summaryrefslogtreecommitdiff
path: root/src/mesh/assimp-master/code/AssetLib/IFC/IFCUtil.cpp
blob: 6b378c1dacc45f03edd4520b1a9af7eb343b7e8f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
/*
Open Asset Import Library (assimp)
----------------------------------------------------------------------

Copyright (c) 2006-2022, assimp team


All rights reserved.

Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the
following conditions are met:

* Redistributions of source code must retain the above
  copyright notice, this list of conditions and the
  following disclaimer.

* Redistributions in binary form must reproduce the above
  copyright notice, this list of conditions and the
  following disclaimer in the documentation and/or other
  materials provided with the distribution.

* Neither the name of the assimp team, nor the names of its
  contributors may be used to endorse or promote products
  derived from this software without specific prior
  written permission of the assimp team.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

----------------------------------------------------------------------
*/

/** @file  IFCUtil.cpp
 *  @brief Implementation of conversion routines for some common Ifc helper entities.
 */

#ifndef ASSIMP_BUILD_NO_IFC_IMPORTER

#include "AssetLib/IFC/IFCUtil.h"
#include "Common/PolyTools.h"
#include "PostProcessing/ProcessHelper.h"

namespace Assimp {
namespace IFC {

// ------------------------------------------------------------------------------------------------
void TempOpening::Transform(const IfcMatrix4& mat) {
    if(profileMesh) {
        profileMesh->Transform(mat);
    }
    if(profileMesh2D) {
        profileMesh2D->Transform(mat);
    }
    extrusionDir *= IfcMatrix3(mat);
}

// ------------------------------------------------------------------------------------------------
aiMesh* TempMesh::ToMesh()
{
    ai_assert(mVerts.size() == std::accumulate(mVertcnt.begin(),mVertcnt.end(),size_t(0)));

    if (mVerts.empty()) {
        return nullptr;
    }

    std::unique_ptr<aiMesh> mesh(new aiMesh());

    // copy vertices
    mesh->mNumVertices = static_cast<unsigned int>(mVerts.size());
    mesh->mVertices = new aiVector3D[mesh->mNumVertices];
    std::copy(mVerts.begin(),mVerts.end(),mesh->mVertices);

    // and build up faces
    mesh->mNumFaces = static_cast<unsigned int>(mVertcnt.size());
    mesh->mFaces = new aiFace[mesh->mNumFaces];

    for(unsigned int i = 0,n=0, acc = 0; i < mesh->mNumFaces; ++n) {
        aiFace& f = mesh->mFaces[i];
        if (!mVertcnt[n]) {
            --mesh->mNumFaces;
            continue;
        }

        f.mNumIndices = mVertcnt[n];
        f.mIndices = new unsigned int[f.mNumIndices];
        for(unsigned int a = 0; a < f.mNumIndices; ++a) {
            f.mIndices[a] = acc++;
        }

        ++i;
    }

    return mesh.release();
}

// ------------------------------------------------------------------------------------------------
void TempMesh::Clear()
{
    mVerts.clear();
    mVertcnt.clear();
}

// ------------------------------------------------------------------------------------------------
void TempMesh::Transform(const IfcMatrix4& mat)
{
    for(IfcVector3& v : mVerts) {
        v *= mat;
    }
}

// ------------------------------------------------------------------------------
IfcVector3 TempMesh::Center() const
{
    return (mVerts.size() == 0) ? IfcVector3(0.0f, 0.0f, 0.0f) : (std::accumulate(mVerts.begin(),mVerts.end(),IfcVector3()) / static_cast<IfcFloat>(mVerts.size()));
}

// ------------------------------------------------------------------------------------------------
void TempMesh::Append(const TempMesh& other)
{
    mVerts.insert(mVerts.end(),other.mVerts.begin(),other.mVerts.end());
    mVertcnt.insert(mVertcnt.end(),other.mVertcnt.begin(),other.mVertcnt.end());
}

// ------------------------------------------------------------------------------------------------
void TempMesh::RemoveDegenerates()
{
    // The strategy is simple: walk the mesh and compute normals using
    // Newell's algorithm. The length of the normals gives the area
    // of the polygons, which is close to zero for lines.

    std::vector<IfcVector3> normals;
    ComputePolygonNormals(normals, false);

    bool drop = false;
    size_t inor = 0;

    std::vector<IfcVector3>::iterator vit = mVerts.begin();
    for (std::vector<unsigned int>::iterator it = mVertcnt.begin(); it != mVertcnt.end(); ++inor) {
        const unsigned int pcount = *it;

        if (normals[inor].SquareLength() < 1e-10f) {
            it = mVertcnt.erase(it);
            vit = mVerts.erase(vit, vit + pcount);

            drop = true;
            continue;
        }

        vit += pcount;
        ++it;
    }

    if(drop) {
        IFCImporter::LogVerboseDebug("removing degenerate faces");
    }
}

// ------------------------------------------------------------------------------------------------
IfcVector3 TempMesh::ComputePolygonNormal(const IfcVector3* vtcs, size_t cnt, bool normalize)
{
    std::vector<IfcFloat> temp((cnt+2)*3);
    for( size_t vofs = 0, i = 0; vofs < cnt; ++vofs )
    {
        const IfcVector3& v = vtcs[vofs];
        temp[i++] = v.x;
        temp[i++] = v.y;
        temp[i++] = v.z;
    }

    IfcVector3 nor;
    NewellNormal<3, 3, 3>(nor, static_cast<int>(cnt), &temp[0], &temp[1], &temp[2]);
    return normalize ? nor.Normalize() : nor;
}

// ------------------------------------------------------------------------------------------------
void TempMesh::ComputePolygonNormals(std::vector<IfcVector3>& normals,
    bool normalize,
    size_t ofs) const
{
    size_t max_vcount = 0;
    std::vector<unsigned int>::const_iterator begin = mVertcnt.begin()+ofs, end = mVertcnt.end(),  iit;
    for(iit = begin; iit != end; ++iit) {
        max_vcount = std::max(max_vcount,static_cast<size_t>(*iit));
    }

    std::vector<IfcFloat> temp((max_vcount+2)*4);
    normals.reserve( normals.size() + mVertcnt.size()-ofs );

    // `NewellNormal()` currently has a relatively strange interface and need to
    // re-structure things a bit to meet them.
    size_t vidx = std::accumulate(mVertcnt.begin(),begin,0);
    for(iit = begin; iit != end; vidx += *iit++) {
        if (!*iit) {
            normals.push_back(IfcVector3());
            continue;
        }
        for(size_t vofs = 0, cnt = 0; vofs < *iit; ++vofs) {
            const IfcVector3& v = mVerts[vidx+vofs];
            temp[cnt++] = v.x;
            temp[cnt++] = v.y;
            temp[cnt++] = v.z;
#ifdef ASSIMP_BUILD_DEBUG
            temp[cnt] = std::numeric_limits<IfcFloat>::quiet_NaN();
#endif
            ++cnt;
        }

        normals.push_back(IfcVector3());
        NewellNormal<4,4,4>(normals.back(),*iit,&temp[0],&temp[1],&temp[2]);
    }

    if(normalize) {
        for(IfcVector3& n : normals) {
            n.Normalize();
        }
    }
}

// ------------------------------------------------------------------------------------------------
// Compute the normal of the last polygon in the given mesh
IfcVector3 TempMesh::ComputeLastPolygonNormal(bool normalize) const {
    return ComputePolygonNormal(&mVerts[mVerts.size() - mVertcnt.back()], mVertcnt.back(), normalize);
}

struct CompareVector {
    bool operator () (const IfcVector3& a, const IfcVector3& b) const {
        IfcVector3 d = a - b;
        IfcFloat eps = ai_epsilon;
        return d.x < -eps || (std::abs(d.x) < eps && d.y < -eps) || (std::abs(d.x) < eps && std::abs(d.y) < eps && d.z < -eps);
    }
};

struct FindVector {
    IfcVector3 v;
    FindVector(const IfcVector3& p) : v(p) { }
    bool operator()(const IfcVector3 &p) {
        return FuzzyVectorCompare(ai_epsilon)(p, v);
    }
};

// ------------------------------------------------------------------------------------------------
void TempMesh::FixupFaceOrientation()
{
    const IfcVector3 vavg = Center();

    // create a list of start indices for all faces to allow random access to faces
    std::vector<size_t> faceStartIndices(mVertcnt.size());
    for( size_t i = 0, a = 0; a < mVertcnt.size(); i += mVertcnt[a], ++a )
        faceStartIndices[a] = i;

    // list all faces on a vertex
    std::map<IfcVector3, std::vector<size_t>, CompareVector> facesByVertex;
    for( size_t a = 0; a < mVertcnt.size(); ++a )
    {
        for( size_t b = 0; b < mVertcnt[a]; ++b )
            facesByVertex[mVerts[faceStartIndices[a] + b]].push_back(a);
    }
    // determine neighbourhood for all polys
    std::vector<size_t> neighbour(mVerts.size(), SIZE_MAX);
    std::vector<size_t> tempIntersect(10);
    for( size_t a = 0; a < mVertcnt.size(); ++a )
    {
        for( size_t b = 0; b < mVertcnt[a]; ++b )
        {
            size_t ib = faceStartIndices[a] + b, nib = faceStartIndices[a] + (b + 1) % mVertcnt[a];
            const std::vector<size_t>& facesOnB = facesByVertex[mVerts[ib]];
            const std::vector<size_t>& facesOnNB = facesByVertex[mVerts[nib]];
            // there should be exactly one or two faces which appear in both lists. Our face and the other side
            std::vector<size_t>::iterator sectstart = tempIntersect.begin();
            std::vector<size_t>::iterator sectend = std::set_intersection(
                facesOnB.begin(), facesOnB.end(), facesOnNB.begin(), facesOnNB.end(), sectstart);

            if( std::distance(sectstart, sectend) != 2 )
                continue;
            if( *sectstart == a )
                ++sectstart;
            neighbour[ib] = *sectstart;
        }
    }

    // now we're getting started. We take the face which is the farthest away from the center. This face is most probably
    // facing outwards. So we reverse this face to point outwards in relation to the center. Then we adapt neighbouring
    // faces to have the same winding until all faces have been tested.
    std::vector<bool> faceDone(mVertcnt.size(), false);
    while( std::count(faceDone.begin(), faceDone.end(), false) != 0 )
    {
        // find the farthest of the remaining faces
        size_t farthestIndex = SIZE_MAX;
        IfcFloat farthestDistance = -1.0;
        for( size_t a = 0; a < mVertcnt.size(); ++a )
        {
            if( faceDone[a] )
                continue;
            IfcVector3 faceCenter = std::accumulate(mVerts.begin() + faceStartIndices[a],
                mVerts.begin() + faceStartIndices[a] + mVertcnt[a], IfcVector3(0.0)) / IfcFloat(mVertcnt[a]);
            IfcFloat dst = (faceCenter - vavg).SquareLength();
            if( dst > farthestDistance ) { farthestDistance = dst; farthestIndex = a; }
        }

        // calculate its normal and reverse the poly if its facing towards the mesh center
        IfcVector3 farthestNormal = ComputePolygonNormal(mVerts.data() + faceStartIndices[farthestIndex], mVertcnt[farthestIndex]);
        IfcVector3 farthestCenter = std::accumulate(mVerts.begin() + faceStartIndices[farthestIndex],
            mVerts.begin() + faceStartIndices[farthestIndex] + mVertcnt[farthestIndex], IfcVector3(0.0))
            / IfcFloat(mVertcnt[farthestIndex]);
        // We accept a bit of negative orientation without reversing. In case of doubt, prefer the orientation given in
        // the file.
        if( (farthestNormal * (farthestCenter - vavg).Normalize()) < -0.4 )
        {
            size_t fsi = faceStartIndices[farthestIndex], fvc = mVertcnt[farthestIndex];
            std::reverse(mVerts.begin() + fsi, mVerts.begin() + fsi + fvc);
            std::reverse(neighbour.begin() + fsi, neighbour.begin() + fsi + fvc);
            // because of the neighbour index belonging to the edge starting with the point at the same index, we need to
            // cycle the neighbours through to match the edges again.
            // Before: points A - B - C - D with edge neighbour p - q - r - s
            // After: points D - C - B - A, reversed neighbours are s - r - q - p, but the should be
            //                r   q   p   s
            for( size_t a = 0; a < fvc - 1; ++a )
                std::swap(neighbour[fsi + a], neighbour[fsi + a + 1]);
        }
        faceDone[farthestIndex] = true;
        std::vector<size_t> todo;
        todo.push_back(farthestIndex);

        // go over its neighbour faces recursively and adapt their winding order to match the farthest face
        while( !todo.empty() )
        {
            size_t tdf = todo.back();
            size_t vsi = faceStartIndices[tdf], vc = mVertcnt[tdf];
            todo.pop_back();

            // check its neighbours
            for( size_t a = 0; a < vc; ++a )
            {
                // ignore neighbours if we already checked them
                size_t nbi = neighbour[vsi + a];
                if( nbi == SIZE_MAX || faceDone[nbi] )
                    continue;

                const IfcVector3& vp = mVerts[vsi + a];
                size_t nbvsi = faceStartIndices[nbi], nbvc = mVertcnt[nbi];
                std::vector<IfcVector3>::iterator it = std::find_if(mVerts.begin() + nbvsi, mVerts.begin() + nbvsi + nbvc, FindVector(vp));
                ai_assert(it != mVerts.begin() + nbvsi + nbvc);
                size_t nb_vidx = std::distance(mVerts.begin() + nbvsi, it);
                // two faces winded in the same direction should have a crossed edge, where one face has p0->p1 and the other
                // has p1'->p0'. If the next point on the neighbouring face is also the next on the current face, we need
                // to reverse the neighbour
                nb_vidx = (nb_vidx + 1) % nbvc;
                size_t oursideidx = (a + 1) % vc;
                if (FuzzyVectorCompare(ai_epsilon)(mVerts[vsi + oursideidx], mVerts[nbvsi + nb_vidx])) {
                    std::reverse(mVerts.begin() + nbvsi, mVerts.begin() + nbvsi + nbvc);
                    std::reverse(neighbour.begin() + nbvsi, neighbour.begin() + nbvsi + nbvc);
                    for (size_t aa = 0; aa < nbvc - 1; ++aa) {
                        std::swap(neighbour[nbvsi + aa], neighbour[nbvsi + aa + 1]);
                    }
                }

                // either way we're done with the neighbour. Mark it as done and continue checking from there recursively
                faceDone[nbi] = true;
                todo.push_back(nbi);
            }
        }

        // no more faces reachable from this part of the surface, start over with a disjunct part and its farthest face
    }
}

// ------------------------------------------------------------------------------------------------
void TempMesh::RemoveAdjacentDuplicates() {
    bool drop = false;
    std::vector<IfcVector3>::iterator base = mVerts.begin();
    for(unsigned int& cnt : mVertcnt) {
        if (cnt < 2){
            base += cnt;
            continue;
        }

        IfcVector3 vmin,vmax;
        ArrayBounds(&*base, cnt ,vmin,vmax);


        const IfcFloat epsilon = (vmax-vmin).SquareLength() / static_cast<IfcFloat>(1e9);
        //const IfcFloat dotepsilon = 1e-9;

        //// look for vertices that lie directly on the line between their predecessor and their
        //// successor and replace them with either of them.

        //for(size_t i = 0; i < cnt; ++i) {
        //  IfcVector3& v1 = *(base+i), &v0 = *(base+(i?i-1:cnt-1)), &v2 = *(base+(i+1)%cnt);
        //  const IfcVector3& d0 = (v1-v0), &d1 = (v2-v1);
        //  const IfcFloat l0 = d0.SquareLength(), l1 = d1.SquareLength();
        //  if (!l0 || !l1) {
        //      continue;
        //  }

        //  const IfcFloat d = (d0/std::sqrt(l0))*(d1/std::sqrt(l1));

        //  if ( d >= 1.f-dotepsilon ) {
        //      v1 = v0;
        //  }
        //  else if ( d < -1.f+dotepsilon ) {
        //      v2 = v1;
        //      continue;
        //  }
        //}

        // drop any identical, adjacent vertices. this pass will collect the dropouts
        // of the previous pass as a side-effect.
        FuzzyVectorCompare fz(epsilon);
        std::vector<IfcVector3>::iterator end = base+cnt, e = std::unique( base, end, fz );
        if (e != end) {
            cnt -= static_cast<unsigned int>(std::distance(e, end));
            mVerts.erase(e,end);
            drop  = true;
        }

        // check front and back vertices for this polygon
        if (cnt > 1 && fz(*base,*(base+cnt-1))) {
            mVerts.erase(base+ --cnt);
            drop  = true;
        }

        // removing adjacent duplicates shouldn't erase everything :-)
        ai_assert(cnt>0);
        base += cnt;
    }
    if(drop) {
        IFCImporter::LogVerboseDebug("removing duplicate vertices");
    }
}

// ------------------------------------------------------------------------------------------------
void TempMesh::Swap(TempMesh& other)
{
    mVertcnt.swap(other.mVertcnt);
    mVerts.swap(other.mVerts);
}

// ------------------------------------------------------------------------------------------------
bool IsTrue(const ::Assimp::STEP::EXPRESS::BOOLEAN& in)
{
    return (std::string)in == "TRUE" || (std::string)in == "T";
}

// ------------------------------------------------------------------------------------------------
IfcFloat ConvertSIPrefix(const std::string& prefix)
{
    if (prefix == "EXA") {
        return 1e18f;
    }
    else if (prefix == "PETA") {
        return 1e15f;
    }
    else if (prefix == "TERA") {
        return 1e12f;
    }
    else if (prefix == "GIGA") {
        return 1e9f;
    }
    else if (prefix == "MEGA") {
        return 1e6f;
    }
    else if (prefix == "KILO") {
        return 1e3f;
    }
    else if (prefix == "HECTO") {
        return 1e2f;
    }
    else if (prefix == "DECA") {
        return 1e-0f;
    }
    else if (prefix == "DECI") {
        return 1e-1f;
    }
    else if (prefix == "CENTI") {
        return 1e-2f;
    }
    else if (prefix == "MILLI") {
        return 1e-3f;
    }
    else if (prefix == "MICRO") {
        return 1e-6f;
    }
    else if (prefix == "NANO") {
        return 1e-9f;
    }
    else if (prefix == "PICO") {
        return 1e-12f;
    }
    else if (prefix == "FEMTO") {
        return 1e-15f;
    }
    else if (prefix == "ATTO") {
        return 1e-18f;
    }
    else {
        IFCImporter::LogError("Unrecognized SI prefix: ", prefix);
        return 1;
    }
}

// ------------------------------------------------------------------------------------------------
void ConvertColor(aiColor4D& out, const Schema_2x3::IfcColourRgb& in)
{
    out.r = static_cast<float>( in.Red );
    out.g = static_cast<float>( in.Green );
    out.b = static_cast<float>( in.Blue );
    out.a = static_cast<float>( 1.f );
}

// ------------------------------------------------------------------------------------------------
void ConvertColor(aiColor4D& out, const Schema_2x3::IfcColourOrFactor& in,ConversionData& conv,const aiColor4D* base)
{
    if (const ::Assimp::STEP::EXPRESS::REAL* const r = in.ToPtr<::Assimp::STEP::EXPRESS::REAL>()) {
        out.r = out.g = out.b = static_cast<float>(*r);
        if(base) {
            out.r *= static_cast<float>( base->r );
            out.g *= static_cast<float>( base->g );
            out.b *= static_cast<float>( base->b );
            out.a = static_cast<float>( base->a );
        }
        else out.a = 1.0;
    }
    else if (const Schema_2x3::IfcColourRgb* const rgb = in.ResolveSelectPtr<Schema_2x3::IfcColourRgb>(conv.db)) {
        ConvertColor(out,*rgb);
    }
    else {
        IFCImporter::LogWarn("skipping unknown IfcColourOrFactor entity");
    }
}

// ------------------------------------------------------------------------------------------------
void ConvertCartesianPoint(IfcVector3& out, const Schema_2x3::IfcCartesianPoint& in)
{
    out = IfcVector3();
    for(size_t i = 0; i < in.Coordinates.size(); ++i) {
        out[static_cast<unsigned int>(i)] = in.Coordinates[i];
    }
}

// ------------------------------------------------------------------------------------------------
void ConvertVector(IfcVector3& out, const Schema_2x3::IfcVector& in)
{
    ConvertDirection(out,in.Orientation);
    out *= in.Magnitude;
}

// ------------------------------------------------------------------------------------------------
void ConvertDirection(IfcVector3& out, const Schema_2x3::IfcDirection& in)
{
    out = IfcVector3();
    for(size_t i = 0; i < in.DirectionRatios.size(); ++i) {
        out[static_cast<unsigned int>(i)] = in.DirectionRatios[i];
    }
    const IfcFloat len = out.Length();
    if (len < ai_epsilon) {
        IFCImporter::LogWarn("direction vector magnitude too small, normalization would result in a division by zero");
        return;
    }
    out /= len;
}

// ------------------------------------------------------------------------------------------------
void AssignMatrixAxes(IfcMatrix4& out, const IfcVector3& x, const IfcVector3& y, const IfcVector3& z)
{
    out.a1 = x.x;
    out.b1 = x.y;
    out.c1 = x.z;

    out.a2 = y.x;
    out.b2 = y.y;
    out.c2 = y.z;

    out.a3 = z.x;
    out.b3 = z.y;
    out.c3 = z.z;
}

// ------------------------------------------------------------------------------------------------
void ConvertAxisPlacement(IfcMatrix4& out, const Schema_2x3::IfcAxis2Placement3D& in)
{
    IfcVector3 loc;
    ConvertCartesianPoint(loc,in.Location);

    IfcVector3 z(0.f,0.f,1.f),r(1.f,0.f,0.f),x;

    if (in.Axis) {
        ConvertDirection(z,*in.Axis.Get());
    }
    if (in.RefDirection) {
        ConvertDirection(r,*in.RefDirection.Get());
    }

    IfcVector3 v = r.Normalize();
    IfcVector3 tmpx = z * (v*z);

    x = (v-tmpx).Normalize();
    IfcVector3 y = (z^x);

    IfcMatrix4::Translation(loc,out);
    AssignMatrixAxes(out,x,y,z);
}

// ------------------------------------------------------------------------------------------------
void ConvertAxisPlacement(IfcMatrix4& out, const Schema_2x3::IfcAxis2Placement2D& in)
{
    IfcVector3 loc;
    ConvertCartesianPoint(loc,in.Location);

    IfcVector3 x(1.f,0.f,0.f);
    if (in.RefDirection) {
        ConvertDirection(x,*in.RefDirection.Get());
    }

    const IfcVector3 y = IfcVector3(x.y,-x.x,0.f);

    IfcMatrix4::Translation(loc,out);
    AssignMatrixAxes(out,x,y,IfcVector3(0.f,0.f,1.f));
}

// ------------------------------------------------------------------------------------------------
void ConvertAxisPlacement(IfcVector3& axis, IfcVector3& pos, const Schema_2x3::IfcAxis1Placement& in)
{
    ConvertCartesianPoint(pos,in.Location);
    if (in.Axis) {
        ConvertDirection(axis,in.Axis.Get());
    }
    else {
        axis = IfcVector3(0.f,0.f,1.f);
    }
}

// ------------------------------------------------------------------------------------------------
void ConvertAxisPlacement(IfcMatrix4& out, const Schema_2x3::IfcAxis2Placement& in, ConversionData& conv)
{
    if(const Schema_2x3::IfcAxis2Placement3D* pl3 = in.ResolveSelectPtr<Schema_2x3::IfcAxis2Placement3D>(conv.db)) {
        ConvertAxisPlacement(out,*pl3);
    }
    else if(const Schema_2x3::IfcAxis2Placement2D* pl2 = in.ResolveSelectPtr<Schema_2x3::IfcAxis2Placement2D>(conv.db)) {
        ConvertAxisPlacement(out,*pl2);
    }
    else {
        IFCImporter::LogWarn("skipping unknown IfcAxis2Placement entity");
    }
}

// ------------------------------------------------------------------------------------------------
void ConvertTransformOperator(IfcMatrix4& out, const Schema_2x3::IfcCartesianTransformationOperator& op)
{
    IfcVector3 loc;
    ConvertCartesianPoint(loc,op.LocalOrigin);

    IfcVector3 x(1.f,0.f,0.f),y(0.f,1.f,0.f),z(0.f,0.f,1.f);
    if (op.Axis1) {
        ConvertDirection(x,*op.Axis1.Get());
    }
    if (op.Axis2) {
        ConvertDirection(y,*op.Axis2.Get());
    }
    if (const Schema_2x3::IfcCartesianTransformationOperator3D* op2 = op.ToPtr<Schema_2x3::IfcCartesianTransformationOperator3D>()) {
        if(op2->Axis3) {
            ConvertDirection(z,*op2->Axis3.Get());
        }
    }

    IfcMatrix4 locm;
    IfcMatrix4::Translation(loc,locm);
    AssignMatrixAxes(out,x,y,z);


    IfcVector3 vscale;
    if (const Schema_2x3::IfcCartesianTransformationOperator3DnonUniform* nuni = op.ToPtr<Schema_2x3::IfcCartesianTransformationOperator3DnonUniform>()) {
        vscale.x = nuni->Scale?op.Scale.Get():1.f;
        vscale.y = nuni->Scale2?nuni->Scale2.Get():1.f;
        vscale.z = nuni->Scale3?nuni->Scale3.Get():1.f;
    }
    else {
        const IfcFloat sc = op.Scale?op.Scale.Get():1.f;
        vscale = IfcVector3(sc,sc,sc);
    }

    IfcMatrix4 s;
    IfcMatrix4::Scaling(vscale,s);

    out = locm * out * s;
}


} // ! IFC
} // ! Assimp

#endif