summaryrefslogtreecommitdiff
path: root/src/mesh/assimp-master/code/AssetLib/LWO/LWOAnimation.cpp
blob: c2ee2d9c0b106096e58511a4d6d8244bda059425 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
/*
Open Asset Import Library (assimp)
----------------------------------------------------------------------

Copyright (c) 2006-2022, assimp team

All rights reserved.

Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the
following conditions are met:

* Redistributions of source code must retain the above
  copyright notice, this list of conditions and the
  following disclaimer.

* Redistributions in binary form must reproduce the above
  copyright notice, this list of conditions and the
  following disclaimer in the documentation and/or other
  materials provided with the distribution.

* Neither the name of the assimp team, nor the names of its
  contributors may be used to endorse or promote products
  derived from this software without specific prior
  written permission of the assimp team.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

----------------------------------------------------------------------
*/

/** @file  LWOAnimation.cpp
 *  @brief LWOAnimationResolver utility class
 *
 *  It's a very generic implementation of LightWave's system of
 *  component-wise-animated stuff. The one and only fully free
 *  implementation of LightWave envelopes of which I know.
*/

#if (!defined ASSIMP_BUILD_NO_LWO_IMPORTER) && (!defined ASSIMP_BUILD_NO_LWS_IMPORTER)

#include <functional>

// internal headers
#include "LWOFileData.h"
#include <assimp/anim.h>

using namespace Assimp;
using namespace Assimp::LWO;

// ------------------------------------------------------------------------------------------------
// Construct an animation resolver from a given list of envelopes
AnimResolver::AnimResolver(std::list<Envelope> &_envelopes, double tick) :
        envelopes(_envelopes),
        sample_rate(0.),
        envl_x(),
        envl_y(),
        envl_z(),
        end_x(),
        end_y(),
        end_z(),
        flags(),
        sample_delta() {
    trans_x = trans_y = trans_z = nullptr;
    rotat_x = rotat_y = rotat_z = nullptr;
    scale_x = scale_y = scale_z = nullptr;

    first = last = 150392.;

    // find transformation envelopes
    for (std::list<LWO::Envelope>::iterator it = envelopes.begin(); it != envelopes.end(); ++it) {

        (*it).old_first = 0;
        (*it).old_last = (*it).keys.size() - 1;

        if ((*it).keys.empty()) {
            continue;
        }
        if ((int)(*it).type < 1 || (int)(*it).type>EnvelopeType_Unknown) {
            continue;
        }
        switch ((*it).type) {
        // translation
        case LWO::EnvelopeType_Position_X:
            trans_x = &*it;
            break;
        case LWO::EnvelopeType_Position_Y:
            trans_y = &*it;
            break;
        case LWO::EnvelopeType_Position_Z:
            trans_z = &*it;
            break;

            // rotation
        case LWO::EnvelopeType_Rotation_Heading:
            rotat_x = &*it;
            break;
        case LWO::EnvelopeType_Rotation_Pitch:
            rotat_y = &*it;
            break;
        case LWO::EnvelopeType_Rotation_Bank:
            rotat_z = &*it;
            break;

            // scaling
        case LWO::EnvelopeType_Scaling_X:
            scale_x = &*it;
            break;
        case LWO::EnvelopeType_Scaling_Y:
            scale_y = &*it;
            break;
        case LWO::EnvelopeType_Scaling_Z:
            scale_z = &*it;
            break;
        default:
            continue;
        };

        // convert from seconds to ticks
        for (std::vector<LWO::Key>::iterator d = (*it).keys.begin(); d != (*it).keys.end(); ++d)
            (*d).time *= tick;

        // set default animation range (minimum and maximum time value for which we have a keyframe)
        first = std::min(first, (*it).keys.front().time);
        last = std::max(last, (*it).keys.back().time);
    }

    // deferred setup of animation range to increase performance.
    // typically the application will want to specify its own.
    need_to_setup = true;
}

// ------------------------------------------------------------------------------------------------
// Reset all envelopes to their original contents
void AnimResolver::ClearAnimRangeSetup() {
    for (std::list<LWO::Envelope>::iterator it = envelopes.begin(); it != envelopes.end(); ++it) {

        (*it).keys.erase((*it).keys.begin(), (*it).keys.begin() + (*it).old_first);
        (*it).keys.erase((*it).keys.begin() + (*it).old_last + 1, (*it).keys.end());
    }
}

// ------------------------------------------------------------------------------------------------
// Insert additional keys to match LWO's pre& post behaviors.
void AnimResolver::UpdateAnimRangeSetup() {
    // XXX doesn't work yet (hangs if more than one envelope channels needs to be interpolated)

    for (std::list<LWO::Envelope>::iterator it = envelopes.begin(); it != envelopes.end(); ++it) {
        if ((*it).keys.empty()) continue;

        const double my_first = (*it).keys.front().time;
        const double my_last = (*it).keys.back().time;

        const double delta = my_last - my_first;
        const size_t old_size = (*it).keys.size();

        const float value_delta = (*it).keys.back().value - (*it).keys.front().value;

        // NOTE: We won't handle reset, linear and constant here.
        // See DoInterpolation() for their implementation.

        // process pre behavior
        switch ((*it).pre) {
        case LWO::PrePostBehaviour_OffsetRepeat:
        case LWO::PrePostBehaviour_Repeat:
        case LWO::PrePostBehaviour_Oscillate: {
            const double start_time = delta - std::fmod(my_first - first, delta);
            std::vector<LWO::Key>::iterator n = std::find_if((*it).keys.begin(), (*it).keys.end(),
                                                    [start_time](double t) { return start_time > t; }),
                                            m;

            size_t ofs = 0;
            if (n != (*it).keys.end()) {
                // copy from here - don't use iterators, insert() would invalidate them
                ofs = (*it).keys.end() - n;
                (*it).keys.insert((*it).keys.begin(), ofs, LWO::Key());

                std::copy((*it).keys.end() - ofs, (*it).keys.end(), (*it).keys.begin());
            }

            // do full copies. again, no iterators
            const unsigned int num = (unsigned int)((my_first - first) / delta);
            (*it).keys.resize((*it).keys.size() + num * old_size);

            n = (*it).keys.begin() + ofs;
            bool reverse = false;
            for (unsigned int i = 0; i < num; ++i) {
                m = n + old_size * (i + 1);
                std::copy(n, n + old_size, m);
                const bool res = ((*it).pre == LWO::PrePostBehaviour_Oscillate);
                reverse = !reverse;
                if (res && reverse) {
                    std::reverse(m, m + old_size - 1);
                }
            }

            // update time values
            n = (*it).keys.end() - (old_size + 1);
            double cur_minus = delta;
            unsigned int tt = 1;
            for (const double tmp = delta * (num + 1); cur_minus <= tmp; cur_minus += delta, ++tt) {
                m = (delta == tmp ? (*it).keys.begin() : n - (old_size + 1));
                for (; m != n; --n) {
                    (*n).time -= cur_minus;

                    // offset repeat? add delta offset to key value
                    if ((*it).pre == LWO::PrePostBehaviour_OffsetRepeat) {
                        (*n).value += tt * value_delta;
                    }
                }
            }
            break;
        }
        default:
            // silence compiler warning
            break;
        }

        // process post behavior
        switch ((*it).post) {

        case LWO::PrePostBehaviour_OffsetRepeat:
        case LWO::PrePostBehaviour_Repeat:
        case LWO::PrePostBehaviour_Oscillate:

            break;

        default:
            // silence compiler warning
            break;
        }
    }
}

// ------------------------------------------------------------------------------------------------
// Extract bind pose matrix
void AnimResolver::ExtractBindPose(aiMatrix4x4 &out) {
    // If we have no envelopes, return identity
    if (envelopes.empty()) {
        out = aiMatrix4x4();
        return;
    }
    aiVector3D angles, scaling(1.f, 1.f, 1.f), translation;

    if (trans_x) translation.x = trans_x->keys[0].value;
    if (trans_y) translation.y = trans_y->keys[0].value;
    if (trans_z) translation.z = trans_z->keys[0].value;

    if (rotat_x) angles.x = rotat_x->keys[0].value;
    if (rotat_y) angles.y = rotat_y->keys[0].value;
    if (rotat_z) angles.z = rotat_z->keys[0].value;

    if (scale_x) scaling.x = scale_x->keys[0].value;
    if (scale_y) scaling.y = scale_y->keys[0].value;
    if (scale_z) scaling.z = scale_z->keys[0].value;

    // build the final matrix
    aiMatrix4x4 s, rx, ry, rz, t;
    aiMatrix4x4::RotationZ(angles.z, rz);
    aiMatrix4x4::RotationX(angles.y, rx);
    aiMatrix4x4::RotationY(angles.x, ry);
    aiMatrix4x4::Translation(translation, t);
    aiMatrix4x4::Scaling(scaling, s);
    out = t * ry * rx * rz * s;
}

// ------------------------------------------------------------------------------------------------
// Do a single interpolation on a channel
void AnimResolver::DoInterpolation(std::vector<LWO::Key>::const_iterator cur,
        LWO::Envelope *envl, double time, float &fill) {
    if (envl->keys.size() == 1) {
        fill = envl->keys[0].value;
        return;
    }

    // check whether we're at the beginning of the animation track
    if (cur == envl->keys.begin()) {

        // ok ... this depends on pre behaviour now
        // we don't need to handle repeat&offset repeat&oszillate here, see UpdateAnimRangeSetup()
        switch (envl->pre) {
        case LWO::PrePostBehaviour_Linear:
            DoInterpolation2(cur, cur + 1, time, fill);
            return;

        case LWO::PrePostBehaviour_Reset:
            fill = 0.f;
            return;

        default: //case LWO::PrePostBehaviour_Constant:
            fill = (*cur).value;
            return;
        }
    }
    // check whether we're at the end of the animation track
    else if (cur == envl->keys.end() - 1 && time > envl->keys.rbegin()->time) {
        // ok ... this depends on post behaviour now
        switch (envl->post) {
        case LWO::PrePostBehaviour_Linear:
            DoInterpolation2(cur, cur - 1, time, fill);
            return;

        case LWO::PrePostBehaviour_Reset:
            fill = 0.f;
            return;

        default: //case LWO::PrePostBehaviour_Constant:
            fill = (*cur).value;
            return;
        }
    }

    // Otherwise do a simple interpolation
    DoInterpolation2(cur - 1, cur, time, fill);
}

// ------------------------------------------------------------------------------------------------
// Almost the same, except we won't handle pre/post conditions here
void AnimResolver::DoInterpolation2(std::vector<LWO::Key>::const_iterator beg,
        std::vector<LWO::Key>::const_iterator end, double time, float &fill) {
    switch ((*end).inter) {

    case LWO::IT_STEP:
        // no interpolation at all - take the value of the last key
        fill = (*beg).value;
        return;
    default:

        // silence compiler warning
        break;
    }
    // linear interpolation - default
    double duration = (*end).time - (*beg).time;
    if (duration > 0.0) {
        fill = (*beg).value + ((*end).value - (*beg).value) * (float)(((time - (*beg).time) / duration));
    } else {
        fill = (*beg).value;
    }
}

// ------------------------------------------------------------------------------------------------
// Subsample animation track by given key values
void AnimResolver::SubsampleAnimTrack(std::vector<aiVectorKey> & /*out*/,
        double /*time*/, double /*sample_delta*/) {
    //ai_assert(out.empty() && sample_delta);

    //const double time_start = out.back().mTime;
    //  for ()
}

// ------------------------------------------------------------------------------------------------
// Track interpolation
void AnimResolver::InterpolateTrack(std::vector<aiVectorKey> &out, aiVectorKey &fill, double time) {
    // subsample animation track?
    if (flags & AI_LWO_ANIM_FLAG_SAMPLE_ANIMS) {
        SubsampleAnimTrack(out, time, sample_delta);
    }

    fill.mTime = time;

    // get x
    if ((*cur_x).time == time) {
        fill.mValue.x = (*cur_x).value;

        if (cur_x != envl_x->keys.end() - 1) /* increment x */
            ++cur_x;
        else
            end_x = true;
    } else
        DoInterpolation(cur_x, envl_x, time, (float &)fill.mValue.x);

    // get y
    if ((*cur_y).time == time) {
        fill.mValue.y = (*cur_y).value;

        if (cur_y != envl_y->keys.end() - 1) /* increment y */
            ++cur_y;
        else
            end_y = true;
    } else
        DoInterpolation(cur_y, envl_y, time, (float &)fill.mValue.y);

    // get z
    if ((*cur_z).time == time) {
        fill.mValue.z = (*cur_z).value;

        if (cur_z != envl_z->keys.end() - 1) /* increment z */
            ++cur_z;
        else
            end_x = true;
    } else
        DoInterpolation(cur_z, envl_z, time, (float &)fill.mValue.z);
}

// ------------------------------------------------------------------------------------------------
// Build linearly subsampled keys from three single envelopes, one for each component (x,y,z)
void AnimResolver::GetKeys(std::vector<aiVectorKey> &out,
        LWO::Envelope *_envl_x,
        LWO::Envelope *_envl_y,
        LWO::Envelope *_envl_z,
        unsigned int _flags) {
    envl_x = _envl_x;
    envl_y = _envl_y;
    envl_z = _envl_z;
    flags = _flags;

    // generate default channels if none are given
    LWO::Envelope def_x, def_y, def_z;
    LWO::Key key_dummy;
    key_dummy.time = 0.f;
    if ((envl_x && envl_x->type == LWO::EnvelopeType_Scaling_X) ||
            (envl_y && envl_y->type == LWO::EnvelopeType_Scaling_Y) ||
            (envl_z && envl_z->type == LWO::EnvelopeType_Scaling_Z)) {
        key_dummy.value = 1.f;
    } else
        key_dummy.value = 0.f;

    if (!envl_x) {
        envl_x = &def_x;
        envl_x->keys.push_back(key_dummy);
    }
    if (!envl_y) {
        envl_y = &def_y;
        envl_y->keys.push_back(key_dummy);
    }
    if (!envl_z) {
        envl_z = &def_z;
        envl_z->keys.push_back(key_dummy);
    }

    // guess how many keys we'll get
    size_t reserve;
    double sr = 1.;
    if (flags & AI_LWO_ANIM_FLAG_SAMPLE_ANIMS) {
        if (!sample_rate)
            sr = 100.f;
        else
            sr = sample_rate;
        sample_delta = 1.f / sr;

        reserve = (size_t)(
                std::max(envl_x->keys.rbegin()->time,
                        std::max(envl_y->keys.rbegin()->time, envl_z->keys.rbegin()->time)) *
                sr);
    } else
        reserve = std::max(envl_x->keys.size(), std::max(envl_x->keys.size(), envl_z->keys.size()));
    out.reserve(reserve + (reserve >> 1));

    // Iterate through all three arrays at once - it's tricky, but
    // rather interesting to implement.
    cur_x = envl_x->keys.begin();
    cur_y = envl_y->keys.begin();
    cur_z = envl_z->keys.begin();

    end_x = end_y = end_z = false;
    while (1) {

        aiVectorKey fill;

        if ((*cur_x).time == (*cur_y).time && (*cur_x).time == (*cur_z).time) {

            // we have a keyframe for all of them defined .. this means
            // we don't need to interpolate here.
            fill.mTime = (*cur_x).time;

            fill.mValue.x = (*cur_x).value;
            fill.mValue.y = (*cur_y).value;
            fill.mValue.z = (*cur_z).value;

            // subsample animation track
            if (flags & AI_LWO_ANIM_FLAG_SAMPLE_ANIMS) {
                //SubsampleAnimTrack(out,cur_x, cur_y, cur_z, d, sample_delta);
            }
        }

        // Find key with lowest time value
        else if ((*cur_x).time <= (*cur_y).time && !end_x) {

            if ((*cur_z).time <= (*cur_x).time && !end_z) {
                InterpolateTrack(out, fill, (*cur_z).time);
            } else {
                InterpolateTrack(out, fill, (*cur_x).time);
            }
        } else if ((*cur_z).time <= (*cur_y).time && !end_y) {
            InterpolateTrack(out, fill, (*cur_y).time);
        } else if (!end_y) {
            // welcome on the server, y
            InterpolateTrack(out, fill, (*cur_y).time);
        } else {
            // we have reached the end of at least 2 channels,
            // only one is remaining. Extrapolate the 2.
            if (end_y) {
                InterpolateTrack(out, fill, (end_x ? (*cur_z) : (*cur_x)).time);
            } else if (end_x) {
                InterpolateTrack(out, fill, (end_z ? (*cur_y) : (*cur_z)).time);
            } else { // if (end_z)
                InterpolateTrack(out, fill, (end_y ? (*cur_x) : (*cur_y)).time);
            }
        }
        double lasttime = fill.mTime;
        out.push_back(fill);

        if (lasttime >= (*cur_x).time) {
            if (cur_x != envl_x->keys.end() - 1)
                ++cur_x;
            else
                end_x = true;
        }
        if (lasttime >= (*cur_y).time) {
            if (cur_y != envl_y->keys.end() - 1)
                ++cur_y;
            else
                end_y = true;
        }
        if (lasttime >= (*cur_z).time) {
            if (cur_z != envl_z->keys.end() - 1)
                ++cur_z;
            else
                end_z = true;
        }

        if (end_x && end_y && end_z) /* finished? */
            break;
    }

    if (flags & AI_LWO_ANIM_FLAG_START_AT_ZERO) {
        for (std::vector<aiVectorKey>::iterator it = out.begin(); it != out.end(); ++it)
            (*it).mTime -= first;
    }
}

// ------------------------------------------------------------------------------------------------
// Extract animation channel
void AnimResolver::ExtractAnimChannel(aiNodeAnim **out, unsigned int /*= 0*/) {
    *out = nullptr;

    //FIXME: crashes if more than one component is animated at different timings, to be resolved.

    // If we have no envelopes, return nullptr
    if (envelopes.empty()) {
        return;
    }

    // We won't spawn an animation channel if we don't have at least one envelope with more than one keyframe defined.
    const bool trans = ((trans_x && trans_x->keys.size() > 1) || (trans_y && trans_y->keys.size() > 1) || (trans_z && trans_z->keys.size() > 1));
    const bool rotat = ((rotat_x && rotat_x->keys.size() > 1) || (rotat_y && rotat_y->keys.size() > 1) || (rotat_z && rotat_z->keys.size() > 1));
    const bool scale = ((scale_x && scale_x->keys.size() > 1) || (scale_y && scale_y->keys.size() > 1) || (scale_z && scale_z->keys.size() > 1));
    if (!trans && !rotat && !scale)
        return;

    // Allocate the output animation
    aiNodeAnim *anim = *out = new aiNodeAnim();

    // Setup default animation setup if necessary
    if (need_to_setup) {
        UpdateAnimRangeSetup();
        need_to_setup = false;
    }

    // copy translation keys
    if (trans) {
        std::vector<aiVectorKey> keys;
        GetKeys(keys, trans_x, trans_y, trans_z, flags);

        anim->mPositionKeys = new aiVectorKey[anim->mNumPositionKeys = static_cast<unsigned int>(keys.size())];
        std::copy(keys.begin(), keys.end(), anim->mPositionKeys);
    }

    // copy rotation keys
    if (rotat) {
        std::vector<aiVectorKey> keys;
        GetKeys(keys, rotat_x, rotat_y, rotat_z, flags);

        anim->mRotationKeys = new aiQuatKey[anim->mNumRotationKeys = static_cast<unsigned int>(keys.size())];

        // convert heading, pitch, bank to quaternion
        // mValue.x=Heading=Rot(Y), mValue.y=Pitch=Rot(X), mValue.z=Bank=Rot(Z)
        // Lightwave's rotation order is ZXY
        aiVector3D X(1.0, 0.0, 0.0);
        aiVector3D Y(0.0, 1.0, 0.0);
        aiVector3D Z(0.0, 0.0, 1.0);
        for (unsigned int i = 0; i < anim->mNumRotationKeys; ++i) {
            aiQuatKey &qk = anim->mRotationKeys[i];
            qk.mTime = keys[i].mTime;
            qk.mValue = aiQuaternion(Y, keys[i].mValue.x) * aiQuaternion(X, keys[i].mValue.y) * aiQuaternion(Z, keys[i].mValue.z);
        }
    }

    // copy scaling keys
    if (scale) {
        std::vector<aiVectorKey> keys;
        GetKeys(keys, scale_x, scale_y, scale_z, flags);

        anim->mScalingKeys = new aiVectorKey[anim->mNumScalingKeys = static_cast<unsigned int>(keys.size())];
        std::copy(keys.begin(), keys.end(), anim->mScalingKeys);
    }
}

#endif // no lwo or no lws