summaryrefslogtreecommitdiff
path: root/src/mesh/assimp-master/code/AssetLib/IFC/IFCOpenings.cpp
blob: 74200195b3b809749886b8d56d3eca5b2a93b5a7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
/*
Open Asset Import Library (assimp)
----------------------------------------------------------------------

Copyright (c) 2006-2022, assimp team
All rights reserved.

Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the
following conditions are met:

* Redistributions of source code must retain the above
  copyright notice, this list of conditions and the
  following disclaimer.

* Redistributions in binary form must reproduce the above
  copyright notice, this list of conditions and the
  following disclaimer in the documentation and/or other
  materials provided with the distribution.

* Neither the name of the assimp team, nor the names of its
  contributors may be used to endorse or promote products
  derived from this software without specific prior
  written permission of the assimp team.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

----------------------------------------------------------------------
*/

/** @file  IFCOpenings.cpp
 *  @brief Implements a subset of Ifc CSG operations for pouring
  *    holes for windows and doors into walls.
 */


#ifndef ASSIMP_BUILD_NO_IFC_IMPORTER
#include "IFCUtil.h"
#include "Common/PolyTools.h"
#include "PostProcessing/ProcessHelper.h"

#ifdef ASSIMP_USE_HUNTER
#  include <poly2tri/poly2tri.h>
#  include <polyclipping/clipper.hpp>
#else
#  include "../contrib/poly2tri/poly2tri/poly2tri.h"
#  include "../contrib/clipper/clipper.hpp"
#endif

#include <iterator>
#include <forward_list>
#include <deque>

namespace Assimp {
    namespace IFC {

        using ClipperLib::ulong64;
        // XXX use full -+ range ...
        const ClipperLib::long64 max_ulong64 = 1518500249; // clipper.cpp / hiRange var

        //#define to_int64(p)  (static_cast<ulong64>( std::max( 0., std::min( static_cast<IfcFloat>((p)), 1.) ) * max_ulong64 ))
#define to_int64(p)  (static_cast<ulong64>(static_cast<IfcFloat>((p) ) * max_ulong64 ))
#define from_int64(p) (static_cast<IfcFloat>((p)) / max_ulong64)
#define one_vec (IfcVector2(static_cast<IfcFloat>(1.0),static_cast<IfcFloat>(1.0)))


        // fallback method to generate wall openings
        bool TryAddOpenings_Poly2Tri(const std::vector<TempOpening>& openings,
            TempMesh& curmesh);


typedef std::pair< IfcVector2, IfcVector2 > BoundingBox;
typedef std::map<IfcVector2,size_t,XYSorter> XYSortedField;


// ------------------------------------------------------------------------------------------------
void QuadrifyPart(const IfcVector2& pmin, const IfcVector2& pmax, XYSortedField& field,
    const std::vector< BoundingBox >& bbs,
    std::vector<IfcVector2>& out)
{
    if (!(pmin.x-pmax.x) || !(pmin.y-pmax.y)) {
        return;
    }

    IfcFloat xs = 1e10, xe = 1e10;
    bool found = false;

    // Search along the x-axis until we find an opening
    XYSortedField::iterator start = field.begin();
    for(; start != field.end(); ++start) {
        const BoundingBox& bb = bbs[(*start).second];
        if(bb.first.x >= pmax.x) {
            break;
        }

        if (bb.second.x > pmin.x && bb.second.y > pmin.y && bb.first.y < pmax.y) {
            xs = bb.first.x;
            xe = bb.second.x;
            found = true;
            break;
        }
    }

    if (!found) {
        // the rectangle [pmin,pend] is opaque, fill it
        out.push_back(pmin);
        out.push_back(IfcVector2(pmin.x,pmax.y));
        out.push_back(pmax);
        out.push_back(IfcVector2(pmax.x,pmin.y));
        return;
    }

    xs = std::max(pmin.x,xs);
    xe = std::min(pmax.x,xe);

    // see if there's an offset to fill at the top of our quad
    if (xs - pmin.x) {
        out.push_back(pmin);
        out.push_back(IfcVector2(pmin.x,pmax.y));
        out.push_back(IfcVector2(xs,pmax.y));
        out.push_back(IfcVector2(xs,pmin.y));
    }

    // search along the y-axis for all openings that overlap xs and our quad
    IfcFloat ylast = pmin.y;
    found = false;
    for(; start != field.end(); ++start) {
        const BoundingBox& bb = bbs[(*start).second];
        if (bb.first.x > xs || bb.first.y >= pmax.y) {
            break;
        }

        if (bb.second.y > ylast) {

            found = true;
            const IfcFloat ys = std::max(bb.first.y,pmin.y), ye = std::min(bb.second.y,pmax.y);
            if (ys - ylast > 0.0f) {
                QuadrifyPart( IfcVector2(xs,ylast), IfcVector2(xe,ys) ,field,bbs,out);
            }

            // the following are the window vertices

            /*wnd.push_back(IfcVector2(xs,ys));
            wnd.push_back(IfcVector2(xs,ye));
            wnd.push_back(IfcVector2(xe,ye));
            wnd.push_back(IfcVector2(xe,ys));*/
            ylast = ye;
        }
    }
    if (!found) {
        // the rectangle [pmin,pend] is opaque, fill it
        out.push_back(IfcVector2(xs,pmin.y));
        out.push_back(IfcVector2(xs,pmax.y));
        out.push_back(IfcVector2(xe,pmax.y));
        out.push_back(IfcVector2(xe,pmin.y));
        return;
    }
    if (ylast < pmax.y) {
        QuadrifyPart( IfcVector2(xs,ylast), IfcVector2(xe,pmax.y) ,field,bbs,out);
    }

    // now for the whole rest
    if (pmax.x-xe) {
        QuadrifyPart(IfcVector2(xe,pmin.y), pmax ,field,bbs,out);
    }
}

typedef std::vector<IfcVector2> Contour;
typedef std::vector<bool> SkipList; // should probably use int for performance reasons

struct ProjectedWindowContour
{
    Contour contour;
    BoundingBox bb;
    SkipList skiplist;
    bool is_rectangular;


    ProjectedWindowContour(const Contour& contour, const BoundingBox& bb, bool is_rectangular)
        : contour(contour)
        , bb(bb)
        , is_rectangular(is_rectangular)
    {}


    bool IsInvalid() const {
        return contour.empty();
    }

    void FlagInvalid() {
        contour.clear();
    }

    void PrepareSkiplist() {
        skiplist.resize(contour.size(),false);
    }
};

typedef std::vector< ProjectedWindowContour > ContourVector;

// ------------------------------------------------------------------------------------------------
bool BoundingBoxesOverlapping( const BoundingBox &ibb, const BoundingBox &bb )
{
    // count the '=' case as non-overlapping but as adjacent to each other
    return ibb.first.x < bb.second.x && ibb.second.x > bb.first.x &&
        ibb.first.y < bb.second.y && ibb.second.y > bb.first.y;
}

// ------------------------------------------------------------------------------------------------
bool IsDuplicateVertex(const IfcVector2& vv, const std::vector<IfcVector2>& temp_contour)
{
    // sanity check for duplicate vertices
    for(const IfcVector2& cp : temp_contour) {
        if ((cp-vv).SquareLength() < 1e-5f) {
            return true;
        }
    }
    return false;
}

// ------------------------------------------------------------------------------------------------
void ExtractVerticesFromClipper(const ClipperLib::Polygon& poly, std::vector<IfcVector2>& temp_contour,
    bool filter_duplicates = false)
{
    temp_contour.clear();
    for(const ClipperLib::IntPoint& point : poly) {
        IfcVector2 vv = IfcVector2( from_int64(point.X), from_int64(point.Y));
        vv = std::max(vv,IfcVector2());
        vv = std::min(vv,one_vec);

        if (!filter_duplicates || !IsDuplicateVertex(vv, temp_contour)) {
            temp_contour.push_back(vv);
        }
    }
}

// ------------------------------------------------------------------------------------------------
BoundingBox GetBoundingBox(const ClipperLib::Polygon& poly)
{
    IfcVector2 newbb_min, newbb_max;
    MinMaxChooser<IfcVector2>()(newbb_min, newbb_max);

    for(const ClipperLib::IntPoint& point : poly) {
        IfcVector2 vv = IfcVector2( from_int64(point.X), from_int64(point.Y));

        // sanity rounding
        vv = std::max(vv,IfcVector2());
        vv = std::min(vv,one_vec);

        newbb_min = std::min(newbb_min,vv);
        newbb_max = std::max(newbb_max,vv);
    }
    return BoundingBox(newbb_min, newbb_max);
}

// ------------------------------------------------------------------------------------------------
void InsertWindowContours(const ContourVector& contours,
    const std::vector<TempOpening>& /*openings*/,
    TempMesh& curmesh)
{
    // fix windows - we need to insert the real, polygonal shapes into the quadratic holes that we have now
    for(size_t i = 0; i < contours.size();++i) {
        const BoundingBox& bb = contours[i].bb;
        const std::vector<IfcVector2>& contour = contours[i].contour;
        if(contour.empty()) {
            continue;
        }

        // check if we need to do it at all - many windows just fit perfectly into their quadratic holes,
        // i.e. their contours *are* already their bounding boxes.
        if (contour.size() == 4) {
            std::set<IfcVector2,XYSorter> verts;
            for(size_t n = 0; n < 4; ++n) {
                verts.insert(contour[n]);
            }
            const std::set<IfcVector2,XYSorter>::const_iterator end = verts.end();
            if (verts.find(bb.first)!=end && verts.find(bb.second)!=end
                && verts.find(IfcVector2(bb.first.x,bb.second.y))!=end
                && verts.find(IfcVector2(bb.second.x,bb.first.y))!=end
                ) {
                    continue;
            }
        }

        const IfcFloat diag = (bb.first-bb.second).Length();
        const IfcFloat epsilon = diag/1000.f;

        // walk through all contour points and find those that lie on the BB corner
        size_t last_hit = (size_t)-1, very_first_hit = (size_t)-1;
        IfcVector2 edge;
        for(size_t n = 0, e=0, size = contour.size();; n=(n+1)%size, ++e) {

            // sanity checking
            if (e == size*2) {
                IFCImporter::LogError("encountered unexpected topology while generating window contour");
                break;
            }

            const IfcVector2& v = contour[n];

            bool hit = false;
            if (std::fabs(v.x-bb.first.x)<epsilon) {
                edge.x = bb.first.x;
                hit = true;
            }
            else if (std::fabs(v.x-bb.second.x)<epsilon) {
                edge.x = bb.second.x;
                hit = true;
            }

            if (std::fabs(v.y-bb.first.y)<epsilon) {
                edge.y = bb.first.y;
                hit = true;
            }
            else if (std::fabs(v.y-bb.second.y)<epsilon) {
                edge.y = bb.second.y;
                hit = true;
            }

            if (hit) {
                if (last_hit != (size_t)-1) {

                    const size_t old = curmesh.mVerts.size();
                    size_t cnt = last_hit > n ? size-(last_hit-n) : n-last_hit;
                    for(size_t a = last_hit, ee = 0; ee <= cnt; a=(a+1)%size, ++ee) {
                        // hack: this is to fix cases where opening contours are self-intersecting.
                        // Clipper doesn't produce such polygons, but as soon as we're back in
                        // our brave new floating-point world, very small distances are consumed
                        // by the maximum available precision, leading to self-intersecting
                        // polygons. This fix makes concave windows fail even worse, but
                        // anyway, fail is fail.
                        if ((contour[a] - edge).SquareLength() > diag*diag*0.7) {
                            continue;
                        }
                        curmesh.mVerts.push_back(IfcVector3(contour[a].x, contour[a].y, 0.0f));
                    }

                    if (edge != contour[last_hit]) {

                        IfcVector2 corner = edge;

                        if (std::fabs(contour[last_hit].x-bb.first.x)<epsilon) {
                            corner.x = bb.first.x;
                        }
                        else if (std::fabs(contour[last_hit].x-bb.second.x)<epsilon) {
                            corner.x = bb.second.x;
                        }

                        if (std::fabs(contour[last_hit].y-bb.first.y)<epsilon) {
                            corner.y = bb.first.y;
                        }
                        else if (std::fabs(contour[last_hit].y-bb.second.y)<epsilon) {
                            corner.y = bb.second.y;
                        }

                        curmesh.mVerts.push_back(IfcVector3(corner.x, corner.y, 0.0f));
                    }
                    else if (cnt == 1) {
                        // avoid degenerate polygons (also known as lines or points)
                        curmesh.mVerts.erase(curmesh.mVerts.begin()+old,curmesh.mVerts.end());
                    }

                    if (const size_t d = curmesh.mVerts.size()-old) {
                        curmesh.mVertcnt.push_back(static_cast<unsigned int>(d));
                        std::reverse(curmesh.mVerts.rbegin(),curmesh.mVerts.rbegin()+d);
                    }
                    if (n == very_first_hit) {
                        break;
                    }
                }
                else {
                    very_first_hit = n;
                }

                last_hit = n;
            }
        }
    }
}

// ------------------------------------------------------------------------------------------------
void MergeWindowContours (const std::vector<IfcVector2>& a,
    const std::vector<IfcVector2>& b,
    ClipperLib::ExPolygons& out)
{
    out.clear();

    ClipperLib::Clipper clipper;
    ClipperLib::Polygon clip;

    for(const IfcVector2& pip : a) {
        clip.push_back(ClipperLib::IntPoint(  to_int64(pip.x), to_int64(pip.y) ));
    }

    if (ClipperLib::Orientation(clip)) {
        std::reverse(clip.begin(), clip.end());
    }

    clipper.AddPolygon(clip, ClipperLib::ptSubject);
    clip.clear();

    for(const IfcVector2& pip : b) {
        clip.push_back(ClipperLib::IntPoint(  to_int64(pip.x), to_int64(pip.y) ));
    }

    if (ClipperLib::Orientation(clip)) {
        std::reverse(clip.begin(), clip.end());
    }

    clipper.AddPolygon(clip, ClipperLib::ptSubject);
    clipper.Execute(ClipperLib::ctUnion, out,ClipperLib::pftNonZero,ClipperLib::pftNonZero);
}

// ------------------------------------------------------------------------------------------------
// Subtract a from b
void MakeDisjunctWindowContours (const std::vector<IfcVector2>& a,
    const std::vector<IfcVector2>& b,
    ClipperLib::ExPolygons& out)
{
    out.clear();

    ClipperLib::Clipper clipper;
    ClipperLib::Polygon clip;

    for(const IfcVector2& pip : a) {
        clip.push_back(ClipperLib::IntPoint(  to_int64(pip.x), to_int64(pip.y) ));
    }

    if (ClipperLib::Orientation(clip)) {
        std::reverse(clip.begin(), clip.end());
    }

    clipper.AddPolygon(clip, ClipperLib::ptClip);
    clip.clear();

    for(const IfcVector2& pip : b) {
        clip.push_back(ClipperLib::IntPoint(  to_int64(pip.x), to_int64(pip.y) ));
    }

    if (ClipperLib::Orientation(clip)) {
        std::reverse(clip.begin(), clip.end());
    }

    clipper.AddPolygon(clip, ClipperLib::ptSubject);
    clipper.Execute(ClipperLib::ctDifference, out,ClipperLib::pftNonZero,ClipperLib::pftNonZero);
}

// ------------------------------------------------------------------------------------------------
void CleanupWindowContour(ProjectedWindowContour& window)
{
    std::vector<IfcVector2> scratch;
    std::vector<IfcVector2>& contour = window.contour;

    ClipperLib::Polygon subject;
    ClipperLib::Clipper clipper;
    ClipperLib::ExPolygons clipped;

    for(const IfcVector2& pip : contour) {
        subject.push_back(ClipperLib::IntPoint(  to_int64(pip.x), to_int64(pip.y) ));
    }

    clipper.AddPolygon(subject,ClipperLib::ptSubject);
    clipper.Execute(ClipperLib::ctUnion,clipped,ClipperLib::pftNonZero,ClipperLib::pftNonZero);

    // This should yield only one polygon or something went wrong
    if (clipped.size() != 1) {

        // Empty polygon? drop the contour altogether
        if(clipped.empty()) {
            IFCImporter::LogError("error during polygon clipping, window contour is degenerate");
            window.FlagInvalid();
            return;
        }

        // Else: take the first only
        IFCImporter::LogError("error during polygon clipping, window contour is not convex");
    }

    ExtractVerticesFromClipper(clipped[0].outer, scratch);
    // Assume the bounding box doesn't change during this operation
}

// ------------------------------------------------------------------------------------------------
void CleanupWindowContours(ContourVector& contours)
{
    // Use PolyClipper to clean up window contours
    try {
        for(ProjectedWindowContour& window : contours) {
            CleanupWindowContour(window);
        }
    }
    catch (const char* sx) {
        IFCImporter::LogError("error during polygon clipping, window shape may be wrong: (Clipper: "
            + std::string(sx) + ")");
    }
}

// ------------------------------------------------------------------------------------------------
void CleanupOuterContour(const std::vector<IfcVector2>& contour_flat, TempMesh& curmesh)
{
    std::vector<IfcVector3> vold;
    std::vector<unsigned int> iold;

    vold.reserve(curmesh.mVerts.size());
    iold.reserve(curmesh.mVertcnt.size());

    // Fix the outer contour using polyclipper
    try {

        ClipperLib::Polygon subject;
        ClipperLib::Clipper clipper;
        ClipperLib::ExPolygons clipped;

        ClipperLib::Polygon clip;
        clip.reserve(contour_flat.size());
        for(const IfcVector2& pip : contour_flat) {
            clip.push_back(ClipperLib::IntPoint(  to_int64(pip.x), to_int64(pip.y) ));
        }

        if (!ClipperLib::Orientation(clip)) {
            std::reverse(clip.begin(), clip.end());
        }

        // We need to run polyclipper on every single polygon -- we can't run it one all
        // of them at once or it would merge them all together which would undo all
        // previous steps
        subject.reserve(4);
        size_t index = 0;
        size_t countdown = 0;
        for(const IfcVector3& pip : curmesh.mVerts) {
            if (!countdown) {
                countdown = curmesh.mVertcnt[index++];
                if (!countdown) {
                    continue;
                }
            }
            subject.push_back(ClipperLib::IntPoint(  to_int64(pip.x), to_int64(pip.y) ));
            if (--countdown == 0) {
                if (!ClipperLib::Orientation(subject)) {
                    std::reverse(subject.begin(), subject.end());
                }

                clipper.AddPolygon(subject,ClipperLib::ptSubject);
                clipper.AddPolygon(clip,ClipperLib::ptClip);

                clipper.Execute(ClipperLib::ctIntersection,clipped,ClipperLib::pftNonZero,ClipperLib::pftNonZero);

                for(const ClipperLib::ExPolygon& ex : clipped) {
                    iold.push_back(static_cast<unsigned int>(ex.outer.size()));
                    for(const ClipperLib::IntPoint& point : ex.outer) {
                        vold.push_back(IfcVector3(
                            from_int64(point.X),
                            from_int64(point.Y),
                            0.0f));
                    }
                }

                subject.clear();
                clipped.clear();
                clipper.Clear();
            }
        }
    }
    catch (const char* sx) {
        IFCImporter::LogError("Ifc: error during polygon clipping, wall contour line may be wrong: (Clipper: "
            + std::string(sx) + ")");

        return;
    }

    // swap data arrays
    std::swap(vold,curmesh.mVerts);
    std::swap(iold,curmesh.mVertcnt);
}

typedef std::vector<TempOpening*> OpeningRefs;
typedef std::vector<OpeningRefs > OpeningRefVector;

typedef std::vector<std::pair<
    ContourVector::const_iterator,
    Contour::const_iterator>
> ContourRefVector;

// ------------------------------------------------------------------------------------------------
bool BoundingBoxesAdjacent(const BoundingBox& bb, const BoundingBox& ibb)
{
    // TODO: I'm pretty sure there is a much more compact way to check this
    const IfcFloat epsilon = Math::getEpsilon<float>();
    return  (std::fabs(bb.second.x - ibb.first.x) < epsilon && bb.first.y <= ibb.second.y && bb.second.y >= ibb.first.y) ||
        (std::fabs(bb.first.x - ibb.second.x) < epsilon && ibb.first.y <= bb.second.y && ibb.second.y >= bb.first.y) ||
        (std::fabs(bb.second.y - ibb.first.y) < epsilon && bb.first.x <= ibb.second.x && bb.second.x >= ibb.first.x) ||
        (std::fabs(bb.first.y - ibb.second.y) < epsilon && ibb.first.x <= bb.second.x && ibb.second.x >= bb.first.x);
}

// ------------------------------------------------------------------------------------------------
// Check if m0,m1 intersects n0,n1 assuming same ordering of the points in the line segments
// output the intersection points on n0,n1
bool IntersectingLineSegments(const IfcVector2& n0, const IfcVector2& n1,
    const IfcVector2& m0, const IfcVector2& m1,
    IfcVector2& out0, IfcVector2& out1)
{
    const IfcVector2 n0_to_n1 = n1 - n0;

    const IfcVector2 n0_to_m0 = m0 - n0;
    const IfcVector2 n1_to_m1 = m1 - n1;

    const IfcVector2 n0_to_m1 = m1 - n0;

    const IfcFloat e = 1e-5f;
    const IfcFloat smalle = 1e-9f;

    static const IfcFloat inf = std::numeric_limits<IfcFloat>::infinity();

    if (!(n0_to_m0.SquareLength() < e*e || std::fabs(n0_to_m0 * n0_to_n1) / (n0_to_m0.Length() * n0_to_n1.Length()) > 1-1e-5 )) {
        return false;
    }

    if (!(n1_to_m1.SquareLength() < e*e || std::fabs(n1_to_m1 * n0_to_n1) / (n1_to_m1.Length() * n0_to_n1.Length()) > 1-1e-5 )) {
        return false;
    }

    IfcFloat s0;
    IfcFloat s1;

    // pick the axis with the higher absolute difference so the result
    // is more accurate. Since we cannot guarantee that the axis with
    // the higher absolute difference is big enough as to avoid
    // divisions by zero, the case 0/0 ~ infinity is detected and
    // handled separately.
    if(std::fabs(n0_to_n1.x) > std::fabs(n0_to_n1.y)) {
        s0 = n0_to_m0.x / n0_to_n1.x;
        s1 = n0_to_m1.x / n0_to_n1.x;

        if (std::fabs(s0) == inf && std::fabs(n0_to_m0.x) < smalle) {
            s0 = 0.;
        }
        if (std::fabs(s1) == inf && std::fabs(n0_to_m1.x) < smalle) {
            s1 = 0.;
        }
    }
    else {
        s0 = n0_to_m0.y / n0_to_n1.y;
        s1 = n0_to_m1.y / n0_to_n1.y;

        if (std::fabs(s0) == inf && std::fabs(n0_to_m0.y) < smalle) {
            s0 = 0.;
        }
        if (std::fabs(s1) == inf && std::fabs(n0_to_m1.y) < smalle) {
            s1 = 0.;
        }
    }

    if (s1 < s0) {
        std::swap(s1,s0);
    }

    s0 = std::max(0.0,s0);
    s1 = std::max(0.0,s1);

    s0 = std::min(1.0,s0);
    s1 = std::min(1.0,s1);

    if (std::fabs(s1-s0) < e) {
        return false;
    }

    out0 = n0 + s0 * n0_to_n1;
    out1 = n0 + s1 * n0_to_n1;

    return true;
}

// ------------------------------------------------------------------------------------------------
void FindAdjacentContours(ContourVector::iterator current, const ContourVector& contours)
{
    const IfcFloat sqlen_epsilon = static_cast<IfcFloat>(Math::getEpsilon<float>());
    const BoundingBox& bb = (*current).bb;

    // What is to be done here is to populate the skip lists for the contour
    // and to add necessary padding points when needed.
    SkipList& skiplist = (*current).skiplist;

    // First step to find possible adjacent contours is to check for adjacent bounding
    // boxes. If the bounding boxes are not adjacent, the contours lines cannot possibly be.
    for (ContourVector::const_iterator it = contours.begin(), end = contours.end(); it != end; ++it) {
        if ((*it).IsInvalid()) {
            continue;
        }

        // this left here to make clear we also run on the current contour
        // to check for overlapping contour segments (which can happen due
        // to projection artifacts).
        //if(it == current) {
        //  continue;
        //}

        const bool is_me = it == current;

        const BoundingBox& ibb = (*it).bb;

        // Assumption: the bounding boxes are pairwise disjoint or identical
        ai_assert(is_me || !BoundingBoxesOverlapping(bb, ibb));

        if (is_me || BoundingBoxesAdjacent(bb, ibb)) {

            // Now do a each-against-everyone check for intersecting contour
            // lines. This obviously scales terribly, but in typical real
            // world Ifc files it will not matter since most windows that
            // are adjacent to each others are rectangular anyway.

            Contour& ncontour = (*current).contour;
            const Contour& mcontour = (*it).contour;

            for (size_t n = 0; n < ncontour.size(); ++n) {
                const IfcVector2 n0 = ncontour[n];
                const IfcVector2 n1 = ncontour[(n+1) % ncontour.size()];

                for (size_t m = 0, mend = (is_me ? n : mcontour.size()); m < mend; ++m) {
                    ai_assert(&mcontour != &ncontour || m < n);

                    const IfcVector2 m0 = mcontour[m];
                    const IfcVector2 m1 = mcontour[(m+1) % mcontour.size()];

                    IfcVector2 isect0, isect1;
                    if (IntersectingLineSegments(n0,n1, m0, m1, isect0, isect1)) {

                        if ((isect0 - n0).SquareLength() > sqlen_epsilon) {
                            ++n;

                            ncontour.insert(ncontour.begin() + n, isect0);
                            skiplist.insert(skiplist.begin() + n, true);
                        }
                        else {
                            skiplist[n] = true;
                        }

                        if ((isect1 - n1).SquareLength() > sqlen_epsilon) {
                            ++n;

                            ncontour.insert(ncontour.begin() + n, isect1);
                            skiplist.insert(skiplist.begin() + n, false);
                        }
                    }
                }
            }
        }
    }
}

// ------------------------------------------------------------------------------------------------
AI_FORCE_INLINE bool LikelyBorder(const IfcVector2& vdelta)
{
    const IfcFloat dot_point_epsilon = static_cast<IfcFloat>(Math::getEpsilon<float>());
    return std::fabs(vdelta.x * vdelta.y) < dot_point_epsilon;
}

// ------------------------------------------------------------------------------------------------
void FindBorderContours(ContourVector::iterator current)
{
    const IfcFloat border_epsilon_upper = static_cast<IfcFloat>(1-1e-4);
    const IfcFloat border_epsilon_lower = static_cast<IfcFloat>(1e-4);

    bool outer_border = false;
    bool start_on_outer_border = false;

    SkipList& skiplist = (*current).skiplist;
    IfcVector2 last_proj_point;

    const Contour::const_iterator cbegin = (*current).contour.begin(), cend = (*current).contour.end();

    for (Contour::const_iterator cit = cbegin; cit != cend; ++cit) {
        const IfcVector2& proj_point = *cit;

        // Check if this connection is along the outer boundary of the projection
        // plane. In such a case we better drop it because such 'edges' should
        // not have any geometry to close them (think of door openings).
        if (proj_point.x <= border_epsilon_lower || proj_point.x >= border_epsilon_upper ||
            proj_point.y <= border_epsilon_lower || proj_point.y >= border_epsilon_upper) {

                if (outer_border) {
                    ai_assert(cit != cbegin);
                    if (LikelyBorder(proj_point - last_proj_point)) {
                        skiplist[std::distance(cbegin, cit) - 1] = true;
                    }
                }
                else if (cit == cbegin) {
                    start_on_outer_border = true;
                }

                outer_border = true;
        }
        else {
            outer_border = false;
        }

        last_proj_point = proj_point;
    }

    // handle last segment
    if (outer_border && start_on_outer_border) {
        const IfcVector2& proj_point = *cbegin;
        if (LikelyBorder(proj_point - last_proj_point)) {
            skiplist[skiplist.size()-1] = true;
        }
    }
}

// ------------------------------------------------------------------------------------------------
AI_FORCE_INLINE bool LikelyDiagonal(IfcVector2 vdelta)
{
    vdelta.x = std::fabs(vdelta.x);
    vdelta.y = std::fabs(vdelta.y);
    return (std::fabs(vdelta.x-vdelta.y) < 0.8 * std::max(vdelta.x, vdelta.y));
}

// ------------------------------------------------------------------------------------------------
void FindLikelyCrossingLines(ContourVector::iterator current)
{
    SkipList& skiplist = (*current).skiplist;
    IfcVector2 last_proj_point;

    const Contour::const_iterator cbegin = (*current).contour.begin(), cend = (*current).contour.end();
    for (Contour::const_iterator cit = cbegin; cit != cend; ++cit) {
        const IfcVector2& proj_point = *cit;

        if (cit != cbegin) {
            IfcVector2 vdelta = proj_point - last_proj_point;
            if (LikelyDiagonal(vdelta)) {
                skiplist[std::distance(cbegin, cit) - 1] = true;
            }
        }

        last_proj_point = proj_point;
    }

    // handle last segment
    if (LikelyDiagonal(*cbegin - last_proj_point)) {
        skiplist[skiplist.size()-1] = true;
    }
}

// ------------------------------------------------------------------------------------------------
size_t CloseWindows(ContourVector& contours,
    const IfcMatrix4& minv,
    OpeningRefVector& contours_to_openings,
    TempMesh& curmesh)
{
    size_t closed = 0;
    // For all contour points, check if one of the assigned openings does
    // already have points assigned to it. In this case, assume this is
    // the other side of the wall and generate connections between
    // the two holes in order to close the window.

    // All this gets complicated by the fact that contours may pertain to
    // multiple openings(due to merging of adjacent or overlapping openings).
    // The code is based on the assumption that this happens symmetrically
    // on both sides of the wall. If it doesn't (which would be a bug anyway)
    // wrong geometry may be generated.
    for (ContourVector::iterator it = contours.begin(), end = contours.end(); it != end; ++it) {
        if ((*it).IsInvalid()) {
            continue;
        }
        OpeningRefs& refs = contours_to_openings[std::distance(contours.begin(), it)];

        bool has_other_side = false;
        for(const TempOpening* opening : refs) {
            if(!opening->wallPoints.empty()) {
                has_other_side = true;
                break;
            }
        }

        if (has_other_side) {

            ContourRefVector adjacent_contours;

            // prepare a skiplist for this contour. The skiplist is used to
            // eliminate unwanted contour lines for adjacent windows and
            // those bordering the outer frame.
            (*it).PrepareSkiplist();

            FindAdjacentContours(it, contours);
            FindBorderContours(it);

            // if the window is the result of a finite union or intersection of rectangles,
            // there shouldn't be any crossing or diagonal lines in it. Such lines would
            // be artifacts caused by numerical inaccuracies or other bugs in polyclipper
            // and our own code. Since rectangular openings are by far the most frequent
            // case, it is worth filtering for this corner case.
            if((*it).is_rectangular) {
                FindLikelyCrossingLines(it);
            }

            ai_assert((*it).skiplist.size() == (*it).contour.size());

            SkipList::const_iterator skipbegin = (*it).skiplist.begin();

            curmesh.mVerts.reserve(curmesh.mVerts.size() + (*it).contour.size() * 4);
            curmesh.mVertcnt.reserve(curmesh.mVertcnt.size() + (*it).contour.size());

			bool reverseCountourFaces = false;

            // compare base poly normal and contour normal to detect if we need to reverse the face winding
			if(curmesh.mVertcnt.size() > 0) {
				IfcVector3 basePolyNormal = TempMesh::ComputePolygonNormal(curmesh.mVerts.data(), curmesh.mVertcnt.front());

				std::vector<IfcVector3> worldSpaceContourVtx(it->contour.size());

				for(size_t a = 0; a < it->contour.size(); ++a)
					worldSpaceContourVtx[a] = minv * IfcVector3(it->contour[a].x, it->contour[a].y, 0.0);

				IfcVector3 contourNormal = TempMesh::ComputePolygonNormal(worldSpaceContourVtx.data(), worldSpaceContourVtx.size());

				reverseCountourFaces = (contourNormal * basePolyNormal) > 0.0;
			}

            // XXX this algorithm is really a bit inefficient - both in terms
            // of constant factor and of asymptotic runtime.
            std::vector<bool>::const_iterator skipit = skipbegin;

            IfcVector3 start0;
            IfcVector3 start1;

            const Contour::const_iterator cbegin = (*it).contour.begin(), cend = (*it).contour.end();

            bool drop_this_edge = false;
            for (Contour::const_iterator cit = cbegin; cit != cend; ++cit, drop_this_edge = *skipit++) {
                const IfcVector2& proj_point = *cit;

                // Locate the closest opposite point. This should be a good heuristic to
                // connect only the points that are really intended to be connected.
                IfcFloat best = static_cast<IfcFloat>(1e10);
                IfcVector3 bestv;

                const IfcVector3 world_point = minv * IfcVector3(proj_point.x,proj_point.y,0.0f);

                for(const TempOpening* opening : refs) {
                    for(const IfcVector3& other : opening->wallPoints) {
                        const IfcFloat sqdist = (world_point - other).SquareLength();

                        if (sqdist < best) {
                            // avoid self-connections
                            if(sqdist < 1e-5) {
                                continue;
                            }

                            bestv = other;
                            best = sqdist;
                        }
                    }
                }

                if (drop_this_edge) {
                    curmesh.mVerts.pop_back();
                    curmesh.mVerts.pop_back();
                }
                else {
                    curmesh.mVerts.push_back(((cit == cbegin) != reverseCountourFaces) ? world_point : bestv);
                    curmesh.mVerts.push_back(((cit == cbegin) != reverseCountourFaces) ? bestv : world_point);

                    curmesh.mVertcnt.push_back(4);
                    ++closed;
                }

                if (cit == cbegin) {
                    start0 = world_point;
                    start1 = bestv;
                    continue;
                }

                curmesh.mVerts.push_back(reverseCountourFaces ? bestv : world_point);
                curmesh.mVerts.push_back(reverseCountourFaces ? world_point : bestv);

                if (cit == cend - 1) {
                    drop_this_edge = *skipit;

                    // Check if the final connection (last to first element) is itself
                    // a border edge that needs to be dropped.
                    if (drop_this_edge) {
                        --closed;
                        curmesh.mVertcnt.pop_back();
                        curmesh.mVerts.pop_back();
                        curmesh.mVerts.pop_back();
                    }
                    else {
                        curmesh.mVerts.push_back(reverseCountourFaces ? start0 : start1);
                        curmesh.mVerts.push_back(reverseCountourFaces ? start1 : start0);
                    }
                }
            }
        }
        else {

            const Contour::const_iterator cbegin = (*it).contour.begin(), cend = (*it).contour.end();
            for(TempOpening* opening : refs) {
                ai_assert(opening->wallPoints.empty());
                opening->wallPoints.reserve(opening->wallPoints.capacity() + (*it).contour.size());
                for (Contour::const_iterator cit = cbegin; cit != cend; ++cit) {

                    const IfcVector2& proj_point = *cit;
                    opening->wallPoints.push_back(minv * IfcVector3(proj_point.x,proj_point.y,0.0f));
                }
            }
        }
    }
    return closed;
}

// ------------------------------------------------------------------------------------------------
void Quadrify(const std::vector< BoundingBox >& bbs, TempMesh& curmesh)
{
    ai_assert(curmesh.IsEmpty());

    std::vector<IfcVector2> quads;
    quads.reserve(bbs.size()*4);

    // sort openings by x and y axis as a preliminiary to the QuadrifyPart() algorithm
    XYSortedField field;
    for (std::vector<BoundingBox>::const_iterator it = bbs.begin(); it != bbs.end(); ++it) {
        if (field.find((*it).first) != field.end()) {
            IFCImporter::LogWarn("constraint failure during generation of wall openings, results may be faulty");
        }
        field[(*it).first] = std::distance(bbs.begin(),it);
    }

    QuadrifyPart(IfcVector2(),one_vec,field,bbs,quads);
    ai_assert(!(quads.size() % 4));

    curmesh.mVertcnt.resize(quads.size()/4,4);
    curmesh.mVerts.reserve(quads.size());
    for(const IfcVector2& v2 : quads) {
        curmesh.mVerts.push_back(IfcVector3(v2.x, v2.y, static_cast<IfcFloat>(0.0)));
    }
}

// ------------------------------------------------------------------------------------------------
void Quadrify(const ContourVector& contours, TempMesh& curmesh)
{
    std::vector<BoundingBox> bbs;
    bbs.reserve(contours.size());

    for(const ContourVector::value_type& val : contours) {
        bbs.push_back(val.bb);
    }

    Quadrify(bbs, curmesh);
}

// ------------------------------------------------------------------------------------------------
IfcMatrix4 ProjectOntoPlane(std::vector<IfcVector2>& out_contour, const TempMesh& in_mesh,
    bool &ok, IfcVector3& nor_out)
{
    const std::vector<IfcVector3>& in_verts = in_mesh.mVerts;
    ok = true;

    IfcMatrix4 m = IfcMatrix4(DerivePlaneCoordinateSpace(in_mesh, ok, nor_out));
    if(!ok) {
        return IfcMatrix4();
    }
#ifdef ASSIMP_BUILD_DEBUG
    const IfcFloat det = m.Determinant();
    ai_assert(std::fabs(det-1) < 1e-5);
#endif

    IfcFloat zcoord = 0;
    out_contour.reserve(in_verts.size());


    IfcVector3 vmin, vmax;
    MinMaxChooser<IfcVector3>()(vmin, vmax);

    // Project all points into the new coordinate system, collect min/max verts on the way
    for(const IfcVector3& x : in_verts) {
        const IfcVector3 vv = m * x;
        // keep Z offset in the plane coordinate system. Ignoring precision issues
        // (which  are present, of course), this should be the same value for
        // all polygon vertices (assuming the polygon is planar).

        // XXX this should be guarded, but we somehow need to pick a suitable
        // epsilon
        // if(coord != -1.0f) {
        //  assert(std::fabs(coord - vv.z) < 1e-3f);
        // }
        zcoord += vv.z;
        vmin = std::min(vv, vmin);
        vmax = std::max(vv, vmax);

        out_contour.push_back(IfcVector2(vv.x,vv.y));
    }

    zcoord /= in_verts.size();

    // Further improve the projection by mapping the entire working set into
    // [0,1] range. This gives us a consistent data range so all epsilons
    // used below can be constants.
    vmax -= vmin;
    for(IfcVector2& vv : out_contour) {
        vv.x  = (vv.x - vmin.x) / vmax.x;
        vv.y  = (vv.y - vmin.y) / vmax.y;

        // sanity rounding
        vv = std::max(vv,IfcVector2());
        vv = std::min(vv,one_vec);
    }

    IfcMatrix4 mult;
    mult.a1 = static_cast<IfcFloat>(1.0) / vmax.x;
    mult.b2 = static_cast<IfcFloat>(1.0) / vmax.y;

    mult.a4 = -vmin.x * mult.a1;
    mult.b4 = -vmin.y * mult.b2;
    mult.c4 = -zcoord;
    m = mult * m;

    // debug code to verify correctness
#ifdef ASSIMP_BUILD_DEBUG
    std::vector<IfcVector2> out_contour2;
    for(const IfcVector3& x : in_verts) {
        const IfcVector3& vv = m * x;

        out_contour2.push_back(IfcVector2(vv.x,vv.y));
        ai_assert(std::fabs(vv.z) < vmax.z + 1e-8);
    }

    for(size_t i = 0; i < out_contour.size(); ++i) {
        ai_assert((out_contour[i] - out_contour2[i]).SquareLength() < ai_epsilon);
    }
#endif

    return m;
}

// ------------------------------------------------------------------------------------------------
bool GenerateOpenings(std::vector<TempOpening>& openings,
    TempMesh& curmesh,
    bool check_intersection,
    bool generate_connection_geometry,
    const IfcVector3& wall_extrusion_axis)
{
    OpeningRefVector contours_to_openings;

    // Try to derive a solid base plane within the current surface for use as
    // working coordinate system. Map all vertices onto this plane and
    // rescale them to [0,1] range. This normalization means all further
    // epsilons need not be scaled.
    bool ok = true;

    std::vector<IfcVector2> contour_flat;

    IfcVector3 nor;
    const IfcMatrix4 m = ProjectOntoPlane(contour_flat, curmesh,  ok, nor);
    if(!ok) {
        return false;
    }

    // Obtain inverse transform for getting back to world space later on
    const IfcMatrix4 minv = IfcMatrix4(m).Inverse();

    // Compute bounding boxes for all 2D openings in projection space
    ContourVector contours;

    std::vector<IfcVector2> temp_contour;
    std::vector<IfcVector2> temp_contour2;

    IfcVector3 wall_extrusion_axis_norm = wall_extrusion_axis;
    wall_extrusion_axis_norm.Normalize();

    for(TempOpening& opening :openings) {

        // extrusionDir may be 0,0,0 on case where the opening mesh is not an
        // IfcExtrudedAreaSolid but something else (i.e. a brep)
        IfcVector3 norm_extrusion_dir = opening.extrusionDir;
        if (norm_extrusion_dir.SquareLength() > 1e-10) {
            norm_extrusion_dir.Normalize();
        }
        else {
            norm_extrusion_dir = IfcVector3();
        }

        TempMesh* profile_data =  opening.profileMesh.get();
        bool is_2d_source = false;
        if (opening.profileMesh2D && norm_extrusion_dir.SquareLength() > 0) {
            if (std::fabs(norm_extrusion_dir * nor) > 0.9) {
                profile_data = opening.profileMesh2D.get();
                is_2d_source = true;
            }
        }
        std::vector<IfcVector3> profile_verts = profile_data->mVerts;
        std::vector<unsigned int> profile_vertcnts = profile_data->mVertcnt;
        if(profile_verts.size() <= 2) {
            continue;
        }

        // The opening meshes are real 3D meshes so skip over all faces
        // clearly facing into the wrong direction. Also, we need to check
        // whether the meshes do actually intersect the base surface plane.
        // This is done by recording minimum and maximum values for the
        // d component of the plane equation for all polys and checking
        // against surface d.

        // Use the sign of the dot product of the face normal to the plane
        // normal to determine to which side of the difference mesh a
        // triangle belongs. Get independent bounding boxes and vertex
        // sets for both sides and take the better one (we can't just
        // take both - this would likely cause major screwup of vertex
        // winding, producing errors as late as in CloseWindows()).
        IfcFloat dmin, dmax;
        MinMaxChooser<IfcFloat>()(dmin,dmax);

        temp_contour.clear();
        temp_contour2.clear();

        IfcVector2 vpmin,vpmax;
        MinMaxChooser<IfcVector2>()(vpmin,vpmax);

        IfcVector2 vpmin2,vpmax2;
        MinMaxChooser<IfcVector2>()(vpmin2,vpmax2);

        for (size_t f = 0, vi_total = 0, fend = profile_vertcnts.size(); f < fend; ++f) {

            bool side_flag = true;
            if (!is_2d_source) {
                const IfcVector3 face_nor = ((profile_verts[vi_total+2] - profile_verts[vi_total]) ^
                    (profile_verts[vi_total+1] - profile_verts[vi_total])).Normalize();

                const IfcFloat abs_dot_face_nor = std::abs(nor * face_nor);
                if (abs_dot_face_nor < 0.9) {
                    vi_total += profile_vertcnts[f];
                    continue;
                }

                side_flag = nor * face_nor > 0;
            }

            for (unsigned int vi = 0, vend = profile_vertcnts[f]; vi < vend; ++vi, ++vi_total) {
                const IfcVector3& x = profile_verts[vi_total];

                const IfcVector3 v = m * x;
                IfcVector2 vv(v.x, v.y);

                //if(check_intersection) {
                    dmin = std::min(dmin, v.z);
                    dmax = std::max(dmax, v.z);
                //}

                // sanity rounding
                vv = std::max(vv,IfcVector2());
                vv = std::min(vv,one_vec);

                if(side_flag) {
                    vpmin = std::min(vpmin,vv);
                    vpmax = std::max(vpmax,vv);
                }
                else {
                    vpmin2 = std::min(vpmin2,vv);
                    vpmax2 = std::max(vpmax2,vv);
                }

                std::vector<IfcVector2>& store = side_flag ? temp_contour : temp_contour2;

                if (!IsDuplicateVertex(vv, store)) {
                    store.push_back(vv);
                }
            }
        }

        if (temp_contour2.size() > 2) {
            ai_assert(!is_2d_source);
            const IfcVector2 area = vpmax-vpmin;
            const IfcVector2 area2 = vpmax2-vpmin2;
            if (temp_contour.size() <= 2 || std::fabs(area2.x * area2.y) > std::fabs(area.x * area.y)) {
                temp_contour.swap(temp_contour2);

                vpmax = vpmax2;
                vpmin = vpmin2;
            }
        }
        if(temp_contour.size() <= 2) {
            continue;
        }

        // TODO: This epsilon may be too large
        const IfcFloat epsilon = std::fabs(dmax-dmin) * 0.0001;
        if (!is_2d_source && check_intersection && (0 < dmin-epsilon || 0 > dmax+epsilon)) {
            continue;
        }

        BoundingBox bb = BoundingBox(vpmin,vpmax);

        // Skip over very small openings - these are likely projection errors
        // (i.e. they don't belong to this side of the wall)
        if(std::fabs(vpmax.x - vpmin.x) * std::fabs(vpmax.y - vpmin.y) < static_cast<IfcFloat>(1e-10)) {
            continue;
        }
        std::vector<TempOpening*> joined_openings(1, &opening);

        bool is_rectangle = temp_contour.size() == 4;

        // See if this BB intersects or is in close adjacency to any other BB we have so far.
        for (ContourVector::iterator it = contours.begin(); it != contours.end(); ) {
            const BoundingBox& ibb = (*it).bb;

            if (BoundingBoxesOverlapping(ibb, bb)) {

                if (!(*it).is_rectangular) {
                    is_rectangle = false;
                }

                const std::vector<IfcVector2>& other = (*it).contour;
                ClipperLib::ExPolygons poly;

                // First check whether subtracting the old contour (to which ibb belongs)
                // from the new contour (to which bb belongs) yields an updated bb which
                // no longer overlaps ibb
                MakeDisjunctWindowContours(other, temp_contour, poly);
                if(poly.size() == 1) {

                    const BoundingBox newbb = GetBoundingBox(poly[0].outer);
                    if (!BoundingBoxesOverlapping(ibb, newbb )) {
                         // Good guy bounding box
                         bb = newbb ;

                         ExtractVerticesFromClipper(poly[0].outer, temp_contour, false);
                         continue;
                    }
                }

                // Take these two overlapping contours and try to merge them. If they
                // overlap (which should not happen, but in fact happens-in-the-real-
                // world [tm] ), resume using a single contour and a single bounding box.
                MergeWindowContours(temp_contour, other, poly);

                if (poly.size() > 1) {
                    return TryAddOpenings_Poly2Tri(openings, curmesh);
                }
                else if (poly.size() == 0) {
                    IFCImporter::LogWarn("ignoring duplicate opening");
                    temp_contour.clear();
                    break;
                }
                else {
                    IFCImporter::LogVerboseDebug("merging overlapping openings");
                    ExtractVerticesFromClipper(poly[0].outer, temp_contour, false);

                    // Generate the union of the bounding boxes
                    bb.first = std::min(bb.first, ibb.first);
                    bb.second = std::max(bb.second, ibb.second);

                    // Update contour-to-opening tables accordingly
                    if (generate_connection_geometry) {
                        std::vector<TempOpening*>& t = contours_to_openings[std::distance(contours.begin(),it)];
                        joined_openings.insert(joined_openings.end(), t.begin(), t.end());

                        contours_to_openings.erase(contours_to_openings.begin() + std::distance(contours.begin(),it));
                    }

                    contours.erase(it);

                    // Restart from scratch because the newly formed BB might now
                    // overlap any other BB which its constituent BBs didn't
                    // previously overlap.
                    it = contours.begin();
                    continue;
                }
            }
            ++it;
        }

        if(!temp_contour.empty()) {
            if (generate_connection_geometry) {
                contours_to_openings.push_back(std::vector<TempOpening*>(
                    joined_openings.begin(),
                    joined_openings.end()));
            }

            contours.push_back(ProjectedWindowContour(temp_contour, bb, is_rectangle));
        }
    }

    // Check if we still have any openings left - it may well be that this is
    // not the cause, for example if all the opening candidates don't intersect
    // this surface or point into a direction perpendicular to it.
    if (contours.empty()) {
        return false;
    }

    curmesh.Clear();

    // Generate a base subdivision into quads to accommodate the given list
    // of window bounding boxes.
    Quadrify(contours,curmesh);

    // Run a sanity cleanup pass on the window contours to avoid generating
    // artifacts during the contour generation phase later on.
    CleanupWindowContours(contours);

    // Previously we reduced all windows to rectangular AABBs in projection
    // space, now it is time to fill the gaps between the BBs and the real
    // window openings.
    InsertWindowContours(contours,openings, curmesh);

    // Clip the entire outer contour of our current result against the real
    // outer contour of the surface. This is necessary because the result
    // of the Quadrify() algorithm is always a square area spanning
    // over [0,1]^2 (i.e. entire projection space).
    CleanupOuterContour(contour_flat, curmesh);

    // Undo the projection and get back to world (or local object) space
    for(IfcVector3& v3 : curmesh.mVerts) {
        v3 = minv * v3;
    }

    // Generate window caps to connect the symmetric openings on both sides
    // of the wall.
    if (generate_connection_geometry) {
        CloseWindows(contours, minv, contours_to_openings, curmesh);
    }
    return true;
}

std::vector<IfcVector2> GetContourInPlane2D(std::shared_ptr<TempMesh> mesh,IfcMatrix3 planeSpace,
    IfcVector3 planeNor,IfcFloat planeOffset,
    IfcVector3 extrusionDir,IfcVector3& wall_extrusion,bool& first,bool& ok) {
    std::vector<IfcVector2> contour;

    const auto outernor = ((mesh->mVerts[2] - mesh->mVerts[0]) ^ (mesh->mVerts[1] - mesh->mVerts[0])).Normalize();
    const IfcFloat dot = planeNor * outernor;
    if (std::fabs(dot) < 1.f - ai_epsilon) {
        std::stringstream msg;
        msg << "Skipping: Unaligned opening (" << planeNor.x << ", " << planeNor.y << ", " << planeNor.z << ")";
        msg << " . ( " << outernor.x << ", " << outernor.y << ", " << outernor.z << ") = " << dot;
        IFCImporter::LogDebug(msg.str().c_str());
        ok = false;
        return contour;
    }

    const std::vector<IfcVector3>& va = mesh->mVerts;
    if(va.size() <= 2) {
        std::stringstream msg;
        msg << "Skipping: Only " << va.size() << " verticies in opening mesh.";
        IFCImporter::LogDebug(msg.str().c_str());
        ok = false;
        return contour;
    }

    for(const IfcVector3& xx : mesh->mVerts) {
        IfcVector3 vv = planeSpace * xx,vv_extr = planeSpace * (xx + extrusionDir);

        const bool is_extruded_side = std::fabs(vv.z - planeOffset) > std::fabs(vv_extr.z - planeOffset);
        if(first) {
            first = false;
            if(dot > 0.f) {
                wall_extrusion = extrusionDir;
                if(is_extruded_side) {
                    wall_extrusion = -wall_extrusion;
                }
            }
        }

        // XXX should not be necessary - but it is. Why? For precision reasons?
        vv = is_extruded_side ? vv_extr : vv;
        contour.push_back(IfcVector2(vv.x,vv.y));
    }
    ok = true;

    return contour;
}

const float close{ ai_epsilon };

static bool isClose(IfcVector2 first,IfcVector2 second) {
    auto diff = (second - first);
    return (std::fabs(diff.x) < close && std::fabs(diff.y) < close);
}

static void logSegment(std::pair<IfcVector2,IfcVector2> segment) {
    std::stringstream msg2;
    msg2 << " Segment: \n";
    msg2 << "   " << segment.first.x << " " << segment.first.y << " \n";
    msg2 << "   " << segment.second.x << " " << segment.second.y << " \n";
    IFCImporter::LogInfo(msg2.str().c_str());
}

std::vector<std::vector<IfcVector2>> GetContoursInPlane3D(std::shared_ptr<TempMesh> mesh,IfcMatrix3 planeSpace,
    IfcFloat planeOffset) {

        {
            std::stringstream msg;
            msg << "GetContoursInPlane3D: planeSpace is \n";
            msg << planeSpace.a1 << " " << planeSpace.a2 << " " << planeSpace.a3 << " " << "\n";
            msg << planeSpace.b1 << " " << planeSpace.b2 << " " << planeSpace.b3 << " " << "\n";
            msg << planeSpace.c1 << " " << planeSpace.c2 << " " << planeSpace.c3 << " " << "\n";
            msg << "\n planeOffset is " << planeOffset;
            IFCImporter::LogInfo(msg.str().c_str());
        }

        // we'll put our line segments in here, and then merge them together into contours later
        std::deque<std::pair<IfcVector2,IfcVector2>> lineSegments;

        // find the lines giving the intersection of the faces with the plane - we'll work in planeSpace throughout.
        size_t vI0{ 0 }; // vertex index for first vertex in plane
        for(auto nVertices : mesh->mVertcnt) { // iterate over faces
            {
                std::stringstream msg;
                msg << "GetContoursInPlane3D: face (transformed) is  \n";
                for(auto vI = vI0; vI < vI0 + nVertices; vI++) {
                    auto v = planeSpace * mesh->mVerts[vI];
                    msg << "   " << v.x << " " << v.y << " " << v.z << " " << "\n";
                }
                IFCImporter::LogInfo(msg.str().c_str());
            }

            if(nVertices <= 2) // not a plane, a point or line
            {
                std::stringstream msg;
                msg << "GetContoursInPlane3D: found point or line when expecting plane (only " << nVertices << " vertices)";
                IFCImporter::LogWarn(msg.str().c_str());
                vI0 += nVertices;
                continue;
            }

            auto v0 = planeSpace * mesh->mVerts[vI0];

            // now calculate intersections between face and plane
            IfcVector2 firstPoint;
            bool gotFirstPoint(false);

            if(std::fabs(v0.z - planeOffset) < close) {
                // first point is on the plane
                firstPoint.x = v0.x;
                firstPoint.y = v0.y;
                gotFirstPoint = true;
            }

            auto vn = v0;
            for(auto vI = vI0 + 1; vI < vI0 + nVertices; vI++) {
                auto vp = vn;
                vn = planeSpace * mesh->mVerts[vI];
                IfcVector3 intersection;

                if(std::fabs(vn.z - planeOffset) < close) {
                    // on the plane
                    intersection = vn;
                }
                else if((vn.z > planeOffset) != (vp.z > planeOffset))
                {
                    // passes through the plane
                    auto vdir = vn - vp;
                    auto scale = (planeOffset - vp.z) / vdir.z;
                    intersection = vp + scale * vdir;
                }
                else {
                    // nowhere near - move on
                    continue;
                }

                if(!gotFirstPoint) {
                    if(std::fabs(vp.z - planeOffset) < close) {
                        // just had a second line along the plane
                        firstPoint.x = vp.x;
                        firstPoint.y = vp.y;
                        IfcVector2 secondPoint(intersection.x,intersection.y);
                        auto s = std::pair<IfcVector2,IfcVector2>(firstPoint,secondPoint);
                        logSegment(s);
                        lineSegments.push_back(s);
                        // next firstpoint should be this one
                    }
                    else {
                        // store the first intersection point
                        firstPoint.x = intersection.x;
                        firstPoint.y = intersection.y;
                        gotFirstPoint = true;
                    }
                }
                else {
                    // now got the second point, so store the pair
                    IfcVector2 secondPoint(intersection.x,intersection.y);
                    auto s = std::pair<IfcVector2,IfcVector2>(firstPoint,secondPoint);
                    logSegment(s);
                    lineSegments.push_back(s);

                    // - note that we don't move onto the next face as a non-convex face can create two or more intersections with a plane
                    gotFirstPoint = false;
                }
            }
            if(gotFirstPoint) {
                IFCImporter::LogWarn("GetContoursInPlane3D: odd number of intersections with plane");
            }
            vI0 += nVertices;
        }

        {
            std::stringstream msg;
            msg << "GetContoursInPlane3D: found " << lineSegments.size() << " line segments:\n";
            IFCImporter::LogInfo(msg.str().c_str());

            for(auto& s : lineSegments) {
                logSegment(s);
            }

        }

        // now merge contours until we have the best-looking polygons we can
        std::vector<Contour> contours;
        while(!lineSegments.empty()) {
            // start with a polygon and make the best closed contour we can
            const auto& firstSeg = lineSegments.front();
            std::deque<IfcVector2> contour{ firstSeg.first, firstSeg.second };
            lineSegments.pop_front();
            bool foundNextPoint{ true };
            bool closedContour{ false };
            while(foundNextPoint) {
                foundNextPoint = false;
                for(auto nextSeg = lineSegments.begin(); nextSeg != lineSegments.end(); nextSeg++) {
                    // see if we can match up both ends - in which case we've closed the contour
                    if((isClose(contour.front(),nextSeg->first) && isClose(contour.back(),nextSeg->second)) ||
                        (isClose(contour.back(),nextSeg->first) && isClose(contour.front(),nextSeg->second))
                        ) {
                        lineSegments.erase(nextSeg);
                        closedContour = true;
                        break;
                    }

                    // otherwise, see if we can match up either end
                    foundNextPoint = true;
                    if(isClose(contour.front(),nextSeg->first)) {
                        contour.push_front(nextSeg->second);
                    }
                    else if(isClose(contour.front(),nextSeg->second)) {
                        contour.push_front(nextSeg->first);
                    }
                    else if(isClose(contour.back(),nextSeg->first)) {
                        contour.push_back(nextSeg->second);
                    }
                    else if(isClose(contour.back(),nextSeg->second)) {
                        contour.push_back(nextSeg->first);
                    }
                    else {
                        foundNextPoint = false;
                    }
                    if(foundNextPoint) {
                        lineSegments.erase(nextSeg);
                        break;
                    }
                }
            }

            if(!closedContour) {
                IFCImporter::LogWarn("GetContoursInPlane3D: did not close contour");
            }

            // now add the contour if we can
            if(contour.size() <= 2) {
                IFCImporter::LogWarn("GetContoursInPlane3D: discarding line/point contour");
                continue;
            }
            Contour c{};
            for(auto p : contour)
            {
                c.push_back(p);
            }
            contours.push_back(c);
        }

        {
            std::stringstream msg;
            msg << "GetContoursInPlane3D: found " << contours.size() << " contours:\n";

            for(auto c : contours) {
                msg << " Contour: \n";
                for(auto p : c) {
                    msg << "   " << p.x << " " << p.y << " \n";
                }
            }

            IFCImporter::LogInfo(msg.str().c_str());
        }


        return contours;
}

std::vector<std::vector<IfcVector2>> GetContoursInPlane(std::shared_ptr<TempMesh> mesh,IfcMatrix3 planeSpace,
    IfcVector3 planeNor,IfcFloat planeOffset,
    IfcVector3 extrusionDir,IfcVector3& wall_extrusion,bool& first) {

    if(mesh->mVertcnt.size() == 1)
    {
        bool ok;
        auto contour = GetContourInPlane2D(mesh,planeSpace,planeNor,planeOffset,extrusionDir,wall_extrusion,first,ok);
        if(ok)
            return std::vector<std::vector<IfcVector2>> {contour};
        else
            return std::vector<std::vector<IfcVector2>> {};
    }
    else
    {
        return GetContoursInPlane3D(mesh,planeSpace,planeOffset);
    }
}

// ------------------------------------------------------------------------------------------------
bool TryAddOpenings_Poly2Tri(const std::vector<TempOpening>& openings,
    TempMesh& curmesh)
{
    IFCImporter::LogWarn("forced to use poly2tri fallback method to generate wall openings");
    std::vector<IfcVector3>& out = curmesh.mVerts;

    bool result = false;

    // Try to derive a solid base plane within the current surface for use as
    // working coordinate system.
    bool ok;
    IfcVector3 nor;
    const IfcMatrix3 m = DerivePlaneCoordinateSpace(curmesh, ok, nor);
    if (!ok) {
        return false;
    }

    const IfcMatrix3 minv = IfcMatrix3(m).Inverse();


    IfcFloat coord = -1;

    std::vector<IfcVector2> contour_flat;
    contour_flat.reserve(out.size());

    IfcVector2 vmin, vmax;
    MinMaxChooser<IfcVector2>()(vmin, vmax);

    // Move all points into the new coordinate system, collecting min/max verts on the way
    for(IfcVector3& x : out) {
        const IfcVector3 vv = m * x;

        // keep Z offset in the plane coordinate system. Ignoring precision issues
        // (which  are present, of course), this should be the same value for
        // all polygon vertices (assuming the polygon is planar).


        // XXX this should be guarded, but we somehow need to pick a suitable
        // epsilon
        // if(coord != -1.0f) {
        //  assert(std::fabs(coord - vv.z) < 1e-3f);
        // }

        coord = vv.z;

        vmin = std::min(IfcVector2(vv.x, vv.y), vmin);
        vmax = std::max(IfcVector2(vv.x, vv.y), vmax);

        contour_flat.push_back(IfcVector2(vv.x,vv.y));
    }

    // With the current code in DerivePlaneCoordinateSpace,
    // vmin,vmax should always be the 0...1 rectangle (+- numeric inaccuracies)
    // but here we won't rely on this.

    vmax -= vmin;

    // If this happens then the projection must have been wrong.
    ai_assert(vmax.Length());

    ClipperLib::ExPolygons clipped;
    ClipperLib::Polygons holes_union;


    IfcVector3 wall_extrusion;
    bool first = true;

    try {

        ClipperLib::Clipper clipper_holes;

        for(const TempOpening& t : openings) {
            auto contours = GetContoursInPlane(t.profileMesh,m,nor,coord,t.extrusionDir,wall_extrusion,first);

            for(auto& contour : contours) {
                // scale to clipping space
                ClipperLib::Polygon hole;
                for(IfcVector2& pip : contour) {
                    pip.x = (pip.x - vmin.x) / vmax.x;
                    pip.y = (pip.y - vmin.y) / vmax.y;

                    hole.push_back(ClipperLib::IntPoint(to_int64(pip.x),to_int64(pip.y)));
                }

                if(!ClipperLib::Orientation(hole)) {
                    std::reverse(hole.begin(),hole.end());
                    //  assert(ClipperLib::Orientation(hole));
                }

                /*ClipperLib::Polygons pol_temp(1), pol_temp2(1);
                pol_temp[0] = hole;

                ClipperLib::OffsetPolygons(pol_temp,pol_temp2,5.0);
                hole = pol_temp2[0];*/

                clipper_holes.AddPolygon(hole,ClipperLib::ptSubject);
                {
                    std::stringstream msg;
                    msg << "- added polygon ";
                    for(auto elem : hole) {
                        msg << " (" << elem.X << ", " << elem.Y << ")";
                    }
                    IFCImporter::LogDebug(msg.str().c_str());
                }
            }
        }

        clipper_holes.Execute(ClipperLib::ctUnion,holes_union,
            ClipperLib::pftNonZero,
            ClipperLib::pftNonZero);

        if (holes_union.empty()) {
            return false;
        }

        // Now that we have the big union of all holes, subtract it from the outer contour
        // to obtain the final polygon to feed into the triangulator.
        {
            ClipperLib::Polygon poly;
            for(IfcVector2& pip : contour_flat) {
                pip.x  = (pip.x - vmin.x) / vmax.x;
                pip.y  = (pip.y - vmin.y) / vmax.y;

                poly.push_back(ClipperLib::IntPoint( to_int64(pip.x), to_int64(pip.y) ));
            }

            if (ClipperLib::Orientation(poly)) {
                std::reverse(poly.begin(), poly.end());
            }
            clipper_holes.Clear();
            clipper_holes.AddPolygon(poly,ClipperLib::ptSubject);

            clipper_holes.AddPolygons(holes_union,ClipperLib::ptClip);
            clipper_holes.Execute(ClipperLib::ctDifference,clipped,
                ClipperLib::pftNonZero,
                ClipperLib::pftNonZero);
        }

    }
    catch (const char* sx) {
        IFCImporter::LogError("Ifc: error during polygon clipping, skipping openings for this face: (Clipper: "
            + std::string(sx) + ")");

        return false;
    }

    std::vector<IfcVector3> old_verts;
    std::vector<unsigned int> old_vertcnt;

    old_verts.swap(curmesh.mVerts);
    old_vertcnt.swap(curmesh.mVertcnt);

    std::vector< std::vector<p2t::Point*> > contours;
    for(ClipperLib::ExPolygon& clip : clipped) {

        contours.clear();

        // Build the outer polygon contour line for feeding into poly2tri
        std::vector<p2t::Point*> contour_points;
        for(ClipperLib::IntPoint& point : clip.outer) {
            contour_points.push_back( new p2t::Point(from_int64(point.X), from_int64(point.Y)) );
        }

        p2t::CDT* cdt ;
        try {
            // Note: this relies on custom modifications in poly2tri to raise runtime_error's
            // instead if assertions. These failures are not debug only, they can actually
            // happen in production use if the input data is broken. An assertion would be
            // inappropriate.
            cdt = new p2t::CDT(contour_points);
        }
        catch(const std::exception& e) {
            IFCImporter::LogError("Ifc: error during polygon triangulation, skipping some openings: (poly2tri: "
                + std::string(e.what()) + ")");
            continue;
        }


        // Build the poly2tri inner contours for all holes we got from ClipperLib
        for(ClipperLib::Polygon& opening : clip.holes) {

            contours.push_back(std::vector<p2t::Point*>());
            std::vector<p2t::Point*>& contour = contours.back();

            for(ClipperLib::IntPoint& point : opening) {
                contour.push_back( new p2t::Point(from_int64(point.X), from_int64(point.Y)) );
            }

            cdt->AddHole(contour);
        }

        try {
            // Note: See above
            cdt->Triangulate();
        }
        catch(const std::exception& e) {
            IFCImporter::LogError("Ifc: error during polygon triangulation, skipping some openings: (poly2tri: "
                + std::string(e.what()) + ")");
            continue;
        }

        const std::vector<p2t::Triangle*> tris = cdt->GetTriangles();

        // Collect the triangles we just produced
        for(p2t::Triangle* tri : tris) {
            for(int i = 0; i < 3; ++i) {

                const IfcVector2 v = IfcVector2(
                    static_cast<IfcFloat>( tri->GetPoint(i)->x ),
                    static_cast<IfcFloat>( tri->GetPoint(i)->y )
                );

                ai_assert(v.x <= 1.0 && v.x >= 0.0 && v.y <= 1.0 && v.y >= 0.0);
                const IfcVector3 v3 = minv * IfcVector3(vmin.x + v.x * vmax.x, vmin.y + v.y * vmax.y,coord) ;

                curmesh.mVerts.push_back(v3);
            }
            curmesh.mVertcnt.push_back(3);
        }

        result = true;
    }

    if (!result) {
        // revert -- it's a shame, but better than nothing
        curmesh.mVerts.insert(curmesh.mVerts.end(),old_verts.begin(), old_verts.end());
        curmesh.mVertcnt.insert(curmesh.mVertcnt.end(),old_vertcnt.begin(), old_vertcnt.end());

        IFCImporter::LogError("Ifc: revert, could not generate openings for this wall");
    }

    return result;
}


    } // ! IFC
} // ! Assimp

#undef to_int64
#undef from_int64
#undef one_vec

#endif