summaryrefslogtreecommitdiff
path: root/src/mesh/assimp-master/code/AssetLib/Collada/ColladaLoader.cpp
blob: 775ba44d2df1ead64f99c128fe7bac65a61fe7b9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
/*
---------------------------------------------------------------------------
Open Asset Import Library (assimp)
---------------------------------------------------------------------------

Copyright (c) 2006-2022, assimp team

All rights reserved.

Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the following
conditions are met:

* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.

* Neither the name of the assimp team, nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission of the assimp team.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------
*/

/** @file Implementation of the Collada loader */

#ifndef ASSIMP_BUILD_NO_COLLADA_IMPORTER

#include "ColladaLoader.h"
#include "ColladaParser.h"
#include <assimp/ColladaMetaData.h>
#include <assimp/CreateAnimMesh.h>
#include <assimp/ParsingUtils.h>
#include <assimp/SkeletonMeshBuilder.h>
#include <assimp/ZipArchiveIOSystem.h>
#include <assimp/anim.h>
#include <assimp/fast_atof.h>
#include <assimp/importerdesc.h>
#include <assimp/scene.h>
#include <assimp/DefaultLogger.hpp>
#include <assimp/Importer.hpp>

#include <numeric>

namespace Assimp {

using namespace Assimp::Formatter;
using namespace Assimp::Collada;

static const aiImporterDesc desc = {
    "Collada Importer",
    "",
    "",
    "http://collada.org",
    aiImporterFlags_SupportTextFlavour | aiImporterFlags_SupportCompressedFlavour,
    1,
    3,
    1,
    5,
    "dae xml zae"
};

static const float kMillisecondsFromSeconds = 1000.f;

// Add an item of metadata to a node
// Assumes the key is not already in the list
template <typename T>
inline void AddNodeMetaData(aiNode *node, const std::string &key, const T &value) {
    if (nullptr == node->mMetaData) {
        node->mMetaData = new aiMetadata();
    }
    node->mMetaData->Add(key, value);
}

// ------------------------------------------------------------------------------------------------
// Constructor to be privately used by Importer
ColladaLoader::ColladaLoader() :
        mFileName(),
        mMeshIndexByID(),
        mMaterialIndexByName(),
        mMeshes(),
        newMats(),
        mCameras(),
        mLights(),
        mTextures(),
        mAnims(),
        noSkeletonMesh(false),
        ignoreUpDirection(false),
        useColladaName(false),
        mNodeNameCounter(0) {
    // empty
}

// ------------------------------------------------------------------------------------------------
// Destructor, private as well
ColladaLoader::~ColladaLoader() {
    // empty
}

// ------------------------------------------------------------------------------------------------
// Returns whether the class can handle the format of the given file.
bool ColladaLoader::CanRead(const std::string &pFile, IOSystem *pIOHandler, bool /*checkSig*/) const {
    // Look for a DAE file inside, but don't extract it
    ZipArchiveIOSystem zip_archive(pIOHandler, pFile);
    if (zip_archive.isOpen()) {
        return !ColladaParser::ReadZaeManifest(zip_archive).empty();
    }

    static const char *tokens[] = { "<collada" };
    return SearchFileHeaderForToken(pIOHandler, pFile, tokens, AI_COUNT_OF(tokens));
}

// ------------------------------------------------------------------------------------------------
void ColladaLoader::SetupProperties(const Importer *pImp) {
    noSkeletonMesh = pImp->GetPropertyInteger(AI_CONFIG_IMPORT_NO_SKELETON_MESHES, 0) != 0;
    ignoreUpDirection = pImp->GetPropertyInteger(AI_CONFIG_IMPORT_COLLADA_IGNORE_UP_DIRECTION, 0) != 0;
    useColladaName = pImp->GetPropertyInteger(AI_CONFIG_IMPORT_COLLADA_USE_COLLADA_NAMES, 0) != 0;
}

// ------------------------------------------------------------------------------------------------
// Get file extension list
const aiImporterDesc *ColladaLoader::GetInfo() const {
    return &desc;
}

// ------------------------------------------------------------------------------------------------
// Imports the given file into the given scene structure.
void ColladaLoader::InternReadFile(const std::string &pFile, aiScene *pScene, IOSystem *pIOHandler) {
    mFileName = pFile;

    // clean all member arrays - just for safety, it should work even if we did not
    mMeshIndexByID.clear();
    mMaterialIndexByName.clear();
    mMeshes.clear();
    mTargetMeshes.clear();
    newMats.clear();
    mLights.clear();
    mCameras.clear();
    mTextures.clear();
    mAnims.clear();

    // parse the input file
    ColladaParser parser(pIOHandler, pFile);

    if (!parser.mRootNode) {
        throw DeadlyImportError("Collada: File came out empty. Something is wrong here.");
    }

    // reserve some storage to avoid unnecessary reallocs
    newMats.reserve(parser.mMaterialLibrary.size() * 2u);
    mMeshes.reserve(parser.mMeshLibrary.size() * 2u);

    mCameras.reserve(parser.mCameraLibrary.size());
    mLights.reserve(parser.mLightLibrary.size());

    // create the materials first, for the meshes to find
    BuildMaterials(parser, pScene);

    // build the node hierarchy from it
    pScene->mRootNode = BuildHierarchy(parser, parser.mRootNode);

    // ... then fill the materials with the now adjusted settings
    FillMaterials(parser, pScene);

    // Apply unit-size scale calculation

    pScene->mRootNode->mTransformation *= aiMatrix4x4(parser.mUnitSize, 0, 0, 0,
            0, parser.mUnitSize, 0, 0,
            0, 0, parser.mUnitSize, 0,
            0, 0, 0, 1);
    if (!ignoreUpDirection) {
        // Convert to Y_UP, if different orientation
        if (parser.mUpDirection == ColladaParser::UP_X) {
            pScene->mRootNode->mTransformation *= aiMatrix4x4(
                    0, -1, 0, 0,
                    1, 0, 0, 0,
                    0, 0, 1, 0,
                    0, 0, 0, 1);
        } else if (parser.mUpDirection == ColladaParser::UP_Z) {
            pScene->mRootNode->mTransformation *= aiMatrix4x4(
                    1, 0, 0, 0,
                    0, 0, 1, 0,
                    0, -1, 0, 0,
                    0, 0, 0, 1);
        }
    }

    // Store scene metadata
    if (!parser.mAssetMetaData.empty()) {
        const size_t numMeta(parser.mAssetMetaData.size());
        pScene->mMetaData = aiMetadata::Alloc(static_cast<unsigned int>(numMeta));
        size_t i = 0;
        for (auto it = parser.mAssetMetaData.cbegin(); it != parser.mAssetMetaData.cend(); ++it, ++i) {
            pScene->mMetaData->Set(static_cast<unsigned int>(i), (*it).first, (*it).second);
        }
    }

    StoreSceneMeshes(pScene);
    StoreSceneMaterials(pScene);
    StoreSceneTextures(pScene);
    StoreSceneLights(pScene);
    StoreSceneCameras(pScene);
    StoreAnimations(pScene, parser);

    // If no meshes have been loaded, it's probably just an animated skeleton.
    if (0u == pScene->mNumMeshes) {
        if (!noSkeletonMesh) {
            SkeletonMeshBuilder hero(pScene);
        }
        pScene->mFlags |= AI_SCENE_FLAGS_INCOMPLETE;
    }
}

// ------------------------------------------------------------------------------------------------
// Recursively constructs a scene node for the given parser node and returns it.
aiNode *ColladaLoader::BuildHierarchy(const ColladaParser &pParser, const Collada::Node *pNode) {
    // create a node for it
    aiNode *node = new aiNode();

    // find a name for the new node. It's more complicated than you might think
    node->mName.Set(FindNameForNode(pNode));
    // if we're not using the unique IDs, hold onto them for reference and export
    if (useColladaName) {
        if (!pNode->mID.empty()) {
            AddNodeMetaData(node, AI_METADATA_COLLADA_ID, aiString(pNode->mID));
        }
        if (!pNode->mSID.empty()) {
            AddNodeMetaData(node, AI_METADATA_COLLADA_SID, aiString(pNode->mSID));
        }
    }

    // calculate the transformation matrix for it
    node->mTransformation = pParser.CalculateResultTransform(pNode->mTransforms);

    // now resolve node instances
    std::vector<const Node*> instances;
    ResolveNodeInstances(pParser, pNode, instances);

    // add children. first the *real* ones
    node->mNumChildren = static_cast<unsigned int>(pNode->mChildren.size() + instances.size());
    node->mChildren = new aiNode *[node->mNumChildren];

    for (size_t a = 0; a < pNode->mChildren.size(); ++a) {
        node->mChildren[a] = BuildHierarchy(pParser, pNode->mChildren[a]);
        node->mChildren[a]->mParent = node;
    }

    // ... and finally the resolved node instances
    for (size_t a = 0; a < instances.size(); ++a) {
        node->mChildren[pNode->mChildren.size() + a] = BuildHierarchy(pParser, instances[a]);
        node->mChildren[pNode->mChildren.size() + a]->mParent = node;
    }

    BuildMeshesForNode(pParser, pNode, node);
    BuildCamerasForNode(pParser, pNode, node);
    BuildLightsForNode(pParser, pNode, node);

    return node;
}

// ------------------------------------------------------------------------------------------------
// Resolve node instances
void ColladaLoader::ResolveNodeInstances(const ColladaParser &pParser, const Node *pNode,
        std::vector<const Node*> &resolved) {
    // reserve enough storage
    resolved.reserve(pNode->mNodeInstances.size());

    // ... and iterate through all nodes to be instanced as children of pNode
    for (const auto &nodeInst : pNode->mNodeInstances) {
        // find the corresponding node in the library
        const ColladaParser::NodeLibrary::const_iterator itt = pParser.mNodeLibrary.find(nodeInst.mNode);
        const Node *nd = itt == pParser.mNodeLibrary.end() ? nullptr : (*itt).second;

        // FIX for http://sourceforge.net/tracker/?func=detail&aid=3054873&group_id=226462&atid=1067632
        // need to check for both name and ID to catch all. To avoid breaking valid files,
        // the workaround is only enabled when the first attempt to resolve the node has failed.
        if (nullptr == nd) {
            nd = FindNode(pParser.mRootNode, nodeInst.mNode);
        }
        if (nullptr == nd) {
            ASSIMP_LOG_ERROR("Collada: Unable to resolve reference to instanced node ", nodeInst.mNode);
        } else {
            //  attach this node to the list of children
            resolved.push_back(nd);
        }
    }
}

// ------------------------------------------------------------------------------------------------
// Resolve UV channels
void ColladaLoader::ApplyVertexToEffectSemanticMapping(Sampler &sampler, const SemanticMappingTable &table) {
    SemanticMappingTable::InputSemanticMap::const_iterator it = table.mMap.find(sampler.mUVChannel);
    if (it == table.mMap.end()) {
        return;
    }

    if (it->second.mType != IT_Texcoord) {
        ASSIMP_LOG_ERROR("Collada: Unexpected effect input mapping");
    }

    sampler.mUVId = it->second.mSet;
}

// ------------------------------------------------------------------------------------------------
// Builds lights for the given node and references them
void ColladaLoader::BuildLightsForNode(const ColladaParser &pParser, const Node *pNode, aiNode *pTarget) {
    for (const LightInstance &lid : pNode->mLights) {
        // find the referred light
        ColladaParser::LightLibrary::const_iterator srcLightIt = pParser.mLightLibrary.find(lid.mLight);
        if (srcLightIt == pParser.mLightLibrary.end()) {
            ASSIMP_LOG_WARN("Collada: Unable to find light for ID \"", lid.mLight, "\". Skipping.");
            continue;
        }
        const Collada::Light *srcLight = &srcLightIt->second;

        // now fill our ai data structure
        aiLight *out = new aiLight();
        out->mName = pTarget->mName;
        out->mType = (aiLightSourceType)srcLight->mType;

        // collada lights point in -Z by default, rest is specified in node transform
        out->mDirection = aiVector3D(0.f, 0.f, -1.f);

        out->mAttenuationConstant = srcLight->mAttConstant;
        out->mAttenuationLinear = srcLight->mAttLinear;
        out->mAttenuationQuadratic = srcLight->mAttQuadratic;

        out->mColorDiffuse = out->mColorSpecular = out->mColorAmbient = srcLight->mColor * srcLight->mIntensity;
        if (out->mType == aiLightSource_AMBIENT) {
            out->mColorDiffuse = out->mColorSpecular = aiColor3D(0, 0, 0);
            out->mColorAmbient = srcLight->mColor * srcLight->mIntensity;
        } else {
            // collada doesn't differentiate between these color types
            out->mColorDiffuse = out->mColorSpecular = srcLight->mColor * srcLight->mIntensity;
            out->mColorAmbient = aiColor3D(0, 0, 0);
        }

        // convert falloff angle and falloff exponent in our representation, if given
        if (out->mType == aiLightSource_SPOT) {
            out->mAngleInnerCone = AI_DEG_TO_RAD(srcLight->mFalloffAngle);

            // ... some extension magic.
            if (srcLight->mOuterAngle >= ASSIMP_COLLADA_LIGHT_ANGLE_NOT_SET * (1 - ai_epsilon)) {
                // ... some deprecation magic.
                if (srcLight->mPenumbraAngle >= ASSIMP_COLLADA_LIGHT_ANGLE_NOT_SET * (1 - ai_epsilon)) {
                    // Need to rely on falloff_exponent. I don't know how to interpret it, so I need to guess ....
                    // epsilon chosen to be 0.1
                    float f = 1.0f;
                    if ( 0.0f != srcLight->mFalloffExponent ) {
                        f = 1.f / srcLight->mFalloffExponent;
                    }
                    out->mAngleOuterCone = std::acos(std::pow(0.1f, f)) +
                                           out->mAngleInnerCone;
                } else {
                    out->mAngleOuterCone = out->mAngleInnerCone + AI_DEG_TO_RAD(srcLight->mPenumbraAngle);
                    if (out->mAngleOuterCone < out->mAngleInnerCone)
                        std::swap(out->mAngleInnerCone, out->mAngleOuterCone);
                }
            } else {
                out->mAngleOuterCone = AI_DEG_TO_RAD(srcLight->mOuterAngle);
            }
        }

        // add to light list
        mLights.push_back(out);
    }
}

// ------------------------------------------------------------------------------------------------
// Builds cameras for the given node and references them
void ColladaLoader::BuildCamerasForNode(const ColladaParser &pParser, const Node *pNode, aiNode *pTarget) {
    for (const CameraInstance &cid : pNode->mCameras) {
        // find the referred light
        ColladaParser::CameraLibrary::const_iterator srcCameraIt = pParser.mCameraLibrary.find(cid.mCamera);
        if (srcCameraIt == pParser.mCameraLibrary.end()) {
            ASSIMP_LOG_WARN("Collada: Unable to find camera for ID \"", cid.mCamera, "\". Skipping.");
            continue;
        }
        const Collada::Camera *srcCamera = &srcCameraIt->second;

        // orthographic cameras not yet supported in Assimp
        if (srcCamera->mOrtho) {
            ASSIMP_LOG_WARN("Collada: Orthographic cameras are not supported.");
        }

        // now fill our ai data structure
        aiCamera *out = new aiCamera();
        out->mName = pTarget->mName;

        // collada cameras point in -Z by default, rest is specified in node transform
        out->mLookAt = aiVector3D(0.f, 0.f, -1.f);

        // near/far z is already ok
        out->mClipPlaneFar = srcCamera->mZFar;
        out->mClipPlaneNear = srcCamera->mZNear;

        // ... but for the rest some values are optional
        // and we need to compute the others in any combination.
        if (srcCamera->mAspect != 10e10f) {
            out->mAspect = srcCamera->mAspect;
        }

        if (srcCamera->mHorFov != 10e10f) {
            out->mHorizontalFOV = srcCamera->mHorFov;

            if (srcCamera->mVerFov != 10e10f && srcCamera->mAspect == 10e10f) {
                out->mAspect = std::tan(AI_DEG_TO_RAD(srcCamera->mHorFov)) /
                               std::tan(AI_DEG_TO_RAD(srcCamera->mVerFov));
            }

        } else if (srcCamera->mAspect != 10e10f && srcCamera->mVerFov != 10e10f) {
            out->mHorizontalFOV = 2.0f * AI_RAD_TO_DEG(std::atan(srcCamera->mAspect *
                                                                 std::tan(AI_DEG_TO_RAD(srcCamera->mVerFov) * 0.5f)));
        }

        // Collada uses degrees, we use radians
        out->mHorizontalFOV = AI_DEG_TO_RAD(out->mHorizontalFOV);

        // add to camera list
        mCameras.push_back(out);
    }
}

// ------------------------------------------------------------------------------------------------
// Builds meshes for the given node and references them
void ColladaLoader::BuildMeshesForNode(const ColladaParser &pParser, const Node *pNode, aiNode *pTarget) {
    // accumulated mesh references by this node
    std::vector<size_t> newMeshRefs;
    newMeshRefs.reserve(pNode->mMeshes.size());

    // add a mesh for each subgroup in each collada mesh
    for (const MeshInstance &mid : pNode->mMeshes) {
        const Mesh *srcMesh = nullptr;
        const Controller *srcController = nullptr;

        // find the referred mesh
        ColladaParser::MeshLibrary::const_iterator srcMeshIt = pParser.mMeshLibrary.find(mid.mMeshOrController);
        if (srcMeshIt == pParser.mMeshLibrary.end()) {
            // if not found in the mesh-library, it might also be a controller referring to a mesh
            ColladaParser::ControllerLibrary::const_iterator srcContrIt = pParser.mControllerLibrary.find(mid.mMeshOrController);
            if (srcContrIt != pParser.mControllerLibrary.end()) {
                srcController = &srcContrIt->second;
                srcMeshIt = pParser.mMeshLibrary.find(srcController->mMeshId);
                if (srcMeshIt != pParser.mMeshLibrary.end()) {
                    srcMesh = srcMeshIt->second;
                }
            }

            if (nullptr == srcMesh) {
                ASSIMP_LOG_WARN("Collada: Unable to find geometry for ID \"", mid.mMeshOrController, "\". Skipping.");
                continue;
            }
        } else {
            // ID found in the mesh library -> direct reference to an unskinned mesh
            srcMesh = srcMeshIt->second;
        }

        // build a mesh for each of its subgroups
        size_t vertexStart = 0, faceStart = 0;
        for (size_t sm = 0; sm < srcMesh->mSubMeshes.size(); ++sm) {
            const Collada::SubMesh &submesh = srcMesh->mSubMeshes[sm];
            if (submesh.mNumFaces == 0) {
                continue;
            }

            // find material assigned to this submesh
            std::string meshMaterial;
            std::map<std::string, SemanticMappingTable>::const_iterator meshMatIt = mid.mMaterials.find(submesh.mMaterial);

            const Collada::SemanticMappingTable *table = nullptr;
            if (meshMatIt != mid.mMaterials.end()) {
                table = &meshMatIt->second;
                meshMaterial = table->mMatName;
            } else {
                ASSIMP_LOG_WARN("Collada: No material specified for subgroup <", submesh.mMaterial, "> in geometry <",
                        mid.mMeshOrController, ">.");
                if (!mid.mMaterials.empty()) {
                    meshMaterial = mid.mMaterials.begin()->second.mMatName;
                }
            }

            // OK ... here the *real* fun starts ... we have the vertex-input-to-effect-semantic-table
            // given. The only mapping stuff which we do actually support is the UV channel.
            std::map<std::string, size_t>::const_iterator matIt = mMaterialIndexByName.find(meshMaterial);
            unsigned int matIdx = 0;
            if (matIt != mMaterialIndexByName.end()) {
                matIdx = static_cast<unsigned int>(matIt->second);
            }

            if (table && !table->mMap.empty()) {
                std::pair<Collada::Effect *, aiMaterial *> &mat = newMats[matIdx];

                // Iterate through all texture channels assigned to the effect and
                // check whether we have mapping information for it.
                ApplyVertexToEffectSemanticMapping(mat.first->mTexDiffuse, *table);
                ApplyVertexToEffectSemanticMapping(mat.first->mTexAmbient, *table);
                ApplyVertexToEffectSemanticMapping(mat.first->mTexSpecular, *table);
                ApplyVertexToEffectSemanticMapping(mat.first->mTexEmissive, *table);
                ApplyVertexToEffectSemanticMapping(mat.first->mTexTransparent, *table);
                ApplyVertexToEffectSemanticMapping(mat.first->mTexBump, *table);
            }

            // built lookup index of the Mesh-Submesh-Material combination
            ColladaMeshIndex index(mid.mMeshOrController, sm, meshMaterial);

            // if we already have the mesh at the library, just add its index to the node's array
            std::map<ColladaMeshIndex, size_t>::const_iterator dstMeshIt = mMeshIndexByID.find(index);
            if (dstMeshIt != mMeshIndexByID.end()) {
                newMeshRefs.push_back(dstMeshIt->second);
            } else {
                // else we have to add the mesh to the collection and store its newly assigned index at the node
                aiMesh *dstMesh = CreateMesh(pParser, srcMesh, submesh, srcController, vertexStart, faceStart);

                // store the mesh, and store its new index in the node
                newMeshRefs.push_back(mMeshes.size());
                mMeshIndexByID[index] = mMeshes.size();
                mMeshes.push_back(dstMesh);
                vertexStart += dstMesh->mNumVertices;
                faceStart += submesh.mNumFaces;

                // assign the material index
                std::map<std::string, size_t>::const_iterator subMatIt = mMaterialIndexByName.find(submesh.mMaterial);
                if (subMatIt != mMaterialIndexByName.end()) {
                    dstMesh->mMaterialIndex = static_cast<unsigned int>(subMatIt->second);
                } else {
                    dstMesh->mMaterialIndex = matIdx;
                }
                if (dstMesh->mName.length == 0) {
                    dstMesh->mName = mid.mMeshOrController;
                }
            }
        }
    }

    // now place all mesh references we gathered in the target node
    pTarget->mNumMeshes = static_cast<unsigned int>(newMeshRefs.size());
    if (!newMeshRefs.empty()) {
        struct UIntTypeConverter {
            unsigned int operator()(const size_t &v) const {
                return static_cast<unsigned int>(v);
            }
        };

        pTarget->mMeshes = new unsigned int[pTarget->mNumMeshes];
        std::transform(newMeshRefs.begin(), newMeshRefs.end(), pTarget->mMeshes, UIntTypeConverter());
    }
}

// ------------------------------------------------------------------------------------------------
// Find mesh from either meshes or morph target meshes
aiMesh *ColladaLoader::findMesh(const std::string &meshid) {
    if (meshid.empty()) {
        return nullptr;
    }

    for (auto & mMeshe : mMeshes) {
        if (std::string(mMeshe->mName.data) == meshid) {
            return mMeshe;
        }
    }

    for (auto & mTargetMeshe : mTargetMeshes) {
        if (std::string(mTargetMeshe->mName.data) == meshid) {
            return mTargetMeshe;
        }
    }

    return nullptr;
}

// ------------------------------------------------------------------------------------------------
// Creates a mesh for the given ColladaMesh face subset and returns the newly created mesh
aiMesh *ColladaLoader::CreateMesh(const ColladaParser &pParser, const Mesh *pSrcMesh, const SubMesh &pSubMesh,
        const Controller *pSrcController, size_t pStartVertex, size_t pStartFace) {
    std::unique_ptr<aiMesh> dstMesh(new aiMesh);

    if (useColladaName) {
        dstMesh->mName = pSrcMesh->mName;
    } else {
        dstMesh->mName = pSrcMesh->mId;
    }

    if (pSrcMesh->mPositions.empty()) {
        return dstMesh.release();
    }

    // count the vertices addressed by its faces
    const size_t numVertices = std::accumulate(pSrcMesh->mFaceSize.begin() + pStartFace,
            pSrcMesh->mFaceSize.begin() + pStartFace + pSubMesh.mNumFaces, size_t(0));

    // copy positions
    dstMesh->mNumVertices = static_cast<unsigned int>(numVertices);
    dstMesh->mVertices = new aiVector3D[numVertices];
    std::copy(pSrcMesh->mPositions.begin() + pStartVertex, pSrcMesh->mPositions.begin() + pStartVertex + numVertices, dstMesh->mVertices);

    // normals, if given. HACK: (thom) Due to the glorious Collada spec we never
    // know if we have the same number of normals as there are positions. So we
    // also ignore any vertex attribute if it has a different count
    if (pSrcMesh->mNormals.size() >= pStartVertex + numVertices) {
        dstMesh->mNormals = new aiVector3D[numVertices];
        std::copy(pSrcMesh->mNormals.begin() + pStartVertex, pSrcMesh->mNormals.begin() + pStartVertex + numVertices, dstMesh->mNormals);
    }

    // tangents, if given.
    if (pSrcMesh->mTangents.size() >= pStartVertex + numVertices) {
        dstMesh->mTangents = new aiVector3D[numVertices];
        std::copy(pSrcMesh->mTangents.begin() + pStartVertex, pSrcMesh->mTangents.begin() + pStartVertex + numVertices, dstMesh->mTangents);
    }

    // bitangents, if given.
    if (pSrcMesh->mBitangents.size() >= pStartVertex + numVertices) {
        dstMesh->mBitangents = new aiVector3D[numVertices];
        std::copy(pSrcMesh->mBitangents.begin() + pStartVertex, pSrcMesh->mBitangents.begin() + pStartVertex + numVertices, dstMesh->mBitangents);
    }

    // same for texture coords, as many as we have
    // empty slots are not allowed, need to pack and adjust UV indexes accordingly
    for (size_t a = 0, real = 0; a < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++a) {
        if (pSrcMesh->mTexCoords[a].size() >= pStartVertex + numVertices) {
            dstMesh->mTextureCoords[real] = new aiVector3D[numVertices];
            for (size_t b = 0; b < numVertices; ++b) {
                dstMesh->mTextureCoords[real][b] = pSrcMesh->mTexCoords[a][pStartVertex + b];
            }

            dstMesh->mNumUVComponents[real] = pSrcMesh->mNumUVComponents[a];
            ++real;
        }
    }

    // same for vertex colors, as many as we have. again the same packing to avoid empty slots
    for (size_t a = 0, real = 0; a < AI_MAX_NUMBER_OF_COLOR_SETS; ++a) {
        if (pSrcMesh->mColors[a].size() >= pStartVertex + numVertices) {
            dstMesh->mColors[real] = new aiColor4D[numVertices];
            std::copy(pSrcMesh->mColors[a].begin() + pStartVertex, pSrcMesh->mColors[a].begin() + pStartVertex + numVertices, dstMesh->mColors[real]);
            ++real;
        }
    }

    // create faces. Due to the fact that each face uses unique vertices, we can simply count up on each vertex
    size_t vertex = 0;
    dstMesh->mNumFaces = static_cast<unsigned int>(pSubMesh.mNumFaces);
    dstMesh->mFaces = new aiFace[dstMesh->mNumFaces];
    for (size_t a = 0; a < dstMesh->mNumFaces; ++a) {
        size_t s = pSrcMesh->mFaceSize[pStartFace + a];
        aiFace &face = dstMesh->mFaces[a];
        face.mNumIndices = static_cast<unsigned int>(s);
        face.mIndices = new unsigned int[s];
        for (size_t b = 0; b < s; ++b) {
            face.mIndices[b] = static_cast<unsigned int>(vertex++);
        }
    }

    // create morph target meshes if any
    std::vector<aiMesh *> targetMeshes;
    std::vector<float> targetWeights;
    Collada::MorphMethod method = Normalized;

    for (std::map<std::string, Controller>::const_iterator it = pParser.mControllerLibrary.begin();
            it != pParser.mControllerLibrary.end(); ++it) {
        const Controller &c = it->second;
        const Collada::Mesh *baseMesh = pParser.ResolveLibraryReference(pParser.mMeshLibrary, c.mMeshId);

        if (c.mType == Collada::Morph && baseMesh->mName == pSrcMesh->mName) {
            const Collada::Accessor &targetAccessor = pParser.ResolveLibraryReference(pParser.mAccessorLibrary, c.mMorphTarget);
            const Collada::Accessor &weightAccessor = pParser.ResolveLibraryReference(pParser.mAccessorLibrary, c.mMorphWeight);
            const Collada::Data &targetData = pParser.ResolveLibraryReference(pParser.mDataLibrary, targetAccessor.mSource);
            const Collada::Data &weightData = pParser.ResolveLibraryReference(pParser.mDataLibrary, weightAccessor.mSource);

            // take method
            method = c.mMethod;

            if (!targetData.mIsStringArray) {
                throw DeadlyImportError("target data must contain id. ");
            }
            if (weightData.mIsStringArray) {
                throw DeadlyImportError("target weight data must not be textual ");
            }

            for (const auto & mString : targetData.mStrings) {
                const Mesh *targetMesh = pParser.ResolveLibraryReference(pParser.mMeshLibrary, mString);

                aiMesh *aimesh = findMesh(useColladaName ? targetMesh->mName : targetMesh->mId);
                if (!aimesh) {
                    if (targetMesh->mSubMeshes.size() > 1) {
                        throw DeadlyImportError("Morphing target mesh must be a single");
                    }
                    aimesh = CreateMesh(pParser, targetMesh, targetMesh->mSubMeshes.at(0), nullptr, 0, 0);
                    mTargetMeshes.push_back(aimesh);
                }
                targetMeshes.push_back(aimesh);
            }
            for (float mValue : weightData.mValues) {
                targetWeights.push_back(mValue);
            }
        }
    }
    if (!targetMeshes.empty() && targetWeights.size() == targetMeshes.size()) {
        std::vector<aiAnimMesh *> animMeshes;
        for (unsigned int i = 0; i < targetMeshes.size(); ++i) {
            aiMesh *targetMesh = targetMeshes.at(i);
            aiAnimMesh *animMesh = aiCreateAnimMesh(targetMesh);
            float weight = targetWeights[i];
            animMesh->mWeight = weight == 0 ? 1.0f : weight;
            animMesh->mName = targetMesh->mName;
            animMeshes.push_back(animMesh);
        }
        dstMesh->mMethod = (method == Relative) ? aiMorphingMethod_MORPH_RELATIVE : aiMorphingMethod_MORPH_NORMALIZED;
        dstMesh->mAnimMeshes = new aiAnimMesh *[animMeshes.size()];
        dstMesh->mNumAnimMeshes = static_cast<unsigned int>(animMeshes.size());
        for (unsigned int i = 0; i < animMeshes.size(); ++i) {
            dstMesh->mAnimMeshes[i] = animMeshes.at(i);
        }
    }

    // create bones if given
    if (pSrcController && pSrcController->mType == Collada::Skin) {
        // resolve references - joint names
        const Collada::Accessor &jointNamesAcc = pParser.ResolveLibraryReference(pParser.mAccessorLibrary, pSrcController->mJointNameSource);
        const Collada::Data &jointNames = pParser.ResolveLibraryReference(pParser.mDataLibrary, jointNamesAcc.mSource);
        // joint offset matrices
        const Collada::Accessor &jointMatrixAcc = pParser.ResolveLibraryReference(pParser.mAccessorLibrary, pSrcController->mJointOffsetMatrixSource);
        const Collada::Data &jointMatrices = pParser.ResolveLibraryReference(pParser.mDataLibrary, jointMatrixAcc.mSource);
        // joint vertex_weight name list - should refer to the same list as the joint names above. If not, report and reconsider
        const Collada::Accessor &weightNamesAcc = pParser.ResolveLibraryReference(pParser.mAccessorLibrary, pSrcController->mWeightInputJoints.mAccessor);
        if (&weightNamesAcc != &jointNamesAcc)
            throw DeadlyImportError("Temporary implementational laziness. If you read this, please report to the author.");
        // vertex weights
        const Collada::Accessor &weightsAcc = pParser.ResolveLibraryReference(pParser.mAccessorLibrary, pSrcController->mWeightInputWeights.mAccessor);
        const Collada::Data &weights = pParser.ResolveLibraryReference(pParser.mDataLibrary, weightsAcc.mSource);

        if (!jointNames.mIsStringArray || jointMatrices.mIsStringArray || weights.mIsStringArray) {
            throw DeadlyImportError("Data type mismatch while resolving mesh joints");
        }
        // sanity check: we rely on the vertex weights always coming as pairs of BoneIndex-WeightIndex
        if (pSrcController->mWeightInputJoints.mOffset != 0 || pSrcController->mWeightInputWeights.mOffset != 1) {
            throw DeadlyImportError("Unsupported vertex_weight addressing scheme. ");
        }

        // create containers to collect the weights for each bone
        size_t numBones = jointNames.mStrings.size();
        std::vector<std::vector<aiVertexWeight>> dstBones(numBones);

        // build a temporary array of pointers to the start of each vertex's weights
        using IndexPairVector = std::vector<std::pair<size_t, size_t>>;
        std::vector<IndexPairVector::const_iterator> weightStartPerVertex;
        weightStartPerVertex.resize(pSrcController->mWeightCounts.size(), pSrcController->mWeights.end());

        IndexPairVector::const_iterator pit = pSrcController->mWeights.begin();
        for (size_t a = 0; a < pSrcController->mWeightCounts.size(); ++a) {
            weightStartPerVertex[a] = pit;
            pit += pSrcController->mWeightCounts[a];
        }

        // now for each vertex put the corresponding vertex weights into each bone's weight collection
        for (size_t a = pStartVertex; a < pStartVertex + numVertices; ++a) {
            // which position index was responsible for this vertex? that's also the index by which
            // the controller assigns the vertex weights
            size_t orgIndex = pSrcMesh->mFacePosIndices[a];
            // find the vertex weights for this vertex
            IndexPairVector::const_iterator iit = weightStartPerVertex[orgIndex];
            size_t pairCount = pSrcController->mWeightCounts[orgIndex];

            for (size_t b = 0; b < pairCount; ++b, ++iit) {
                const size_t jointIndex = iit->first;
                const size_t vertexIndex = iit->second;
                ai_real weight = 1.0f;
                if (!weights.mValues.empty()) {
                    weight = ReadFloat(weightsAcc, weights, vertexIndex, 0);
                }

                // one day I gonna kill that XSI Collada exporter
                if (weight > 0.0f) {
                    aiVertexWeight w;
                    w.mVertexId = static_cast<unsigned int>(a - pStartVertex);
                    w.mWeight = weight;
                    dstBones[jointIndex].push_back(w);
                }
            }
        }

        // count the number of bones which influence vertices of the current submesh
        size_t numRemainingBones = 0;
        for (const auto & dstBone : dstBones) {
            if (!dstBone.empty()) {
                ++numRemainingBones;
            }
        }

        // create bone array and copy bone weights one by one
        dstMesh->mNumBones = static_cast<unsigned int>(numRemainingBones);
        dstMesh->mBones = new aiBone *[numRemainingBones];
        size_t boneCount = 0;
        for (size_t a = 0; a < numBones; ++a) {
            // omit bones without weights
            if (dstBones[a].empty()) {
                continue;
            }

            // create bone with its weights
            aiBone *bone = new aiBone;
            bone->mName = ReadString(jointNamesAcc, jointNames, a);
            bone->mOffsetMatrix.a1 = ReadFloat(jointMatrixAcc, jointMatrices, a, 0);
            bone->mOffsetMatrix.a2 = ReadFloat(jointMatrixAcc, jointMatrices, a, 1);
            bone->mOffsetMatrix.a3 = ReadFloat(jointMatrixAcc, jointMatrices, a, 2);
            bone->mOffsetMatrix.a4 = ReadFloat(jointMatrixAcc, jointMatrices, a, 3);
            bone->mOffsetMatrix.b1 = ReadFloat(jointMatrixAcc, jointMatrices, a, 4);
            bone->mOffsetMatrix.b2 = ReadFloat(jointMatrixAcc, jointMatrices, a, 5);
            bone->mOffsetMatrix.b3 = ReadFloat(jointMatrixAcc, jointMatrices, a, 6);
            bone->mOffsetMatrix.b4 = ReadFloat(jointMatrixAcc, jointMatrices, a, 7);
            bone->mOffsetMatrix.c1 = ReadFloat(jointMatrixAcc, jointMatrices, a, 8);
            bone->mOffsetMatrix.c2 = ReadFloat(jointMatrixAcc, jointMatrices, a, 9);
            bone->mOffsetMatrix.c3 = ReadFloat(jointMatrixAcc, jointMatrices, a, 10);
            bone->mOffsetMatrix.c4 = ReadFloat(jointMatrixAcc, jointMatrices, a, 11);
            bone->mNumWeights = static_cast<unsigned int>(dstBones[a].size());
            bone->mWeights = new aiVertexWeight[bone->mNumWeights];
            std::copy(dstBones[a].begin(), dstBones[a].end(), bone->mWeights);

            // apply bind shape matrix to offset matrix
            aiMatrix4x4 bindShapeMatrix;
            bindShapeMatrix.a1 = pSrcController->mBindShapeMatrix[0];
            bindShapeMatrix.a2 = pSrcController->mBindShapeMatrix[1];
            bindShapeMatrix.a3 = pSrcController->mBindShapeMatrix[2];
            bindShapeMatrix.a4 = pSrcController->mBindShapeMatrix[3];
            bindShapeMatrix.b1 = pSrcController->mBindShapeMatrix[4];
            bindShapeMatrix.b2 = pSrcController->mBindShapeMatrix[5];
            bindShapeMatrix.b3 = pSrcController->mBindShapeMatrix[6];
            bindShapeMatrix.b4 = pSrcController->mBindShapeMatrix[7];
            bindShapeMatrix.c1 = pSrcController->mBindShapeMatrix[8];
            bindShapeMatrix.c2 = pSrcController->mBindShapeMatrix[9];
            bindShapeMatrix.c3 = pSrcController->mBindShapeMatrix[10];
            bindShapeMatrix.c4 = pSrcController->mBindShapeMatrix[11];
            bindShapeMatrix.d1 = pSrcController->mBindShapeMatrix[12];
            bindShapeMatrix.d2 = pSrcController->mBindShapeMatrix[13];
            bindShapeMatrix.d3 = pSrcController->mBindShapeMatrix[14];
            bindShapeMatrix.d4 = pSrcController->mBindShapeMatrix[15];
            bone->mOffsetMatrix *= bindShapeMatrix;

            // HACK: (thom) Some exporters address the bone nodes by SID, others address them by ID or even name.
            // Therefore I added a little name replacement here: I search for the bone's node by either name, ID or SID,
            // and replace the bone's name by the node's name so that the user can use the standard
            // find-by-name method to associate nodes with bones.
            const Collada::Node *bnode = FindNode(pParser.mRootNode, bone->mName.data);
            if (nullptr == bnode) {
                bnode = FindNodeBySID(pParser.mRootNode, bone->mName.data);
            }

            // assign the name that we would have assigned for the source node
            if (nullptr != bnode) {
                bone->mName.Set(FindNameForNode(bnode));
            } else {
                ASSIMP_LOG_WARN("ColladaLoader::CreateMesh(): could not find corresponding node for joint \"", bone->mName.data, "\".");
            }

            // and insert bone
            dstMesh->mBones[boneCount++] = bone;
        }
    }

    return dstMesh.release();
}

// ------------------------------------------------------------------------------------------------
// Stores all meshes in the given scene
void ColladaLoader::StoreSceneMeshes(aiScene *pScene) {
    pScene->mNumMeshes = static_cast<unsigned int>(mMeshes.size());
    if (mMeshes.empty()) {
        return;
    }
    pScene->mMeshes = new aiMesh *[mMeshes.size()];
    std::copy(mMeshes.begin(), mMeshes.end(), pScene->mMeshes);
    mMeshes.clear();
}

// ------------------------------------------------------------------------------------------------
// Stores all cameras in the given scene
void ColladaLoader::StoreSceneCameras(aiScene *pScene) {
    pScene->mNumCameras = static_cast<unsigned int>(mCameras.size());
    if (mCameras.empty()) {
        return;
    }
    pScene->mCameras = new aiCamera *[mCameras.size()];
    std::copy(mCameras.begin(), mCameras.end(), pScene->mCameras);
    mCameras.clear();
}

// ------------------------------------------------------------------------------------------------
// Stores all lights in the given scene
void ColladaLoader::StoreSceneLights(aiScene *pScene) {
    pScene->mNumLights = static_cast<unsigned int>(mLights.size());
    if (mLights.empty()) {
        return;
    }
    pScene->mLights = new aiLight *[mLights.size()];
    std::copy(mLights.begin(), mLights.end(), pScene->mLights);
    mLights.clear();
}

// ------------------------------------------------------------------------------------------------
// Stores all textures in the given scene
void ColladaLoader::StoreSceneTextures(aiScene *pScene) {
    pScene->mNumTextures = static_cast<unsigned int>(mTextures.size());
    if (mTextures.empty()) {
        return;
    }
    pScene->mTextures = new aiTexture *[mTextures.size()];
    std::copy(mTextures.begin(), mTextures.end(), pScene->mTextures);
    mTextures.clear();
}

// ------------------------------------------------------------------------------------------------
// Stores all materials in the given scene
void ColladaLoader::StoreSceneMaterials(aiScene *pScene) {
    pScene->mNumMaterials = static_cast<unsigned int>(newMats.size());
    if (newMats.empty()) {
        return;
    }
    pScene->mMaterials = new aiMaterial *[newMats.size()];
    for (unsigned int i = 0; i < newMats.size(); ++i) {
        pScene->mMaterials[i] = newMats[i].second;
    }
    newMats.clear();
}

// ------------------------------------------------------------------------------------------------
// Stores all animations
void ColladaLoader::StoreAnimations(aiScene *pScene, const ColladaParser &pParser) {
    // recursively collect all animations from the collada scene
    StoreAnimations(pScene, pParser, &pParser.mAnims, "");

    // catch special case: many animations with the same length, each affecting only a single node.
    // we need to unite all those single-node-anims to a proper combined animation
    for (size_t a = 0; a < mAnims.size(); ++a) {
        aiAnimation *templateAnim = mAnims[a];

        if (templateAnim->mNumChannels == 1) {
            // search for other single-channel-anims with the same duration
            std::vector<size_t> collectedAnimIndices;
            for (size_t b = a + 1; b < mAnims.size(); ++b) {
                aiAnimation *other = mAnims[b];
                if (other->mNumChannels == 1 && other->mDuration == templateAnim->mDuration &&
                        other->mTicksPerSecond == templateAnim->mTicksPerSecond)
                    collectedAnimIndices.push_back(b);
            }

            // We only want to combine the animations if they have different channels
            std::set<std::string> animTargets;
            animTargets.insert(templateAnim->mChannels[0]->mNodeName.C_Str());
            bool collectedAnimationsHaveDifferentChannels = true;
            for (unsigned long long collectedAnimIndice : collectedAnimIndices) {
                aiAnimation *srcAnimation = mAnims[(int)collectedAnimIndice];
                std::string channelName = std::string(srcAnimation->mChannels[0]->mNodeName.C_Str());
                if (animTargets.find(channelName) == animTargets.end()) {
                    animTargets.insert(channelName);
                } else {
                    collectedAnimationsHaveDifferentChannels = false;
                    break;
                }
            }

            if (!collectedAnimationsHaveDifferentChannels) {
                continue;
            }

            // if there are other animations which fit the template anim, combine all channels into a single anim
            if (!collectedAnimIndices.empty()) {
                aiAnimation *combinedAnim = new aiAnimation();
                combinedAnim->mName = aiString(std::string("combinedAnim_") + char('0' + a));
                combinedAnim->mDuration = templateAnim->mDuration;
                combinedAnim->mTicksPerSecond = templateAnim->mTicksPerSecond;
                combinedAnim->mNumChannels = static_cast<unsigned int>(collectedAnimIndices.size() + 1);
                combinedAnim->mChannels = new aiNodeAnim *[combinedAnim->mNumChannels];
                // add the template anim as first channel by moving its aiNodeAnim to the combined animation
                combinedAnim->mChannels[0] = templateAnim->mChannels[0];
                templateAnim->mChannels[0] = nullptr;
                delete templateAnim;
                // combined animation replaces template animation in the anim array
                mAnims[a] = combinedAnim;

                // move the memory of all other anims to the combined anim and erase them from the source anims
                for (size_t b = 0; b < collectedAnimIndices.size(); ++b) {
                    aiAnimation *srcAnimation = mAnims[collectedAnimIndices[b]];
                    combinedAnim->mChannels[1 + b] = srcAnimation->mChannels[0];
                    srcAnimation->mChannels[0] = nullptr;
                    delete srcAnimation;
                }

                // in a second go, delete all the single-channel-anims that we've stripped from their channels
                // back to front to preserve indices - you know, removing an element from a vector moves all elements behind the removed one
                while (!collectedAnimIndices.empty()) {
                    mAnims.erase(mAnims.begin() + collectedAnimIndices.back());
                    collectedAnimIndices.pop_back();
                }
            }
        }
    }

    // now store all anims in the scene
    if (!mAnims.empty()) {
        pScene->mNumAnimations = static_cast<unsigned int>(mAnims.size());
        pScene->mAnimations = new aiAnimation *[mAnims.size()];
        std::copy(mAnims.begin(), mAnims.end(), pScene->mAnimations);
    }

    mAnims.clear();
}

// ------------------------------------------------------------------------------------------------
// Constructs the animations for the given source anim
void ColladaLoader::StoreAnimations(aiScene *pScene, const ColladaParser &pParser, const Animation *pSrcAnim, const std::string &pPrefix) {
    std::string animName = pPrefix.empty() ? pSrcAnim->mName : pPrefix + "_" + pSrcAnim->mName;

    // create nested animations, if given
    for (auto mSubAnim : pSrcAnim->mSubAnims) {
        StoreAnimations(pScene, pParser, mSubAnim, animName);
    }

    // create animation channels, if any
    if (!pSrcAnim->mChannels.empty()) {
        CreateAnimation(pScene, pParser, pSrcAnim, animName);
    }
}

struct MorphTimeValues {
    float mTime;
    struct key {
        float mWeight;
        unsigned int mValue;
    };
    std::vector<key> mKeys;
};

void insertMorphTimeValue(std::vector<MorphTimeValues> &values, float time, float weight, unsigned int value) {
    MorphTimeValues::key k;
    k.mValue = value;
    k.mWeight = weight;
    if (values.empty() || time < values[0].mTime) {
        MorphTimeValues val;
        val.mTime = time;
        val.mKeys.push_back(k);
        values.insert(values.begin(), val);
        return;
    }
    if (time > values.back().mTime) {
        MorphTimeValues val;
        val.mTime = time;
        val.mKeys.push_back(k);
        values.insert(values.end(), val);
        return;
    }
    for (unsigned int i = 0; i < values.size(); i++) {
        if (std::abs(time - values[i].mTime) < ai_epsilon) {
            values[i].mKeys.push_back(k);
            return;
        } else if (time > values[i].mTime && time < values[i + 1].mTime) {
            MorphTimeValues val;
            val.mTime = time;
            val.mKeys.push_back(k);
            values.insert(values.begin() + i, val);
            return;
        }
    }
}

static float getWeightAtKey(const std::vector<MorphTimeValues> &values, int key, unsigned int value) {
    for (auto mKey : values[key].mKeys) {
        if (mKey.mValue == value) {
            return mKey.mWeight;
        }
    }
    // no value at key found, try to interpolate if present at other keys. if not, return zero
    // TODO: interpolation
    return 0.0f;
}

// ------------------------------------------------------------------------------------------------
// Constructs the animation for the given source anim
void ColladaLoader::CreateAnimation(aiScene *pScene, const ColladaParser &pParser, const Animation *pSrcAnim, const std::string &pName) {
    // collect a list of animatable nodes
    std::vector<const aiNode *> nodes;
    CollectNodes(pScene->mRootNode, nodes);

    std::vector<aiNodeAnim *> anims;
    std::vector<aiMeshMorphAnim *> morphAnims;

    for (auto node : nodes) {
        // find all the collada anim channels which refer to the current node
        std::vector<ChannelEntry> entries;
        std::string nodeName = node->mName.data;

        // find the collada node corresponding to the aiNode
        const Node *srcNode = FindNode(pParser.mRootNode, nodeName);
        if (!srcNode) {
            continue;
        }

        // now check all channels if they affect the current node
        std::string targetID, subElement;
        for (std::vector<AnimationChannel>::const_iterator cit = pSrcAnim->mChannels.begin();
                cit != pSrcAnim->mChannels.end(); ++cit) {
            const AnimationChannel &srcChannel = *cit;
            ChannelEntry entry;

            // we expect the animation target to be of type "nodeName/transformID.subElement". Ignore all others
            // find the slash that separates the node name - there should be only one
            std::string::size_type slashPos = srcChannel.mTarget.find('/');
            if (slashPos == std::string::npos) {
                std::string::size_type targetPos = srcChannel.mTarget.find(srcNode->mID);
                if (targetPos == std::string::npos) {
                    continue;
                }

                // not node transform, but something else. store as unknown animation channel for now
                entry.mChannel = &(*cit);
                entry.mTargetId = srcChannel.mTarget.substr(targetPos + pSrcAnim->mName.length(),
                        srcChannel.mTarget.length() - targetPos - pSrcAnim->mName.length());
                if (entry.mTargetId.front() == '-') {
                    entry.mTargetId = entry.mTargetId.substr(1);
                }
                entries.push_back(entry);
                continue;
            }
            if (srcChannel.mTarget.find('/', slashPos + 1) != std::string::npos) {
                continue;
            }

            targetID.clear();
            targetID = srcChannel.mTarget.substr(0, slashPos);
            if (targetID != srcNode->mID) {
                continue;
            }

            // find the dot that separates the transformID - there should be only one or zero
            std::string::size_type dotPos = srcChannel.mTarget.find('.');
            if (dotPos != std::string::npos) {
                if (srcChannel.mTarget.find('.', dotPos + 1) != std::string::npos) {
                    continue;
                }

                entry.mTransformId = srcChannel.mTarget.substr(slashPos + 1, dotPos - slashPos - 1);

                subElement.clear();
                subElement = srcChannel.mTarget.substr(dotPos + 1);
                if (subElement == "ANGLE")
                    entry.mSubElement = 3; // last number in an Axis-Angle-Transform is the angle
                else if (subElement == "X")
                    entry.mSubElement = 0;
                else if (subElement == "Y")
                    entry.mSubElement = 1;
                else if (subElement == "Z")
                    entry.mSubElement = 2;
                else
                    ASSIMP_LOG_WARN("Unknown anim subelement <", subElement, ">. Ignoring");
            } else {
                // no sub-element following, transformId is remaining string
                entry.mTransformId = srcChannel.mTarget.substr(slashPos + 1);
            }

            std::string::size_type bracketPos = srcChannel.mTarget.find('(');
            if (bracketPos != std::string::npos) {
                entry.mTransformId = srcChannel.mTarget.substr(slashPos + 1, bracketPos - slashPos - 1);
                subElement.clear();
                subElement = srcChannel.mTarget.substr(bracketPos);

                if (subElement == "(0)(0)")
                    entry.mSubElement = 0;
                else if (subElement == "(1)(0)")
                    entry.mSubElement = 1;
                else if (subElement == "(2)(0)")
                    entry.mSubElement = 2;
                else if (subElement == "(3)(0)")
                    entry.mSubElement = 3;
                else if (subElement == "(0)(1)")
                    entry.mSubElement = 4;
                else if (subElement == "(1)(1)")
                    entry.mSubElement = 5;
                else if (subElement == "(2)(1)")
                    entry.mSubElement = 6;
                else if (subElement == "(3)(1)")
                    entry.mSubElement = 7;
                else if (subElement == "(0)(2)")
                    entry.mSubElement = 8;
                else if (subElement == "(1)(2)")
                    entry.mSubElement = 9;
                else if (subElement == "(2)(2)")
                    entry.mSubElement = 10;
                else if (subElement == "(3)(2)")
                    entry.mSubElement = 11;
                else if (subElement == "(0)(3)")
                    entry.mSubElement = 12;
                else if (subElement == "(1)(3)")
                    entry.mSubElement = 13;
                else if (subElement == "(2)(3)")
                    entry.mSubElement = 14;
                else if (subElement == "(3)(3)")
                    entry.mSubElement = 15;
            }

            // determine which transform step is affected by this channel
            entry.mTransformIndex = SIZE_MAX;
            for (size_t a = 0; a < srcNode->mTransforms.size(); ++a)
                if (srcNode->mTransforms[a].mID == entry.mTransformId)
                    entry.mTransformIndex = a;

            if (entry.mTransformIndex == SIZE_MAX) {
                if (entry.mTransformId.find("morph-weights") == std::string::npos) {
                    continue;
                }
                entry.mTargetId = entry.mTransformId;
                entry.mTransformId = std::string();
            }

            entry.mChannel = &(*cit);
            entries.push_back(entry);
        }

        // if there's no channel affecting the current node, we skip it
        if (entries.empty()) {
            continue;
        }

        // resolve the data pointers for all anim channels. Find the minimum time while we're at it
        ai_real startTime = ai_real(1e20), endTime = ai_real(-1e20);
        for (ChannelEntry & e : entries) {
            e.mTimeAccessor = &pParser.ResolveLibraryReference(pParser.mAccessorLibrary, e.mChannel->mSourceTimes);
            e.mTimeData = &pParser.ResolveLibraryReference(pParser.mDataLibrary, e.mTimeAccessor->mSource);
            e.mValueAccessor = &pParser.ResolveLibraryReference(pParser.mAccessorLibrary, e.mChannel->mSourceValues);
            e.mValueData = &pParser.ResolveLibraryReference(pParser.mDataLibrary, e.mValueAccessor->mSource);

            // time count and value count must match
            if (e.mTimeAccessor->mCount != e.mValueAccessor->mCount) {
                throw DeadlyImportError("Time count / value count mismatch in animation channel \"", e.mChannel->mTarget, "\".");
            }

            if (e.mTimeAccessor->mCount > 0) {
                // find bounding times
                startTime = std::min(startTime, ReadFloat(*e.mTimeAccessor, *e.mTimeData, 0, 0));
                endTime = std::max(endTime, ReadFloat(*e.mTimeAccessor, *e.mTimeData, e.mTimeAccessor->mCount - 1, 0));
            }
        }

        std::vector<aiMatrix4x4> resultTrafos;
        if (!entries.empty() && entries.front().mTimeAccessor->mCount > 0) {
            // create a local transformation chain of the node's transforms
            std::vector<Collada::Transform> transforms = srcNode->mTransforms;

            // now for every unique point in time, find or interpolate the key values for that time
            // and apply them to the transform chain. Then the node's present transformation can be calculated.
            ai_real time = startTime;
            while (1) {
                for (ChannelEntry & e : entries) {
                    // find the keyframe behind the current point in time
                    size_t pos = 0;
                    ai_real postTime = 0.0;
                    while (1) {
                        if (pos >= e.mTimeAccessor->mCount) {
                            break;
                        }
                        postTime = ReadFloat(*e.mTimeAccessor, *e.mTimeData, pos, 0);
                        if (postTime >= time) {
                            break;
                        }
                        ++pos;
                    }

                    pos = std::min(pos, e.mTimeAccessor->mCount - 1);

                    // read values from there
                    ai_real temp[16];
                    for (size_t c = 0; c < e.mValueAccessor->mSize; ++c) {
                        temp[c] = ReadFloat(*e.mValueAccessor, *e.mValueData, pos, c);
                    }

                    // if not exactly at the key time, interpolate with previous value set
                    if (postTime > time && pos > 0) {
                        ai_real preTime = ReadFloat(*e.mTimeAccessor, *e.mTimeData, pos - 1, 0);
                        ai_real factor = (time - postTime) / (preTime - postTime);

                        for (size_t c = 0; c < e.mValueAccessor->mSize; ++c) {
                            ai_real v = ReadFloat(*e.mValueAccessor, *e.mValueData, pos - 1, c);
                            temp[c] += (v - temp[c]) * factor;
                        }
                    }

                    // Apply values to current transformation
                    std::copy(temp, temp + e.mValueAccessor->mSize, transforms[e.mTransformIndex].f + e.mSubElement);
                }

                // Calculate resulting transformation
                aiMatrix4x4 mat = pParser.CalculateResultTransform(transforms);

                // out of laziness: we store the time in matrix.d4
                mat.d4 = time;
                resultTrafos.push_back(mat);

                // find next point in time to evaluate. That's the closest frame larger than the current in any channel
                ai_real nextTime = ai_real(1e20);
                for (ChannelEntry & channelElement : entries) {
                    // find the next time value larger than the current
                    size_t pos = 0;
                    while (pos < channelElement.mTimeAccessor->mCount) {
                        const ai_real t = ReadFloat(*channelElement.mTimeAccessor, *channelElement.mTimeData, pos, 0);
                        if (t > time) {
                            nextTime = std::min(nextTime, t);
                            break;
                        }
                        ++pos;
                    }

                    // https://github.com/assimp/assimp/issues/458
                    // Sub-sample axis-angle channels if the delta between two consecutive
                    // key-frame angles is >= 180 degrees.
                    if (transforms[channelElement.mTransformIndex].mType == TF_ROTATE && channelElement.mSubElement == 3 && pos > 0 && pos < channelElement.mTimeAccessor->mCount) {
                        const ai_real cur_key_angle = ReadFloat(*channelElement.mValueAccessor, *channelElement.mValueData, pos, 0);
                        const ai_real last_key_angle = ReadFloat(*channelElement.mValueAccessor, *channelElement.mValueData, pos - 1, 0);
                        const ai_real cur_key_time = ReadFloat(*channelElement.mTimeAccessor, *channelElement.mTimeData, pos, 0);
                        const ai_real last_key_time = ReadFloat(*channelElement.mTimeAccessor, *channelElement.mTimeData, pos - 1, 0);
                        const ai_real last_eval_angle = last_key_angle + (cur_key_angle - last_key_angle) * (time - last_key_time) / (cur_key_time - last_key_time);
                        const ai_real delta = std::abs(cur_key_angle - last_eval_angle);
                        if (delta >= 180.0) {
                            const int subSampleCount = static_cast<int>(std::floor(delta / 90.0));
                            if (cur_key_time != time) {
                                const ai_real nextSampleTime = time + (cur_key_time - time) / subSampleCount;
                                nextTime = std::min(nextTime, nextSampleTime);
                            }
                        }
                    }
                }

                // no more keys on any channel after the current time -> we're done
                if (nextTime > 1e19) {
                    break;
                }

                // else construct next key-frame at this following time point
                time = nextTime;
            }
        }

        // build an animation channel for the given node out of these trafo keys
        if (!resultTrafos.empty()) {
            aiNodeAnim *dstAnim = new aiNodeAnim;
            dstAnim->mNodeName = nodeName;
            dstAnim->mNumPositionKeys = static_cast<unsigned int>(resultTrafos.size());
            dstAnim->mNumRotationKeys = static_cast<unsigned int>(resultTrafos.size());
            dstAnim->mNumScalingKeys = static_cast<unsigned int>(resultTrafos.size());
            dstAnim->mPositionKeys = new aiVectorKey[resultTrafos.size()];
            dstAnim->mRotationKeys = new aiQuatKey[resultTrafos.size()];
            dstAnim->mScalingKeys = new aiVectorKey[resultTrafos.size()];

            for (size_t a = 0; a < resultTrafos.size(); ++a) {
                aiMatrix4x4 mat = resultTrafos[a];
                double time = double(mat.d4); // remember? time is stored in mat.d4
                mat.d4 = 1.0f;

                dstAnim->mPositionKeys[a].mTime = time * kMillisecondsFromSeconds;
                dstAnim->mRotationKeys[a].mTime = time * kMillisecondsFromSeconds;
                dstAnim->mScalingKeys[a].mTime = time * kMillisecondsFromSeconds;
                mat.Decompose(dstAnim->mScalingKeys[a].mValue, dstAnim->mRotationKeys[a].mValue, dstAnim->mPositionKeys[a].mValue);
            }

            anims.push_back(dstAnim);
        } else {
            ASSIMP_LOG_WARN("Collada loader: found empty animation channel, ignored. Please check your exporter.");
        }

        if (!entries.empty() && entries.front().mTimeAccessor->mCount > 0) {
            std::vector<ChannelEntry> morphChannels;
            for (ChannelEntry & e : entries) {
                // skip non-transform types
                if (e.mTargetId.empty()) {
                    continue;
                }

                if (e.mTargetId.find("morph-weights") != std::string::npos) {
                    morphChannels.push_back(e);
                }
            }
            if (!morphChannels.empty()) {
                // either 1) morph weight animation count should contain morph target count channels
                // or     2) one channel with morph target count arrays
                // assume first

                aiMeshMorphAnim *morphAnim = new aiMeshMorphAnim;
                morphAnim->mName.Set(nodeName);

                std::vector<MorphTimeValues> morphTimeValues;
                int morphAnimChannelIndex = 0;
                for (ChannelEntry & e : morphChannels) {
                    std::string::size_type apos = e.mTargetId.find('(');
                    std::string::size_type bpos = e.mTargetId.find(')');

                    // If unknown way to specify weight -> ignore this animation
                    if (apos == std::string::npos || bpos == std::string::npos) {
                        continue;
                    }

                    // weight target can be in format Weight_M_N, Weight_N, WeightN, or some other way
                    // we ignore the name and just assume the channels are in the right order
                    for (unsigned int i = 0; i < e.mTimeData->mValues.size(); i++) {
                        insertMorphTimeValue(morphTimeValues, e.mTimeData->mValues[i], e.mValueData->mValues[i], morphAnimChannelIndex);
                    }

                    ++morphAnimChannelIndex;
                }

                morphAnim->mNumKeys = static_cast<unsigned int>(morphTimeValues.size());
                morphAnim->mKeys = new aiMeshMorphKey[morphAnim->mNumKeys];
                for (unsigned int key = 0; key < morphAnim->mNumKeys; key++) {
                    morphAnim->mKeys[key].mNumValuesAndWeights = static_cast<unsigned int>(morphChannels.size());
                    morphAnim->mKeys[key].mValues = new unsigned int[morphChannels.size()];
                    morphAnim->mKeys[key].mWeights = new double[morphChannels.size()];

                    morphAnim->mKeys[key].mTime = morphTimeValues[key].mTime * kMillisecondsFromSeconds;
                    for (unsigned int valueIndex = 0; valueIndex < morphChannels.size(); ++valueIndex) {
                        morphAnim->mKeys[key].mValues[valueIndex] = valueIndex;
                        morphAnim->mKeys[key].mWeights[valueIndex] = getWeightAtKey(morphTimeValues, key, valueIndex);
                    }
                }

                morphAnims.push_back(morphAnim);
            }
        }
    }

    if (!anims.empty() || !morphAnims.empty()) {
        aiAnimation *anim = new aiAnimation;
        anim->mName.Set(pName);
        anim->mNumChannels = static_cast<unsigned int>(anims.size());
        if (anim->mNumChannels > 0) {
            anim->mChannels = new aiNodeAnim *[anims.size()];
            std::copy(anims.begin(), anims.end(), anim->mChannels);
        }
        anim->mNumMorphMeshChannels = static_cast<unsigned int>(morphAnims.size());
        if (anim->mNumMorphMeshChannels > 0) {
            anim->mMorphMeshChannels = new aiMeshMorphAnim *[anim->mNumMorphMeshChannels];
            std::copy(morphAnims.begin(), morphAnims.end(), anim->mMorphMeshChannels);
        }
        anim->mDuration = 0.0f;
        for (auto & a : anims) {
            anim->mDuration = std::max(anim->mDuration, a->mPositionKeys[a->mNumPositionKeys - 1].mTime);
            anim->mDuration = std::max(anim->mDuration, a->mRotationKeys[a->mNumRotationKeys - 1].mTime);
            anim->mDuration = std::max(anim->mDuration, a->mScalingKeys[a->mNumScalingKeys - 1].mTime);
        }
        for (auto & morphAnim : morphAnims) {
            anim->mDuration = std::max(anim->mDuration, morphAnim->mKeys[morphAnim->mNumKeys - 1].mTime);
        }
        anim->mTicksPerSecond = 1000.0;
        mAnims.push_back(anim);
    }
}

// ------------------------------------------------------------------------------------------------
// Add a texture to a material structure
void ColladaLoader::AddTexture(aiMaterial &mat,
        const ColladaParser &pParser,
        const Effect &effect,
        const Sampler &sampler,
        aiTextureType type,
        unsigned int idx) {
    // first of all, basic file name
    const aiString name = FindFilenameForEffectTexture(pParser, effect, sampler.mName);
    mat.AddProperty(&name, _AI_MATKEY_TEXTURE_BASE, type, idx);

    // mapping mode
    int map = aiTextureMapMode_Clamp;
    if (sampler.mWrapU) {
        map = aiTextureMapMode_Wrap;
    }
    if (sampler.mWrapU && sampler.mMirrorU) {
        map = aiTextureMapMode_Mirror;
    }

    mat.AddProperty(&map, 1, _AI_MATKEY_MAPPINGMODE_U_BASE, type, idx);

    map = aiTextureMapMode_Clamp;
    if (sampler.mWrapV) {
        map = aiTextureMapMode_Wrap;
    }
    if (sampler.mWrapV && sampler.mMirrorV) {
        map = aiTextureMapMode_Mirror;
    }

    mat.AddProperty(&map, 1, _AI_MATKEY_MAPPINGMODE_V_BASE, type, idx);

    // UV transformation
    mat.AddProperty(&sampler.mTransform, 1,
            _AI_MATKEY_UVTRANSFORM_BASE, type, idx);

    // Blend mode
    mat.AddProperty((int *)&sampler.mOp, 1,
            _AI_MATKEY_TEXBLEND_BASE, type, idx);

    // Blend factor
    mat.AddProperty((ai_real *)&sampler.mWeighting, 1,
            _AI_MATKEY_TEXBLEND_BASE, type, idx);

    // UV source index ... if we didn't resolve the mapping, it is actually just
    // a guess but it works in most cases. We search for the frst occurrence of a
    // number in the channel name. We assume it is the zero-based index into the
    // UV channel array of all corresponding meshes. It could also be one-based
    // for some exporters, but we won't care of it unless someone complains about.
    if (sampler.mUVId != UINT_MAX) {
        map = sampler.mUVId;
    } else {
        map = -1;
        for (std::string::const_iterator it = sampler.mUVChannel.begin(); it != sampler.mUVChannel.end(); ++it) {
            if (IsNumeric(*it)) {
                map = strtoul10(&(*it));        
                break;
            }
        }
        if (-1 == map) {
            ASSIMP_LOG_WARN("Collada: unable to determine UV channel for texture");
            map = 0;
        }
    }
    mat.AddProperty(&map, 1, _AI_MATKEY_UVWSRC_BASE, type, idx);
}

// ------------------------------------------------------------------------------------------------
// Fills materials from the collada material definitions
void ColladaLoader::FillMaterials(const ColladaParser &pParser, aiScene * /*pScene*/) {
    for (auto &elem : newMats) {
        aiMaterial &mat = (aiMaterial &)*elem.second;
        Collada::Effect &effect = *elem.first;

        // resolve shading mode
        int shadeMode;
        if (effect.mFaceted) {
            shadeMode = aiShadingMode_Flat;
        } else {
            switch (effect.mShadeType) {
            case Collada::Shade_Constant:
                shadeMode = aiShadingMode_NoShading;
                break;
            case Collada::Shade_Lambert:
                shadeMode = aiShadingMode_Gouraud;
                break;
            case Collada::Shade_Blinn:
                shadeMode = aiShadingMode_Blinn;
                break;
            case Collada::Shade_Phong:
                shadeMode = aiShadingMode_Phong;
                break;

            default:
                ASSIMP_LOG_WARN("Collada: Unrecognized shading mode, using gouraud shading");
                shadeMode = aiShadingMode_Gouraud;
                break;
            }
        }
        mat.AddProperty<int>(&shadeMode, 1, AI_MATKEY_SHADING_MODEL);

        // double-sided?
        shadeMode = effect.mDoubleSided;
        mat.AddProperty<int>(&shadeMode, 1, AI_MATKEY_TWOSIDED);

        // wire-frame?
        shadeMode = effect.mWireframe;
        mat.AddProperty<int>(&shadeMode, 1, AI_MATKEY_ENABLE_WIREFRAME);

        // add material colors
        mat.AddProperty(&effect.mAmbient, 1, AI_MATKEY_COLOR_AMBIENT);
        mat.AddProperty(&effect.mDiffuse, 1, AI_MATKEY_COLOR_DIFFUSE);
        mat.AddProperty(&effect.mSpecular, 1, AI_MATKEY_COLOR_SPECULAR);
        mat.AddProperty(&effect.mEmissive, 1, AI_MATKEY_COLOR_EMISSIVE);
        mat.AddProperty(&effect.mReflective, 1, AI_MATKEY_COLOR_REFLECTIVE);

        // scalar properties
        mat.AddProperty(&effect.mShininess, 1, AI_MATKEY_SHININESS);
        mat.AddProperty(&effect.mReflectivity, 1, AI_MATKEY_REFLECTIVITY);
        mat.AddProperty(&effect.mRefractIndex, 1, AI_MATKEY_REFRACTI);

        // transparency, a very hard one. seemingly not all files are following the
        // specification here (1.0 transparency => completely opaque)...
        // therefore, we let the opportunity for the user to manually invert
        // the transparency if necessary and we add preliminary support for RGB_ZERO mode
        if (effect.mTransparency >= 0.f && effect.mTransparency <= 1.f) {
            // handle RGB transparency completely, cf Collada specs 1.5.0 pages 249 and 304
            if (effect.mRGBTransparency) {
                // use luminance as defined by ISO/CIE color standards (see ITU-R Recommendation BT.709-4)
                effect.mTransparency *= (0.212671f * effect.mTransparent.r +
                                         0.715160f * effect.mTransparent.g +
                                         0.072169f * effect.mTransparent.b);

                effect.mTransparent.a = 1.f;

                mat.AddProperty(&effect.mTransparent, 1, AI_MATKEY_COLOR_TRANSPARENT);
            } else {
                effect.mTransparency *= effect.mTransparent.a;
            }

            if (effect.mInvertTransparency) {
                effect.mTransparency = 1.f - effect.mTransparency;
            }

            // Is the material finally transparent ?
            if (effect.mHasTransparency || effect.mTransparency < 1.f) {
                mat.AddProperty(&effect.mTransparency, 1, AI_MATKEY_OPACITY);
            }
        }

        // add textures, if given
        if (!effect.mTexAmbient.mName.empty()) {
            // It is merely a light-map
            AddTexture(mat, pParser, effect, effect.mTexAmbient, aiTextureType_LIGHTMAP);
        }

        if (!effect.mTexEmissive.mName.empty())
            AddTexture(mat, pParser, effect, effect.mTexEmissive, aiTextureType_EMISSIVE);

        if (!effect.mTexSpecular.mName.empty())
            AddTexture(mat, pParser, effect, effect.mTexSpecular, aiTextureType_SPECULAR);

        if (!effect.mTexDiffuse.mName.empty())
            AddTexture(mat, pParser, effect, effect.mTexDiffuse, aiTextureType_DIFFUSE);

        if (!effect.mTexBump.mName.empty())
            AddTexture(mat, pParser, effect, effect.mTexBump, aiTextureType_NORMALS);

        if (!effect.mTexTransparent.mName.empty())
            AddTexture(mat, pParser, effect, effect.mTexTransparent, aiTextureType_OPACITY);

        if (!effect.mTexReflective.mName.empty())
            AddTexture(mat, pParser, effect, effect.mTexReflective, aiTextureType_REFLECTION);
    }
}

// ------------------------------------------------------------------------------------------------
// Constructs materials from the collada material definitions
void ColladaLoader::BuildMaterials(ColladaParser &pParser, aiScene * /*pScene*/) {
    newMats.reserve(pParser.mMaterialLibrary.size());

    for (ColladaParser::MaterialLibrary::const_iterator matIt = pParser.mMaterialLibrary.begin();
            matIt != pParser.mMaterialLibrary.end(); ++matIt) {
        const Material &material = matIt->second;
        // a material is only a reference to an effect
        ColladaParser::EffectLibrary::iterator effIt = pParser.mEffectLibrary.find(material.mEffect);
        if (effIt == pParser.mEffectLibrary.end())
            continue;
        Effect &effect = effIt->second;

        // create material
        aiMaterial *mat = new aiMaterial;
        aiString name(material.mName.empty() ? matIt->first : material.mName);
        mat->AddProperty(&name, AI_MATKEY_NAME);

        // store the material
        mMaterialIndexByName[matIt->first] = newMats.size();
        newMats.emplace_back(&effect, mat);
    }
    // ScenePreprocessor generates a default material automatically if none is there.
    // All further code here in this loader works well without a valid material so
    // we can safely let it to ScenePreprocessor.
}

// ------------------------------------------------------------------------------------------------
// Resolves the texture name for the given effect texture entry and loads the texture data
aiString ColladaLoader::FindFilenameForEffectTexture(const ColladaParser &pParser,
        const Effect &pEffect, const std::string &pName) {
    aiString result;

    // recurse through the param references until we end up at an image
    std::string name = pName;
    while (1) {
        // the given string is a param entry. Find it
        Effect::ParamLibrary::const_iterator it = pEffect.mParams.find(name);
        // if not found, we're at the end of the recursion. The resulting string should be the image ID
        if (it == pEffect.mParams.end())
            break;

        // else recurse on
        name = it->second.mReference;
    }

    // find the image referred by this name in the image library of the scene
    ColladaParser::ImageLibrary::const_iterator imIt = pParser.mImageLibrary.find(name);
    if (imIt == pParser.mImageLibrary.end()) {
        ASSIMP_LOG_WARN("Collada: Unable to resolve effect texture entry \"", pName, "\", ended up at ID \"", name, "\".");

        //set default texture file name
        result.Set(name + ".jpg");
        ColladaParser::UriDecodePath(result);
        return result;
    }

    // if this is an embedded texture image setup an aiTexture for it
    if (!imIt->second.mImageData.empty()) {
        aiTexture *tex = new aiTexture();

        // Store embedded texture name reference
        tex->mFilename.Set(imIt->second.mFileName.c_str());
        result.Set(imIt->second.mFileName);

        // setup format hint
        if (imIt->second.mEmbeddedFormat.length() >= HINTMAXTEXTURELEN) {
            ASSIMP_LOG_WARN("Collada: texture format hint is too long, truncating to 3 characters");
        }
        strncpy(tex->achFormatHint, imIt->second.mEmbeddedFormat.c_str(), 3);

        // and copy texture data
        tex->mHeight = 0;
        tex->mWidth = static_cast<unsigned int>(imIt->second.mImageData.size());
        tex->pcData = (aiTexel *)new char[tex->mWidth];
        memcpy(tex->pcData, &imIt->second.mImageData[0], tex->mWidth);

        // and add this texture to the list
        mTextures.push_back(tex);
        return result;
    }

    if (imIt->second.mFileName.empty()) {
        throw DeadlyImportError("Collada: Invalid texture, no data or file reference given");
    }

    result.Set(imIt->second.mFileName);

    return result;
}

// ------------------------------------------------------------------------------------------------
// Reads a float value from an accessor and its data array.
ai_real ColladaLoader::ReadFloat(const Accessor &pAccessor, const Data &pData, size_t pIndex, size_t pOffset) const {
    size_t pos = pAccessor.mStride * pIndex + pAccessor.mOffset + pOffset;
    ai_assert(pos < pData.mValues.size());
    return pData.mValues[pos];
}

// ------------------------------------------------------------------------------------------------
// Reads a string value from an accessor and its data array.
const std::string &ColladaLoader::ReadString(const Accessor &pAccessor, const Data &pData, size_t pIndex) const {
    size_t pos = pAccessor.mStride * pIndex + pAccessor.mOffset;
    ai_assert(pos < pData.mStrings.size());
    return pData.mStrings[pos];
}

// ------------------------------------------------------------------------------------------------
// Collects all nodes into the given array
void ColladaLoader::CollectNodes(const aiNode *pNode, std::vector<const aiNode *> &poNodes) const {
    poNodes.push_back(pNode);
    for (size_t a = 0; a < pNode->mNumChildren; ++a) {
        CollectNodes(pNode->mChildren[a], poNodes);
    }
}

// ------------------------------------------------------------------------------------------------
// Finds a node in the collada scene by the given name
const Node *ColladaLoader::FindNode(const Node *pNode, const std::string &pName) const {
    if (pNode->mName == pName || pNode->mID == pName)
        return pNode;

    for (auto a : pNode->mChildren) {
        const Collada::Node *node = FindNode(a, pName);
        if (node) {
            return node;
        }
    }

    return nullptr;
}

// ------------------------------------------------------------------------------------------------
// Finds a node in the collada scene by the given SID
const Node *ColladaLoader::FindNodeBySID(const Node *pNode, const std::string &pSID) const {
    if (nullptr == pNode) {
        return nullptr;
    }

    if (pNode->mSID == pSID) {
        return pNode;
    }

    for (auto a : pNode->mChildren) {
        const Collada::Node *node = FindNodeBySID(a, pSID);
        if (node) {
            return node;
        }
    }

    return nullptr;
}

// ------------------------------------------------------------------------------------------------
// Finds a proper unique name for a node derived from the collada-node's properties.
// The name must be unique for proper node-bone association.
std::string ColladaLoader::FindNameForNode(const Node *pNode) {
    // If explicitly requested, just use the collada name.
    if (useColladaName) {
        if (!pNode->mName.empty()) {
            return pNode->mName;
        } else {
            return format() << "$ColladaAutoName$_" << mNodeNameCounter++;
        }
    } else {
        // Now setup the name of the assimp node. The collada name might not be
        // unique, so we use the collada ID.
        if (!pNode->mID.empty())
            return pNode->mID;
        else if (!pNode->mSID.empty())
            return pNode->mSID;
        else {
            // No need to worry. Unnamed nodes are no problem at all, except
            // if cameras or lights need to be assigned to them.
            return format() << "$ColladaAutoName$_" << mNodeNameCounter++;
        }
    }
}

} // Namespace Assimp

#endif // !! ASSIMP_BUILD_NO_DAE_IMPORTER