int id = IdNotSet;
    if (getNodeAttribute(node, D3MF::XmlTag::id, id)) {
        BaseMaterials *baseMaterials = new BaseMaterials(id);

        for (XmlNode &currentNode : node.children()) {
            const std::string currentName = currentNode.name();
            if (currentName == XmlTag::basematerials_base) {
                baseMaterials->mMaterialIndex.push_back(static_cast<unsigned int>(mMaterials.size()));
                mMaterials.push_back(readMaterialDef(currentNode, id));
            }
        }

        mResourcesDictionnary.insert(std::make_pair(id, baseMaterials));
    }
}

void XmlSerializer::ReadEmbeddecTexture(XmlNode &node) {
    if (node.empty()) {
        return;
    }

    std::string value;
    EmbeddedTexture *tex2D = nullptr;
    if (XmlParser::getStdStrAttribute(node, XmlTag::id, value)) {
        tex2D = new EmbeddedTexture(atoi(value.c_str()));
    }
    if (nullptr == tex2D) {
        return;
    }

    if (XmlParser::getStdStrAttribute(node, XmlTag::path, value)) {
        tex2D->mPath = value;
    }
    if (XmlParser::getStdStrAttribute(node, XmlTag::texture_content_type, value)) {
        tex2D->mContentType = value;
    }
    if (XmlParser::getStdStrAttribute(node, XmlTag::texture_tilestyleu, value)) {
        tex2D->mTilestyleU = value;
    }
    if (XmlParser::getStdStrAttribute(node, XmlTag::texture_tilestylev, value)) {
        tex2D->mTilestyleV = value;
    }
    mEmbeddedTextures.emplace_back(tex2D);
    StoreEmbeddedTexture(tex2D);
}

void XmlSerializer::StoreEmbeddedTexture(EmbeddedTexture *tex) {
    aiMaterial *mat = new aiMaterial;
    aiString s;
    s.Set(ai_to_string(tex->mId).c_str());
    mat->AddProperty(&s, AI_MATKEY_NAME);
    const std::string name = "*" + tex->mPath;
    s.Set(name);
    mat->AddProperty(&s, AI_MATKEY_TEXTURE_DIFFUSE(0));

    aiColor3D col;
    mat->AddProperty<aiColor3D>(&col, 1, AI_MATKEY_COLOR_DIFFUSE);
    mat->AddProperty<aiColor3D>(&col, 1, AI_MATKEY_COLOR_AMBIENT);
    mat->AddProperty<aiColor3D>(&col, 1, AI_MATKEY_COLOR_EMISSIVE);
    mat->AddProperty<aiColor3D>(&col, 1, AI_MATKEY_COLOR_SPECULAR);
    mMaterials.emplace_back(mat);
}

void XmlSerializer::ReadTextureCoords2D(XmlNode &node, Texture2DGroup *tex2DGroup) {
    if (node.empty() || nullptr == tex2DGroup) {
        return;
    }

    int id = IdNotSet;
    if (XmlParser::getIntAttribute(node, "texid", id)) {
        tex2DGroup->mTexId = id;
    }

    double value = 0.0;
    for (XmlNode currentNode : node.children()) {
        const std::string currentName = currentNode.name();
        aiVector2D texCoord;
        if (currentName == XmlTag::texture_2d_coord) {
            XmlParser::getDoubleAttribute(currentNode, XmlTag::texture_cuurd_u, value);
            texCoord.x = (ai_real)value;
            XmlParser::getDoubleAttribute(currentNode, XmlTag::texture_cuurd_v, value);
            texCoord.y = (ai_real)value;
            tex2DGroup->mTex2dCoords.push_back(texCoord);
        }
    }
}

void XmlSerializer::ReadTextureGroup(XmlNode &node) {
    if (node.empty()) {
        return;
    }

    int id = IdNotSet;
    if (!XmlParser::getIntAttribute(node, XmlTag::id, id)) {
        return;
    }

    Texture2DGroup *group = new Texture2DGroup(id);
    ReadTextureCoords2D(node, group);
    mResourcesDictionnary.insert(std::make_pair(id, group));
}

aiMaterial *XmlSerializer::readMaterialDef(XmlNode &node, unsigned int basematerialsId) {
    aiMaterial *material = new aiMaterial();
    material->mNumProperties = 0;
    std::string name;
    bool hasName = getNodeAttribute(node, D3MF::XmlTag::basematerials_name, name);

    std::string stdMaterialName;
    const std::string strId(ai_to_string(basematerialsId));
    stdMaterialName += "id";
    stdMaterialName += strId;
    stdMaterialName += "_";
    if (hasName) {
        stdMaterialName += std::string(name);
    } else {
        stdMaterialName += "basemat_";
        stdMaterialName += ai_to_string(mMaterials.size());
    }

    aiString assimpMaterialName(stdMaterialName);
    material->AddProperty(&assimpMaterialName, AI_MATKEY_NAME);

    assignDiffuseColor(node, material);

    return material;
}

void XmlSerializer::StoreMaterialsInScene(aiScene *scene) {
    if (nullptr == scene || mMaterials.empty()) {
        return;
    }

    scene->mNumMaterials = static_cast<unsigned int>(mMaterials.size());
    scene->mMaterials = new aiMaterial *[scene->mNumMaterials];
    for (size_t i = 0; i < mMaterials.size(); ++i) {
        scene->mMaterials[i] = mMaterials[i];
    }
}

} // namespace D3MF
} // namespace Assimp