summaryrefslogtreecommitdiff
path: root/src/mesh/assimp-master/code/AssetLib/Irr/IRRLoader.cpp
blob: 0061634a60bd517b08159c5a0470fb922a8887cd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
/*
---------------------------------------------------------------------------
Open Asset Import Library (assimp)
---------------------------------------------------------------------------

Copyright (c) 2006-2022, assimp team

All rights reserved.

Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the following
conditions are met:

* Redistributions of source code must retain the above
  copyright notice, this list of conditions and the
  following disclaimer.

* Redistributions in binary form must reproduce the above
  copyright notice, this list of conditions and the
  following disclaimer in the documentation and/or other
  materials provided with the distribution.

* Neither the name of the assimp team, nor the names of its
  contributors may be used to endorse or promote products
  derived from this software without specific prior
  written permission of the assimp team.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------
*/

/** @file  IRRLoader.cpp
 *  @brief Implementation of the Irr importer class
 */

#ifndef ASSIMP_BUILD_NO_IRR_IMPORTER

#include "AssetLib/Irr/IRRLoader.h"
#include "Common/Importer.h"

#include <assimp/GenericProperty.h>
#include <assimp/MathFunctions.h>
#include <assimp/ParsingUtils.h>
#include <assimp/SceneCombiner.h>
#include <assimp/StandardShapes.h>
#include <assimp/fast_atof.h>
#include <assimp/importerdesc.h>
#include <assimp/material.h>
#include <assimp/mesh.h>
#include <assimp/postprocess.h>
#include <assimp/scene.h>
#include <assimp/DefaultLogger.hpp>
#include <assimp/IOSystem.hpp>

#include <memory>

using namespace Assimp;

static const aiImporterDesc desc = {
	"Irrlicht Scene Reader",
	"",
	"",
	"http://irrlicht.sourceforge.net/",
	aiImporterFlags_SupportTextFlavour,
	0,
	0,
	0,
	0,
	"irr xml"
};

// ------------------------------------------------------------------------------------------------
// Constructor to be privately used by Importer
IRRImporter::IRRImporter() :
		fps(), configSpeedFlag() {
	// empty
}

// ------------------------------------------------------------------------------------------------
// Destructor, private as well
IRRImporter::~IRRImporter() {
	// empty
}

// ------------------------------------------------------------------------------------------------
// Returns whether the class can handle the format of the given file.
bool IRRImporter::CanRead(const std::string &pFile, IOSystem *pIOHandler, bool /*checkSig*/) const {
	static const char *tokens[] = { "irr_scene" };
	return SearchFileHeaderForToken(pIOHandler, pFile, tokens, AI_COUNT_OF(tokens));
}

// ------------------------------------------------------------------------------------------------
const aiImporterDesc *IRRImporter::GetInfo() const {
	return &desc;
}

// ------------------------------------------------------------------------------------------------
void IRRImporter::SetupProperties(const Importer *pImp) {
	// read the output frame rate of all node animation channels
	fps = pImp->GetPropertyInteger(AI_CONFIG_IMPORT_IRR_ANIM_FPS, 100);
	if (fps < 10.) {
		ASSIMP_LOG_ERROR("IRR: Invalid FPS configuration");
		fps = 100;
	}

	// AI_CONFIG_FAVOUR_SPEED
	configSpeedFlag = (0 != pImp->GetPropertyInteger(AI_CONFIG_FAVOUR_SPEED, 0));
}

// ------------------------------------------------------------------------------------------------
// Build a mesh that consists of a single squad (a side of a skybox)
aiMesh *IRRImporter::BuildSingleQuadMesh(const SkyboxVertex &v1,
		const SkyboxVertex &v2,
		const SkyboxVertex &v3,
		const SkyboxVertex &v4) {
	// allocate and prepare the mesh
	aiMesh *out = new aiMesh();

	out->mPrimitiveTypes = aiPrimitiveType_POLYGON;
	out->mNumFaces = 1;

	// build the face
	out->mFaces = new aiFace[1];
	aiFace &face = out->mFaces[0];

	face.mNumIndices = 4;
	face.mIndices = new unsigned int[4];
	for (unsigned int i = 0; i < 4; ++i)
		face.mIndices[i] = i;

	out->mNumVertices = 4;

	// copy vertex positions
	aiVector3D *vec = out->mVertices = new aiVector3D[4];
	*vec++ = v1.position;
	*vec++ = v2.position;
	*vec++ = v3.position;
	*vec = v4.position;

	// copy vertex normals
	vec = out->mNormals = new aiVector3D[4];
	*vec++ = v1.normal;
	*vec++ = v2.normal;
	*vec++ = v3.normal;
	*vec = v4.normal;

	// copy texture coordinates
	vec = out->mTextureCoords[0] = new aiVector3D[4];
	*vec++ = v1.uv;
	*vec++ = v2.uv;
	*vec++ = v3.uv;
	*vec = v4.uv;
	return out;
}

// ------------------------------------------------------------------------------------------------
void IRRImporter::BuildSkybox(std::vector<aiMesh *> &meshes, std::vector<aiMaterial *> materials) {
	// Update the material of the skybox - replace the name and disable shading for skyboxes.
	for (unsigned int i = 0; i < 6; ++i) {
		aiMaterial *out = (aiMaterial *)(*(materials.end() - (6 - i)));

		aiString s;
		s.length = ::ai_snprintf(s.data, MAXLEN, "SkyboxSide_%u", i);
		out->AddProperty(&s, AI_MATKEY_NAME);

		int shading = aiShadingMode_NoShading;
		out->AddProperty(&shading, 1, AI_MATKEY_SHADING_MODEL);
	}

	// Skyboxes are much more difficult. They are represented
	// by six single planes with different textures, so we'll
	// need to build six meshes.

	const ai_real l = 10.0; // the size used by Irrlicht

	// FRONT SIDE
	meshes.push_back(BuildSingleQuadMesh(
			SkyboxVertex(-l, -l, -l, 0, 0, 1, 1.0, 1.0),
			SkyboxVertex(l, -l, -l, 0, 0, 1, 0.0, 1.0),
			SkyboxVertex(l, l, -l, 0, 0, 1, 0.0, 0.0),
			SkyboxVertex(-l, l, -l, 0, 0, 1, 1.0, 0.0)));
	meshes.back()->mMaterialIndex = static_cast<unsigned int>(materials.size() - 6u);

	// LEFT SIDE
	meshes.push_back(BuildSingleQuadMesh(
			SkyboxVertex(l, -l, -l, -1, 0, 0, 1.0, 1.0),
			SkyboxVertex(l, -l, l, -1, 0, 0, 0.0, 1.0),
			SkyboxVertex(l, l, l, -1, 0, 0, 0.0, 0.0),
			SkyboxVertex(l, l, -l, -1, 0, 0, 1.0, 0.0)));
	meshes.back()->mMaterialIndex = static_cast<unsigned int>(materials.size() - 5u);

	// BACK SIDE
	meshes.push_back(BuildSingleQuadMesh(
			SkyboxVertex(l, -l, l, 0, 0, -1, 1.0, 1.0),
			SkyboxVertex(-l, -l, l, 0, 0, -1, 0.0, 1.0),
			SkyboxVertex(-l, l, l, 0, 0, -1, 0.0, 0.0),
			SkyboxVertex(l, l, l, 0, 0, -1, 1.0, 0.0)));
	meshes.back()->mMaterialIndex = static_cast<unsigned int>(materials.size() - 4u);

	// RIGHT SIDE
	meshes.push_back(BuildSingleQuadMesh(
			SkyboxVertex(-l, -l, l, 1, 0, 0, 1.0, 1.0),
			SkyboxVertex(-l, -l, -l, 1, 0, 0, 0.0, 1.0),
			SkyboxVertex(-l, l, -l, 1, 0, 0, 0.0, 0.0),
			SkyboxVertex(-l, l, l, 1, 0, 0, 1.0, 0.0)));
	meshes.back()->mMaterialIndex = static_cast<unsigned int>(materials.size() - 3u);

	// TOP SIDE
	meshes.push_back(BuildSingleQuadMesh(
			SkyboxVertex(l, l, -l, 0, -1, 0, 1.0, 1.0),
			SkyboxVertex(l, l, l, 0, -1, 0, 0.0, 1.0),
			SkyboxVertex(-l, l, l, 0, -1, 0, 0.0, 0.0),
			SkyboxVertex(-l, l, -l, 0, -1, 0, 1.0, 0.0)));
	meshes.back()->mMaterialIndex = static_cast<unsigned int>(materials.size() - 2u);

	// BOTTOM SIDE
	meshes.push_back(BuildSingleQuadMesh(
			SkyboxVertex(l, -l, l, 0, 1, 0, 0.0, 0.0),
			SkyboxVertex(l, -l, -l, 0, 1, 0, 1.0, 0.0),
			SkyboxVertex(-l, -l, -l, 0, 1, 0, 1.0, 1.0),
			SkyboxVertex(-l, -l, l, 0, 1, 0, 0.0, 1.0)));
	meshes.back()->mMaterialIndex = static_cast<unsigned int>(materials.size() - 1u);
}

// ------------------------------------------------------------------------------------------------
void IRRImporter::CopyMaterial(std::vector<aiMaterial *> &materials,
		std::vector<std::pair<aiMaterial *, unsigned int>> &inmaterials,
		unsigned int &defMatIdx,
		aiMesh *mesh) {
	if (inmaterials.empty()) {
		// Do we have a default material? If not we need to create one
		if (UINT_MAX == defMatIdx) {
			defMatIdx = (unsigned int)materials.size();
			//TODO: add this materials to someone?
			/*aiMaterial* mat = new aiMaterial();

            aiString s;
            s.Set(AI_DEFAULT_MATERIAL_NAME);
            mat->AddProperty(&s,AI_MATKEY_NAME);

            aiColor3D c(0.6f,0.6f,0.6f);
            mat->AddProperty(&c,1,AI_MATKEY_COLOR_DIFFUSE);*/
		}
		mesh->mMaterialIndex = defMatIdx;
		return;
	} else if (inmaterials.size() > 1) {
		ASSIMP_LOG_INFO("IRR: Skipping additional materials");
	}

	mesh->mMaterialIndex = (unsigned int)materials.size();
	materials.push_back(inmaterials[0].first);
}

// ------------------------------------------------------------------------------------------------
inline int ClampSpline(int idx, int size) {
	return (idx < 0 ? size + idx : (idx >= size ? idx - size : idx));
}

// ------------------------------------------------------------------------------------------------
inline void FindSuitableMultiple(int &angle) {
	if (angle < 3)
		angle = 3;
	else if (angle < 10)
		angle = 10;
	else if (angle < 20)
		angle = 20;
	else if (angle < 30)
		angle = 30;
}

// ------------------------------------------------------------------------------------------------
void IRRImporter::ComputeAnimations(Node *root, aiNode *real, std::vector<aiNodeAnim *> &anims) {
	ai_assert(nullptr != root && nullptr != real);

	// XXX totally WIP - doesn't produce proper results, need to evaluate
	// whether there's any use for Irrlicht's proprietary scene format
	// outside Irrlicht ...
	// This also applies to the above function of FindSuitableMultiple and ClampSpline which are
	// solely used in this function

	if (root->animators.empty()) {
		return;
	}
	unsigned int total(0);
	for (std::list<Animator>::iterator it = root->animators.begin(); it != root->animators.end(); ++it) {
		if ((*it).type == Animator::UNKNOWN || (*it).type == Animator::OTHER) {
			ASSIMP_LOG_WARN("IRR: Skipping unknown or unsupported animator");
			continue;
		}
		++total;
	}
	if (!total) {
		return;
	} else if (1 == total) {
		ASSIMP_LOG_WARN("IRR: Adding dummy nodes to simulate multiple animators");
	}

	// NOTE: 1 tick == i millisecond

	unsigned int cur = 0;
	for (std::list<Animator>::iterator it = root->animators.begin();
			it != root->animators.end(); ++it) {
		if ((*it).type == Animator::UNKNOWN || (*it).type == Animator::OTHER) continue;

		Animator &in = *it;
		aiNodeAnim *anim = new aiNodeAnim();

		if (cur != total - 1) {
			// Build a new name - a prefix instead of a suffix because it is
			// easier to check against
			anim->mNodeName.length = ::ai_snprintf(anim->mNodeName.data, MAXLEN,
					"$INST_DUMMY_%i_%s", total - 1,
					(root->name.length() ? root->name.c_str() : ""));

			// we'll also need to insert a dummy in the node hierarchy.
			aiNode *dummy = new aiNode();

			for (unsigned int i = 0; i < real->mParent->mNumChildren; ++i)
				if (real->mParent->mChildren[i] == real)
					real->mParent->mChildren[i] = dummy;

			dummy->mParent = real->mParent;
			dummy->mName = anim->mNodeName;

			dummy->mNumChildren = 1;
			dummy->mChildren = new aiNode *[dummy->mNumChildren];
			dummy->mChildren[0] = real;

			// the transformation matrix of the dummy node is the identity

			real->mParent = dummy;
		} else
			anim->mNodeName.Set(root->name);
		++cur;

		switch (in.type) {
			case Animator::ROTATION: {
				// -----------------------------------------------------
				// find out how long a full rotation will take
				// This is the least common multiple of 360.f and all
				// three euler angles. Although we'll surely find a
				// possible multiple (haha) it could be somewhat large
				// for our purposes. So we need to modify the angles
				// here in order to get good results.
				// -----------------------------------------------------
				int angles[3];
				angles[0] = (int)(in.direction.x * 100);
				angles[1] = (int)(in.direction.y * 100);
				angles[2] = (int)(in.direction.z * 100);

				angles[0] %= 360;
				angles[1] %= 360;
				angles[2] %= 360;

				if ((angles[0] * angles[1]) != 0 && (angles[1] * angles[2]) != 0) {
					FindSuitableMultiple(angles[0]);
					FindSuitableMultiple(angles[1]);
					FindSuitableMultiple(angles[2]);
				}

				int lcm = 360;

				if (angles[0])
					lcm = Math::lcm(lcm, angles[0]);

				if (angles[1])
					lcm = Math::lcm(lcm, angles[1]);

				if (angles[2])
					lcm = Math::lcm(lcm, angles[2]);

				if (360 == lcm)
					break;


				// find out how many time units we'll need for the finest
				// track (in seconds) - this defines the number of output
				// keys (fps * seconds)
				float max = 0.f;
				if (angles[0])
					max = (float)lcm / angles[0];
				if (angles[1])
					max = std::max(max, (float)lcm / angles[1]);
				if (angles[2])
					max = std::max(max, (float)lcm / angles[2]);

				anim->mNumRotationKeys = (unsigned int)(max * fps);
				anim->mRotationKeys = new aiQuatKey[anim->mNumRotationKeys];

				// begin with a zero angle
				aiVector3D angle;
				for (unsigned int i = 0; i < anim->mNumRotationKeys; ++i) {
					// build the quaternion for the given euler angles
					aiQuatKey &q = anim->mRotationKeys[i];

					q.mValue = aiQuaternion(angle.x, angle.y, angle.z);
					q.mTime = (double)i;

					// increase the angle
					angle += in.direction;
				}

				// This animation is repeated and repeated ...
				anim->mPostState = anim->mPreState = aiAnimBehaviour_REPEAT;
			} break;

			case Animator::FLY_CIRCLE: {
				// -----------------------------------------------------
				// Find out how much time we'll need to perform a
				// full circle.
				// -----------------------------------------------------
				const double seconds = (1. / in.speed) / 1000.;
				const double tdelta = 1000. / fps;

				anim->mNumPositionKeys = (unsigned int)(fps * seconds);
				anim->mPositionKeys = new aiVectorKey[anim->mNumPositionKeys];

				// from Irrlicht, what else should we do than copying it?
				aiVector3D vecU, vecV;
				if (in.direction.y) {
					vecV = aiVector3D(50, 0, 0) ^ in.direction;
				} else
					vecV = aiVector3D(0, 50, 00) ^ in.direction;
				vecV.Normalize();
				vecU = (vecV ^ in.direction).Normalize();

				// build the output keys
				for (unsigned int i = 0; i < anim->mNumPositionKeys; ++i) {
					aiVectorKey &key = anim->mPositionKeys[i];
					key.mTime = i * tdelta;

					const ai_real t = (ai_real)(in.speed * key.mTime);
					key.mValue = in.circleCenter + in.circleRadius * ((vecU * std::cos(t)) + (vecV * std::sin(t)));
				}

				// This animation is repeated and repeated ...
				anim->mPostState = anim->mPreState = aiAnimBehaviour_REPEAT;
			} break;

			case Animator::FLY_STRAIGHT: {
				anim->mPostState = anim->mPreState = (in.loop ? aiAnimBehaviour_REPEAT : aiAnimBehaviour_CONSTANT);
				const double seconds = in.timeForWay / 1000.;
				const double tdelta = 1000. / fps;

				anim->mNumPositionKeys = (unsigned int)(fps * seconds);
				anim->mPositionKeys = new aiVectorKey[anim->mNumPositionKeys];

				aiVector3D diff = in.direction - in.circleCenter;
				const ai_real lengthOfWay = diff.Length();
				diff.Normalize();

				const double timeFactor = lengthOfWay / in.timeForWay;

				// build the output keys
				for (unsigned int i = 0; i < anim->mNumPositionKeys; ++i) {
					aiVectorKey &key = anim->mPositionKeys[i];
					key.mTime = i * tdelta;
					key.mValue = in.circleCenter + diff * ai_real(timeFactor * key.mTime);
				}
			} break;

			case Animator::FOLLOW_SPLINE: {
				// repeat outside the defined time range
				anim->mPostState = anim->mPreState = aiAnimBehaviour_REPEAT;
				const int size = (int)in.splineKeys.size();
				if (!size) {
					// We have no point in the spline. That's bad. Really bad.
					ASSIMP_LOG_WARN("IRR: Spline animators with no points defined");

					delete anim;
					anim = nullptr;
					break;
				} else if (size == 1) {
					// We have just one point in the spline so we don't need the full calculation
					anim->mNumPositionKeys = 1;
					anim->mPositionKeys = new aiVectorKey[anim->mNumPositionKeys];

					anim->mPositionKeys[0].mValue = in.splineKeys[0].mValue;
					anim->mPositionKeys[0].mTime = 0.f;
					break;
				}

				unsigned int ticksPerFull = 15;
				anim->mNumPositionKeys = (unsigned int)(ticksPerFull * fps);
				anim->mPositionKeys = new aiVectorKey[anim->mNumPositionKeys];

				for (unsigned int i = 0; i < anim->mNumPositionKeys; ++i) {
					aiVectorKey &key = anim->mPositionKeys[i];

					const ai_real dt = (i * in.speed * ai_real(0.001));
					const ai_real u = dt - std::floor(dt);
					const int idx = (int)std::floor(dt) % size;

					// get the 4 current points to evaluate the spline
					const aiVector3D &p0 = in.splineKeys[ClampSpline(idx - 1, size)].mValue;
					const aiVector3D &p1 = in.splineKeys[ClampSpline(idx + 0, size)].mValue;
					const aiVector3D &p2 = in.splineKeys[ClampSpline(idx + 1, size)].mValue;
					const aiVector3D &p3 = in.splineKeys[ClampSpline(idx + 2, size)].mValue;

					// compute polynomials
					const ai_real u2 = u * u;
					const ai_real u3 = u2 * 2;

					const ai_real h1 = ai_real(2.0) * u3 - ai_real(3.0) * u2 + ai_real(1.0);
					const ai_real h2 = ai_real(-2.0) * u3 + ai_real(3.0) * u3;
					const ai_real h3 = u3 - ai_real(2.0) * u3;
					const ai_real h4 = u3 - u2;

					// compute the spline tangents
					const aiVector3D t1 = (p2 - p0) * in.tightness;
					aiVector3D t2 = (p3 - p1) * in.tightness;

					// and use them to get the interpolated point
					t2 = (h1 * p1 + p2 * h2 + t1 * h3 + h4 * t2);

					// build a simple translation matrix from it
					key.mValue = t2;
					key.mTime = (double)i;
				}
			} break;
			default:
				// UNKNOWN , OTHER
				break;
		};
		if (anim) {
			anims.push_back(anim);
			++total;
		}
	}
}

// ------------------------------------------------------------------------------------------------
// This function is maybe more generic than we'd need it here
void SetupMapping(aiMaterial *mat, aiTextureMapping mode, const aiVector3D &axis = aiVector3D(0.f, 0.f, -1.f)) {
	if (nullptr == mat) {
		return;
	}

    // Check whether there are texture properties defined - setup
	// the desired texture mapping mode for all of them and ignore
	// all UV settings we might encounter. WE HAVE NO UVS!

	std::vector<aiMaterialProperty *> p;
	p.reserve(mat->mNumProperties + 1);

	for (unsigned int i = 0; i < mat->mNumProperties; ++i) {
		aiMaterialProperty *prop = mat->mProperties[i];
		if (!::strcmp(prop->mKey.data, "$tex.file")) {
			// Setup the mapping key
			aiMaterialProperty *m = new aiMaterialProperty();
			m->mKey.Set("$tex.mapping");
			m->mIndex = prop->mIndex;
			m->mSemantic = prop->mSemantic;
			m->mType = aiPTI_Integer;

			m->mDataLength = 4;
			m->mData = new char[4];
			*((int *)m->mData) = mode;

			p.push_back(prop);
			p.push_back(m);

			// Setup the mapping axis
			if (mode == aiTextureMapping_CYLINDER || mode == aiTextureMapping_PLANE || mode == aiTextureMapping_SPHERE) {
				m = new aiMaterialProperty();
				m->mKey.Set("$tex.mapaxis");
				m->mIndex = prop->mIndex;
				m->mSemantic = prop->mSemantic;
				m->mType = aiPTI_Float;

				m->mDataLength = 12;
				m->mData = new char[12];
				*((aiVector3D *)m->mData) = axis;
				p.push_back(m);
			}
		} else if (!::strcmp(prop->mKey.data, "$tex.uvwsrc")) {
			delete mat->mProperties[i];
		} else
			p.push_back(prop);
	}

	if (p.empty()) return;

	// rebuild the output array
	if (p.size() > mat->mNumAllocated) {
		delete[] mat->mProperties;
		mat->mProperties = new aiMaterialProperty *[p.size() * 2];

		mat->mNumAllocated = static_cast<unsigned int>(p.size() * 2);
	}
	mat->mNumProperties = (unsigned int)p.size();
	::memcpy(mat->mProperties, &p[0], sizeof(void *) * mat->mNumProperties);
}

// ------------------------------------------------------------------------------------------------
void IRRImporter::GenerateGraph(Node *root, aiNode *rootOut, aiScene *scene,
		BatchLoader &batch,
		std::vector<aiMesh *> &meshes,
		std::vector<aiNodeAnim *> &anims,
		std::vector<AttachmentInfo> &attach,
		std::vector<aiMaterial *> &materials,
		unsigned int &defMatIdx) {
	unsigned int oldMeshSize = (unsigned int)meshes.size();
	//unsigned int meshTrafoAssign = 0;

	// Now determine the type of the node
	switch (root->type) {
		case Node::ANIMMESH:
		case Node::MESH: {
			if (!root->meshPath.length())
				break;

			// Get the loaded mesh from the scene and add it to
			// the list of all scenes to be attached to the
			// graph we're currently building
			aiScene *localScene = batch.GetImport(root->id);
			if (!localScene) {
				ASSIMP_LOG_ERROR("IRR: Unable to load external file: ", root->meshPath);
				break;
			}
			attach.push_back(AttachmentInfo(localScene, rootOut));

			// Now combine the material we've loaded for this mesh
			// with the real materials we got from the file. As we
			// don't execute any pp-steps on the file, the numbers
			// should be equal. If they are not, we can impossibly
			// do this  ...
			if (root->materials.size() != (unsigned int)localScene->mNumMaterials) {
				ASSIMP_LOG_WARN("IRR: Failed to match imported materials "
								"with the materials found in the IRR scene file");

				break;
			}
			for (unsigned int i = 0; i < localScene->mNumMaterials; ++i) {
				// Delete the old material, we don't need it anymore
				delete localScene->mMaterials[i];

				std::pair<aiMaterial *, unsigned int> &src = root->materials[i];
				localScene->mMaterials[i] = src.first;
			}

			// NOTE: Each mesh should have exactly one material assigned,
			// but we do it in a separate loop if this behavior changes
			// in future.
			for (unsigned int i = 0; i < localScene->mNumMeshes; ++i) {
				// Process material flags
				aiMesh *mesh = localScene->mMeshes[i];

				// If "trans_vertex_alpha" mode is enabled, search all vertex colors
				// and check whether they have a common alpha value. This is quite
				// often the case so we can simply extract it to a shared oacity
				// value.
				std::pair<aiMaterial *, unsigned int> &src = root->materials[mesh->mMaterialIndex];
				aiMaterial *mat = (aiMaterial *)src.first;

				if (mesh->HasVertexColors(0) && src.second & AI_IRRMESH_MAT_trans_vertex_alpha) {
					bool bdo = true;
					for (unsigned int a = 1; a < mesh->mNumVertices; ++a) {

						if (mesh->mColors[0][a].a != mesh->mColors[0][a - 1].a) {
							bdo = false;
							break;
						}
					}
					if (bdo) {
						ASSIMP_LOG_INFO("IRR: Replacing mesh vertex alpha with common opacity");

						for (unsigned int a = 0; a < mesh->mNumVertices; ++a)
							mesh->mColors[0][a].a = 1.f;

						mat->AddProperty(&mesh->mColors[0][0].a, 1, AI_MATKEY_OPACITY);
					}
				}

				// If we have a second texture coordinate set and a second texture
				// (either light-map, normal-map, 2layered material) we need to
				// setup the correct UV index for it. The texture can either
				// be diffuse (light-map & 2layer) or a normal map (normal & parallax)
				if (mesh->HasTextureCoords(1)) {

					int idx = 1;
					if (src.second & (AI_IRRMESH_MAT_solid_2layer | AI_IRRMESH_MAT_lightmap)) {
						mat->AddProperty(&idx, 1, AI_MATKEY_UVWSRC_DIFFUSE(0));
					} else if (src.second & AI_IRRMESH_MAT_normalmap_solid) {
						mat->AddProperty(&idx, 1, AI_MATKEY_UVWSRC_NORMALS(0));
					}
				}
			}
		} break;

		case Node::LIGHT:
		case Node::CAMERA:

			// We're already finished with lights and cameras
			break;

		case Node::SPHERE: {
			// Generate the sphere model. Our input parameter to
			// the sphere generation algorithm is the number of
			// subdivisions of each triangle - but here we have
			// the number of polygons on a specific axis. Just
			// use some hard-coded limits to approximate this ...
			unsigned int mul = root->spherePolyCountX * root->spherePolyCountY;
			if (mul < 100)
				mul = 2;
			else if (mul < 300)
				mul = 3;
			else
				mul = 4;

			meshes.push_back(StandardShapes::MakeMesh(mul,
					&StandardShapes::MakeSphere));

			// Adjust scaling
			root->scaling *= root->sphereRadius / 2;

			// Copy one output material
			CopyMaterial(materials, root->materials, defMatIdx, meshes.back());

			// Now adjust this output material - if there is a first texture
			// set, setup spherical UV mapping around the Y axis.
			SetupMapping((aiMaterial *)materials.back(), aiTextureMapping_SPHERE);
		} break;

		case Node::CUBE: {
			// Generate an unit cube first
			meshes.push_back(StandardShapes::MakeMesh(
					&StandardShapes::MakeHexahedron));

			// Adjust scaling
			root->scaling *= root->sphereRadius;

			// Copy one output material
			CopyMaterial(materials, root->materials, defMatIdx, meshes.back());

			// Now adjust this output material - if there is a first texture
			// set, setup cubic UV mapping
			SetupMapping((aiMaterial *)materials.back(), aiTextureMapping_BOX);
		} break;

		case Node::SKYBOX: {
			// A sky-box is defined by six materials
			if (root->materials.size() < 6) {
				ASSIMP_LOG_ERROR("IRR: There should be six materials for a skybox");
				break;
			}

			// copy those materials and generate 6 meshes for our new sky-box
			materials.reserve(materials.size() + 6);
			for (unsigned int i = 0; i < 6; ++i)
				materials.insert(materials.end(), root->materials[i].first);

			BuildSkybox(meshes, materials);

			// *************************************************************
			// Skyboxes will require a different code path for rendering,
			// so there must be a way for the user to add special support
			// for IRR skyboxes. We add a 'IRR.SkyBox_' prefix to the node.
			// *************************************************************
			root->name = "IRR.SkyBox_" + root->name;
			ASSIMP_LOG_INFO("IRR: Loading skybox, this will "
							"require special handling to be displayed correctly");
		} break;

		case Node::TERRAIN: {
			// to support terrains, we'd need to have a texture decoder
			ASSIMP_LOG_ERROR("IRR: Unsupported node - TERRAIN");
		} break;
		default:
			// DUMMY
			break;
	};

	// Check whether we added a mesh (or more than one ...). In this case
	// we'll also need to attach it to the node
	if (oldMeshSize != (unsigned int)meshes.size()) {

		rootOut->mNumMeshes = (unsigned int)meshes.size() - oldMeshSize;
		rootOut->mMeshes = new unsigned int[rootOut->mNumMeshes];

		for (unsigned int a = 0; a < rootOut->mNumMeshes; ++a) {
			rootOut->mMeshes[a] = oldMeshSize + a;
		}
	}

	// Setup the name of this node
	rootOut->mName.Set(root->name);

	// Now compute the final local transformation matrix of the
	// node from the given translation, rotation and scaling values.
	// (the rotation is given in Euler angles, XYZ order)
	//std::swap((float&)root->rotation.z,(float&)root->rotation.y);
	rootOut->mTransformation.FromEulerAnglesXYZ(AI_DEG_TO_RAD(root->rotation));

	// apply scaling
	aiMatrix4x4 &mat = rootOut->mTransformation;
	mat.a1 *= root->scaling.x;
	mat.b1 *= root->scaling.x;
	mat.c1 *= root->scaling.x;
	mat.a2 *= root->scaling.y;
	mat.b2 *= root->scaling.y;
	mat.c2 *= root->scaling.y;
	mat.a3 *= root->scaling.z;
	mat.b3 *= root->scaling.z;
	mat.c3 *= root->scaling.z;

	// apply translation
	mat.a4 += root->position.x;
	mat.b4 += root->position.y;
	mat.c4 += root->position.z;

	// now compute animations for the node
	ComputeAnimations(root, rootOut, anims);

	// Add all children recursively. First allocate enough storage
	// for them, then call us again
	rootOut->mNumChildren = (unsigned int)root->children.size();
	if (rootOut->mNumChildren) {

		rootOut->mChildren = new aiNode *[rootOut->mNumChildren];
		for (unsigned int i = 0; i < rootOut->mNumChildren; ++i) {

			aiNode *node = rootOut->mChildren[i] = new aiNode();
			node->mParent = rootOut;
			GenerateGraph(root->children[i], node, scene, batch, meshes,
					anims, attach, materials, defMatIdx);
		}
	}
}

// ------------------------------------------------------------------------------------------------
// Imports the given file into the given scene structure.
void IRRImporter::InternReadFile(const std::string &pFile, aiScene *pScene, IOSystem *pIOHandler) {
	std::unique_ptr<IOStream> file(pIOHandler->Open(pFile));

	// Check whether we can read from the file
	if (file.get() == nullptr) {
        throw DeadlyImportError("Failed to open IRR file ", pFile);
	}

	// Construct the irrXML parser
	XmlParser st;
    if (!st.parse( file.get() )) {
        throw DeadlyImportError("XML parse error while loading IRR file ", pFile);
    }
    pugi::xml_node rootElement = st.getRootNode();

	// The root node of the scene
	Node *root = new Node(Node::DUMMY);
	root->parent = nullptr;
	root->name = "<IRRSceneRoot>";

	// Current node parent
	Node *curParent = root;

	// Scene-graph node we're currently working on
	Node *curNode = nullptr;

	// List of output cameras
	std::vector<aiCamera *> cameras;

	// List of output lights
	std::vector<aiLight *> lights;

	// Batch loader used to load external models
	BatchLoader batch(pIOHandler);
	//  batch.SetBasePath(pFile);

	cameras.reserve(5);
	lights.reserve(5);

	bool inMaterials = false, inAnimator = false;
	unsigned int guessedAnimCnt = 0, guessedMeshCnt = 0, guessedMatCnt = 0;

	// Parse the XML file

	//while (reader->read())  {
	for (pugi::xml_node child : rootElement.children())
		switch (child.type()) {
			case pugi::node_element:
				if (!ASSIMP_stricmp(child.name(), "node")) {
					// ***********************************************************************
					/*  What we're going to do with the node depends
                     *  on its type:
                     *
                     *  "mesh" - Load a mesh from an external file
                     *  "cube" - Generate a cube
                     *  "skybox" - Generate a skybox
                     *  "light" - A light source
                     *  "sphere" - Generate a sphere mesh
                     *  "animatedMesh" - Load an animated mesh from an external file
                     *    and join its animation channels with ours.
                     *  "empty" - A dummy node
                     *  "camera" - A camera
                     *  "terrain" - a terrain node (data comes from a heightmap)
                     *  "billboard", ""
                     *
                     *  Each of these nodes can be animated and all can have multiple
                     *  materials assigned (except lights, cameras and dummies, of course).
                     */
					// ***********************************************************************
					//const char *sz = reader->getAttributeValueSafe("type");
					pugi::xml_attribute attrib = child.attribute("type");
					Node *nd;
					if (!ASSIMP_stricmp(attrib.name(), "mesh") || !ASSIMP_stricmp(attrib.name(), "octTree")) {
						// OctTree's and meshes are treated equally
						nd = new Node(Node::MESH);
					} else if (!ASSIMP_stricmp(attrib.name(), "cube")) {
						nd = new Node(Node::CUBE);
						++guessedMeshCnt;
					} else if (!ASSIMP_stricmp(attrib.name(), "skybox")) {
						nd = new Node(Node::SKYBOX);
						guessedMeshCnt += 6;
					} else if (!ASSIMP_stricmp(attrib.name(), "camera")) {
						nd = new Node(Node::CAMERA);

						// Setup a temporary name for the camera
						aiCamera *cam = new aiCamera();
						cam->mName.Set(nd->name);
						cameras.push_back(cam);
					} else if (!ASSIMP_stricmp(attrib.name(), "light")) {
						nd = new Node(Node::LIGHT);

						// Setup a temporary name for the light
						aiLight *cam = new aiLight();
						cam->mName.Set(nd->name);
						lights.push_back(cam);
					} else if (!ASSIMP_stricmp(attrib.name(), "sphere")) {
						nd = new Node(Node::SPHERE);
						++guessedMeshCnt;
					} else if (!ASSIMP_stricmp(attrib.name(), "animatedMesh")) {
						nd = new Node(Node::ANIMMESH);
					} else if (!ASSIMP_stricmp(attrib.name(), "empty")) {
						nd = new Node(Node::DUMMY);
					} else if (!ASSIMP_stricmp(attrib.name(), "terrain")) {
						nd = new Node(Node::TERRAIN);
					} else if (!ASSIMP_stricmp(attrib.name(), "billBoard")) {
						// We don't support billboards, so ignore them
						ASSIMP_LOG_ERROR("IRR: Billboards are not supported by Assimp");
						nd = new Node(Node::DUMMY);
					} else {
						ASSIMP_LOG_WARN("IRR: Found unknown node: ", attrib.name());

						/*  We skip the contents of nodes we don't know.
                         *  We parse the transformation and all animators
                         *  and skip the rest.
                         */
						nd = new Node(Node::DUMMY);
					}

					/* Attach the newly created node to the scene-graph
                     */
					curNode = nd;
					nd->parent = curParent;
					curParent->children.push_back(nd);
				} else if (!ASSIMP_stricmp(child.name(), "materials")) {
					inMaterials = true;
				} else if (!ASSIMP_stricmp(child.name(), "animators")) {
					inAnimator = true;
				} else if (!ASSIMP_stricmp(child.name(), "attributes")) {
					//  We should have a valid node here
					//  FIX: no ... the scene root node is also contained in an attributes block
					if (!curNode) {
						continue;
					}

					Animator *curAnim = nullptr;

					// Materials can occur for nearly any type of node
					if (inMaterials && curNode->type != Node::DUMMY) {
						//  This is a material description - parse it!
						curNode->materials.push_back(std::pair<aiMaterial *, unsigned int>());
						std::pair<aiMaterial *, unsigned int> &p = curNode->materials.back();

						p.first = ParseMaterial(p.second);
						++guessedMatCnt;
						continue;
					} else if (inAnimator) {
						//  This is an animation path - add a new animator
						//  to the list.
						curNode->animators.push_back(Animator());
						curAnim = &curNode->animators.back();

						++guessedAnimCnt;
					}

					/*  Parse all elements in the attributes block
                     *  and process them.
                     */
					//					while (reader->read()) {
					for (pugi::xml_node attrib : child.children()) {
						if (attrib.type() == pugi::node_element) {
							//if (reader->getNodeType() == EXN_ELEMENT) {
							//if (!ASSIMP_stricmp(reader->getNodeName(), "vector3d")) {
							if (!ASSIMP_stricmp(attrib.name(), "vector3d")) {
								VectorProperty prop;
								ReadVectorProperty(prop);

								if (inAnimator) {
									if (curAnim->type == Animator::ROTATION && prop.name == "Rotation") {
										// We store the rotation euler angles in 'direction'
										curAnim->direction = prop.value;
									} else if (curAnim->type == Animator::FOLLOW_SPLINE) {
										// Check whether the vector follows the PointN naming scheme,
										// here N is the ONE-based index of the point
										if (prop.name.length() >= 6 && prop.name.substr(0, 5) == "Point") {
											// Add a new key to the list
											curAnim->splineKeys.push_back(aiVectorKey());
											aiVectorKey &key = curAnim->splineKeys.back();

											// and parse its properties
											key.mValue = prop.value;
											key.mTime = strtoul10(&prop.name[5]);
										}
									} else if (curAnim->type == Animator::FLY_CIRCLE) {
										if (prop.name == "Center") {
											curAnim->circleCenter = prop.value;
										} else if (prop.name == "Direction") {
											curAnim->direction = prop.value;

											// From Irrlicht's source - a workaround for backward compatibility with Irrlicht 1.1
											if (curAnim->direction == aiVector3D()) {
												curAnim->direction = aiVector3D(0.f, 1.f, 0.f);
											} else
												curAnim->direction.Normalize();
										}
									} else if (curAnim->type == Animator::FLY_STRAIGHT) {
										if (prop.name == "Start") {
											// We reuse the field here
											curAnim->circleCenter = prop.value;
										} else if (prop.name == "End") {
											// We reuse the field here
											curAnim->direction = prop.value;
										}
									}
								} else {
									if (prop.name == "Position") {
										curNode->position = prop.value;
									} else if (prop.name == "Rotation") {
										curNode->rotation = prop.value;
									} else if (prop.name == "Scale") {
										curNode->scaling = prop.value;
									} else if (Node::CAMERA == curNode->type) {
										aiCamera *cam = cameras.back();
										if (prop.name == "Target") {
											cam->mLookAt = prop.value;
										} else if (prop.name == "UpVector") {
											cam->mUp = prop.value;
										}
									}
								}
								//} else if (!ASSIMP_stricmp(reader->getNodeName(), "bool")) {
							} else if (!ASSIMP_stricmp(attrib.name(), "bool")) {
								BoolProperty prop;
								ReadBoolProperty(prop);

								if (inAnimator && curAnim->type == Animator::FLY_CIRCLE && prop.name == "Loop") {
									curAnim->loop = prop.value;
								}
								//} else if (!ASSIMP_stricmp(reader->getNodeName(), "float")) {
							} else if (!ASSIMP_stricmp(attrib.name(), "float")) {
								FloatProperty prop;
								ReadFloatProperty(prop);

								if (inAnimator) {
									// The speed property exists for several animators
									if (prop.name == "Speed") {
										curAnim->speed = prop.value;
									} else if (curAnim->type == Animator::FLY_CIRCLE && prop.name == "Radius") {
										curAnim->circleRadius = prop.value;
									} else if (curAnim->type == Animator::FOLLOW_SPLINE && prop.name == "Tightness") {
										curAnim->tightness = prop.value;
									}
								} else {
									if (prop.name == "FramesPerSecond" && Node::ANIMMESH == curNode->type) {
										curNode->framesPerSecond = prop.value;
									} else if (Node::CAMERA == curNode->type) {
										/*  This is the vertical, not the horizontal FOV.
                                    *  We need to compute the right FOV from the
                                    *  screen aspect which we don't know yet.
                                    */
										if (prop.name == "Fovy") {
											cameras.back()->mHorizontalFOV = prop.value;
										} else if (prop.name == "Aspect") {
											cameras.back()->mAspect = prop.value;
										} else if (prop.name == "ZNear") {
											cameras.back()->mClipPlaneNear = prop.value;
										} else if (prop.name == "ZFar") {
											cameras.back()->mClipPlaneFar = prop.value;
										}
									} else if (Node::LIGHT == curNode->type) {
										/*  Additional light information
                                     */
										if (prop.name == "Attenuation") {
											lights.back()->mAttenuationLinear = prop.value;
										} else if (prop.name == "OuterCone") {
											lights.back()->mAngleOuterCone = AI_DEG_TO_RAD(prop.value);
										} else if (prop.name == "InnerCone") {
											lights.back()->mAngleInnerCone = AI_DEG_TO_RAD(prop.value);
										}
									}
									// radius of the sphere to be generated -
									// or alternatively, size of the cube
									else if ((Node::SPHERE == curNode->type && prop.name == "Radius") || (Node::CUBE == curNode->type && prop.name == "Size")) {

										curNode->sphereRadius = prop.value;
									}
								}
								//} else if (!ASSIMP_stricmp(reader->getNodeName(), "int")) {
							} else if (!ASSIMP_stricmp(attrib.name(), "int")) {
								IntProperty prop;
								ReadIntProperty(prop);

								if (inAnimator) {
									if (curAnim->type == Animator::FLY_STRAIGHT && prop.name == "TimeForWay") {
										curAnim->timeForWay = prop.value;
									}
								} else {
									// sphere polygon numbers in each direction
									if (Node::SPHERE == curNode->type) {

										if (prop.name == "PolyCountX") {
											curNode->spherePolyCountX = prop.value;
										} else if (prop.name == "PolyCountY") {
											curNode->spherePolyCountY = prop.value;
										}
									}
								}
								//} else if (!ASSIMP_stricmp(reader->getNodeName(), "string") || !ASSIMP_stricmp(reader->getNodeName(), "enum")) {
							} else if (!ASSIMP_stricmp(attrib.name(), "string") || !ASSIMP_stricmp(attrib.name(), "enum")) {
								StringProperty prop;
								ReadStringProperty(prop);
								if (prop.value.length()) {
									if (prop.name == "Name") {
										curNode->name = prop.value;

										/*  If we're either a camera or a light source
                                     *  we need to update the name in the aiLight/
                                     *  aiCamera structure, too.
                                     */
										if (Node::CAMERA == curNode->type) {
											cameras.back()->mName.Set(prop.value);
										} else if (Node::LIGHT == curNode->type) {
											lights.back()->mName.Set(prop.value);
										}
									} else if (Node::LIGHT == curNode->type && "LightType" == prop.name) {
										if (prop.value == "Spot")
											lights.back()->mType = aiLightSource_SPOT;
										else if (prop.value == "Point")
											lights.back()->mType = aiLightSource_POINT;
										else if (prop.value == "Directional")
											lights.back()->mType = aiLightSource_DIRECTIONAL;
										else {
											// We won't pass the validation with aiLightSourceType_UNDEFINED,
											// so we remove the light and replace it with a silly dummy node
											delete lights.back();
											lights.pop_back();
											curNode->type = Node::DUMMY;

											ASSIMP_LOG_ERROR("Ignoring light of unknown type: ", prop.value);
										}
									} else if ((prop.name == "Mesh" && Node::MESH == curNode->type) ||
											   Node::ANIMMESH == curNode->type) {
    								/*  This is the file name of the mesh - either
                                     *  animated or not. We need to make sure we setup
                                     *  the correct post-processing settings here.
                                     */
										unsigned int pp = 0;
										BatchLoader::PropertyMap map;

										/* If the mesh is a static one remove all animations from the impor data
                                     */
										if (Node::ANIMMESH != curNode->type) {
											pp |= aiProcess_RemoveComponent;
											SetGenericProperty<int>(map.ints, AI_CONFIG_PP_RVC_FLAGS,
													aiComponent_ANIMATIONS | aiComponent_BONEWEIGHTS);
										}

										/*  TODO: maybe implement the protection against recursive
                                        *  loading calls directly in BatchLoader? The current
                                        *  implementation is not absolutely safe. A LWS and an IRR
                                        *  file referencing each other *could* cause the system to
                                        *  recurse forever.
                                        */

										const std::string extension = GetExtension(prop.value);
										if ("irr" == extension) {
											ASSIMP_LOG_ERROR("IRR: Can't load another IRR file recursively");
										} else {
											curNode->id = batch.AddLoadRequest(prop.value, pp, &map);
											curNode->meshPath = prop.value;
										}
									} else if (inAnimator && prop.name == "Type") {
										// type of the animator
										if (prop.value == "rotation") {
											curAnim->type = Animator::ROTATION;
										} else if (prop.value == "flyCircle") {
											curAnim->type = Animator::FLY_CIRCLE;
										} else if (prop.value == "flyStraight") {
											curAnim->type = Animator::FLY_CIRCLE;
										} else if (prop.value == "followSpline") {
											curAnim->type = Animator::FOLLOW_SPLINE;
										} else {
											ASSIMP_LOG_WARN("IRR: Ignoring unknown animator: ", prop.value);

											curAnim->type = Animator::UNKNOWN;
										}
									}
								}
							}
							//} else if (reader->getNodeType() == EXN_ELEMENT_END && !ASSIMP_stricmp(reader->getNodeName(), "attributes")) {
						} else if (attrib.type() == pugi::node_null && !ASSIMP_stricmp(attrib.name(), "attributes")) {
							break;
						}
					}
				}
				break;

				/*case EXN_ELEMENT_END:

				// If we reached the end of a node, we need to continue processing its parent
				if (!ASSIMP_stricmp(reader->getNodeName(), "node")) {
					if (!curNode) {
						// currently is no node set. We need to go
						// back in the node hierarchy
						if (!curParent) {
							curParent = root;
							ASSIMP_LOG_ERROR("IRR: Too many closing <node> elements");
						} else
							curParent = curParent->parent;
					} else
						curNode = nullptr;
				}
				// clear all flags
				else if (!ASSIMP_stricmp(reader->getNodeName(), "materials")) {
					inMaterials = false;
				} else if (!ASSIMP_stricmp(reader->getNodeName(), "animators")) {
					inAnimator = false;
				}
				break;*/

			default:
				// GCC complains that not all enumeration values are handled
				break;
		}
	//}

	//  Now iterate through all cameras and compute their final (horizontal) FOV
	for (aiCamera *cam : cameras) {
		// screen aspect could be missing
		if (cam->mAspect) {
			cam->mHorizontalFOV *= cam->mAspect;
		} else {
			ASSIMP_LOG_WARN("IRR: Camera aspect is not given, can't compute horizontal FOV");
		}
	}

	batch.LoadAll();

	// Allocate a temporary scene data structure
	aiScene *tempScene = new aiScene();
	tempScene->mRootNode = new aiNode();
	tempScene->mRootNode->mName.Set("<IRRRoot>");

	// Copy the cameras to the output array
	if (!cameras.empty()) {
		tempScene->mNumCameras = (unsigned int)cameras.size();
		tempScene->mCameras = new aiCamera *[tempScene->mNumCameras];
		::memcpy(tempScene->mCameras, &cameras[0], sizeof(void *) * tempScene->mNumCameras);
	}

	// Copy the light sources to the output array
	if (!lights.empty()) {
		tempScene->mNumLights = (unsigned int)lights.size();
		tempScene->mLights = new aiLight *[tempScene->mNumLights];
		::memcpy(tempScene->mLights, &lights[0], sizeof(void *) * tempScene->mNumLights);
	}

	// temporary data
	std::vector<aiNodeAnim *> anims;
	std::vector<aiMaterial *> materials;
	std::vector<AttachmentInfo> attach;
	std::vector<aiMesh *> meshes;

	// try to guess how much storage we'll need
	anims.reserve(guessedAnimCnt + (guessedAnimCnt >> 2));
	meshes.reserve(guessedMeshCnt + (guessedMeshCnt >> 2));
	materials.reserve(guessedMatCnt + (guessedMatCnt >> 2));

	// Now process our scene-graph recursively: generate final
	// meshes and generate animation channels for all nodes.
	unsigned int defMatIdx = UINT_MAX;
	GenerateGraph(root, tempScene->mRootNode, tempScene,
			batch, meshes, anims, attach, materials, defMatIdx);

	if (!anims.empty()) {
		tempScene->mNumAnimations = 1;
		tempScene->mAnimations = new aiAnimation *[tempScene->mNumAnimations];
		aiAnimation *an = tempScene->mAnimations[0] = new aiAnimation();

		// ***********************************************************
		// This is only the global animation channel of the scene.
		// If there are animated models, they will have separate
		// animation channels in the scene. To display IRR scenes
		// correctly, users will need to combine the global anim
		// channel with all the local animations they want to play
		// ***********************************************************
		an->mName.Set("Irr_GlobalAnimChannel");

		// copy all node animation channels to the global channel
		an->mNumChannels = (unsigned int)anims.size();
		an->mChannels = new aiNodeAnim *[an->mNumChannels];
		::memcpy(an->mChannels, &anims[0], sizeof(void *) * an->mNumChannels);
	}
	if (!meshes.empty()) {
		// copy all meshes to the temporary scene
		tempScene->mNumMeshes = (unsigned int)meshes.size();
		tempScene->mMeshes = new aiMesh *[tempScene->mNumMeshes];
		::memcpy(tempScene->mMeshes, &meshes[0], tempScene->mNumMeshes * sizeof(void *));
	}

	// Copy all materials to the output array
	if (!materials.empty()) {
		tempScene->mNumMaterials = (unsigned int)materials.size();
		tempScene->mMaterials = new aiMaterial *[tempScene->mNumMaterials];
		::memcpy(tempScene->mMaterials, &materials[0], sizeof(void *) * tempScene->mNumMaterials);
	}

	//  Now merge all sub scenes and attach them to the correct
	//  attachment points in the scenegraph.
	SceneCombiner::MergeScenes(&pScene, tempScene, attach,
			AI_INT_MERGE_SCENE_GEN_UNIQUE_NAMES | (!configSpeedFlag ? (
																			  AI_INT_MERGE_SCENE_GEN_UNIQUE_NAMES_IF_NECESSARY | AI_INT_MERGE_SCENE_GEN_UNIQUE_MATNAMES) :
																	  0));

	// If we have no meshes | no materials now set the INCOMPLETE
	// scene flag. This is necessary if we failed to load all
	// models from external files
	if (!pScene->mNumMeshes || !pScene->mNumMaterials) {
		ASSIMP_LOG_WARN("IRR: No meshes loaded, setting AI_SCENE_FLAGS_INCOMPLETE");
		pScene->mFlags |= AI_SCENE_FLAGS_INCOMPLETE;
	}

	// Finished ... everything destructs automatically and all
	// temporary scenes have already been deleted by MergeScenes()
	delete root;
}

#endif // !! ASSIMP_BUILD_NO_IRR_IMPORTER