summaryrefslogtreecommitdiff
path: root/src/mesh/assimp-master/code/AssetLib/MDL/HalfLife/HL1MDLLoader.cpp
blob: 93d37536cfa03da636cd80f3775c1f4a8bafaf9c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
/*
---------------------------------------------------------------------------
Open Asset Import Library (assimp)
---------------------------------------------------------------------------

Copyright (c) 2006-2022, assimp team

All rights reserved.

Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the following
conditions are met:

* Redistributions of source code must retain the above
  copyright notice, this list of conditions and the
  following disclaimer.

* Redistributions in binary form must reproduce the above
  copyright notice, this list of conditions and the
  following disclaimer in the documentation and/or other
  materials provided with the distribution.

* Neither the name of the assimp team, nor the names of its
  contributors may be used to endorse or promote products
  derived from this software without specific prior
  written permission of the assimp team.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------
*/

/** @file HL1MDLLoader.cpp
 *  @brief Implementation for the Half-Life 1 MDL loader.
 */

#include "HL1MDLLoader.h"
#include "HL1ImportDefinitions.h"
#include "HL1MeshTrivert.h"
#include "UniqueNameGenerator.h"

#include <assimp/BaseImporter.h>
#include <assimp/StringUtils.h>
#include <assimp/ai_assert.h>
#include <assimp/qnan.h>
#include <assimp/DefaultLogger.hpp>
#include <assimp/Importer.hpp>

#include <iomanip>
#include <sstream>
#include <map>

#ifdef MDL_HALFLIFE_LOG_WARN_HEADER
#undef MDL_HALFLIFE_LOG_WARN_HEADER
#endif
#define MDL_HALFLIFE_LOG_HEADER "[Half-Life 1 MDL] "
#include "LogFunctions.h"

namespace Assimp {
namespace MDL {
namespace HalfLife {

#ifdef _MSC_VER
#    pragma warning(disable : 4706)
#endif // _MSC_VER

// ------------------------------------------------------------------------------------------------
HL1MDLLoader::HL1MDLLoader(
    aiScene *scene,
    IOSystem *io,
    const unsigned char *buffer,
    const std::string &file_path,
    const HL1ImportSettings &import_settings) :
    scene_(scene),
    io_(io),
    buffer_(buffer),
    file_path_(file_path),
    import_settings_(import_settings),
    header_(nullptr),
    texture_header_(nullptr),
    anim_headers_(nullptr),
    texture_buffer_(nullptr),
    anim_buffers_(nullptr),
    num_sequence_groups_(0),
    rootnode_children_(),
    unique_name_generator_(),
    unique_sequence_names_(),
    unique_sequence_groups_names_(),
    temp_bones_(),
    num_blend_controllers_(0),
    total_models_(0) {
    load_file();
}

// ------------------------------------------------------------------------------------------------
HL1MDLLoader::~HL1MDLLoader() {
    release_resources();
}

// ------------------------------------------------------------------------------------------------
void HL1MDLLoader::release_resources() {
    if (buffer_ != texture_buffer_) {
        delete[] texture_buffer_;
        texture_buffer_ = nullptr;
    }

    if (num_sequence_groups_ && anim_buffers_) {
        for (int i = 1; i < num_sequence_groups_; ++i) {
            if (anim_buffers_[i]) {
                delete[] anim_buffers_[i];
                anim_buffers_[i] = nullptr;
            }
        }

        delete[] anim_buffers_;
        anim_buffers_ = nullptr;
    }

    if (anim_headers_) {
        delete[] anim_headers_;
        anim_headers_ = nullptr;
    }

    // Root has some children nodes. so let's proceed them
    if (!rootnode_children_.empty()) {
        // Here, it means that the nodes were not added to the
        // scene root node. We still have to delete them.
        for (auto it = rootnode_children_.begin(); it != rootnode_children_.end(); ++it) {
            if (*it) {
                delete *it;
            }
        }
        // Ensure this happens only once.
        rootnode_children_.clear();
    }
}

// ------------------------------------------------------------------------------------------------
void HL1MDLLoader::load_file() {
    try {
        header_ = (const Header_HL1 *)buffer_;
        validate_header(header_, false);

        // Create the root scene node.
        scene_->mRootNode = new aiNode(AI_MDL_HL1_NODE_ROOT);

        load_texture_file();

        if (import_settings_.read_animations) {
            load_sequence_groups_files();
        }

        read_textures();
        read_skins();

        read_bones();
        read_meshes();

        if (import_settings_.read_animations) {
            read_sequence_groups_info();
            read_animations();
            read_sequence_infos();
            if (import_settings_.read_sequence_transitions)
                read_sequence_transitions();
        }

        if (import_settings_.read_attachments) {
            read_attachments();
        }

        if (import_settings_.read_hitboxes) {
            read_hitboxes();
        }

        if (import_settings_.read_bone_controllers) {
            read_bone_controllers();
        }

        read_global_info();

        if (!header_->numbodyparts) {
            // This could be an MDL external texture file. In this case,
            // add this flag to allow the scene to be loaded even if it
            // has no meshes.
            scene_->mFlags |= AI_SCENE_FLAGS_INCOMPLETE;
        }

        // Append children to root node.
        if (rootnode_children_.size()) {
            scene_->mRootNode->addChildren(
                    static_cast<unsigned int>(rootnode_children_.size()),
                    rootnode_children_.data());

            // Clear the list of nodes so they will not be destroyed
            // when resources are released.
            rootnode_children_.clear();
        }

        release_resources();

    } catch (...) {
        release_resources();
        throw;
    }
}

// ------------------------------------------------------------------------------------------------
void HL1MDLLoader::validate_header(const Header_HL1 *header, bool is_texture_header) {
    if (is_texture_header) {
        // Every single Half-Life model is assumed to have at least one texture.
        if (!header->numtextures) {
            throw DeadlyImportError(MDL_HALFLIFE_LOG_HEADER "There are no textures in the file");
        }

        if (header->numtextures > AI_MDL_HL1_MAX_TEXTURES) {
            log_warning_limit_exceeded<AI_MDL_HL1_MAX_TEXTURES>(header->numtextures, "textures");
        }

        if (header->numskinfamilies > AI_MDL_HL1_MAX_SKIN_FAMILIES) {
            log_warning_limit_exceeded<AI_MDL_HL1_MAX_SKIN_FAMILIES>(header->numskinfamilies, "skin families");
        }

    } else {

        if (header->numbodyparts > AI_MDL_HL1_MAX_BODYPARTS) {
            log_warning_limit_exceeded<AI_MDL_HL1_MAX_BODYPARTS>(header->numbodyparts, "bodyparts");
        }

        if (header->numbones > AI_MDL_HL1_MAX_BONES) {
            log_warning_limit_exceeded<AI_MDL_HL1_MAX_BONES>(header->numbones, "bones");
        }

        if (header->numbonecontrollers > AI_MDL_HL1_MAX_BONE_CONTROLLERS) {
            log_warning_limit_exceeded<AI_MDL_HL1_MAX_BONE_CONTROLLERS>(header->numbonecontrollers, "bone controllers");
        }

        if (header->numseq > AI_MDL_HL1_MAX_SEQUENCES) {
            log_warning_limit_exceeded<AI_MDL_HL1_MAX_SEQUENCES>(header->numseq, "sequences");
        }

        if (header->numseqgroups > AI_MDL_HL1_MAX_SEQUENCE_GROUPS) {
            log_warning_limit_exceeded<AI_MDL_HL1_MAX_SEQUENCE_GROUPS>(header->numseqgroups, "sequence groups");
        }

        if (header->numattachments > AI_MDL_HL1_MAX_ATTACHMENTS) {
            log_warning_limit_exceeded<AI_MDL_HL1_MAX_ATTACHMENTS>(header->numattachments, "attachments");
        }
    }
}

// ------------------------------------------------------------------------------------------------
/*
    Load textures.

    There are two ways for textures to be stored in a Half-Life model:

    1. Directly in the MDL file (filePath) or
    2. In an external MDL file.

    Due to the way StudioMDL works (tool used to compile SMDs into MDLs),
    it is assumed that an external texture file follows the naming
    convention: <YourModelName>T.mdl. Note the extra (T) at the end of the
    model name.

    .e.g For a given model named MyModel.mdl

    The external texture file name would be MyModelT.mdl
*/
void HL1MDLLoader::load_texture_file() {
    if (header_->numtextures == 0) {
        // Load an external MDL texture file.
        std::string texture_file_path =
                DefaultIOSystem::absolutePath(file_path_) + io_->getOsSeparator() +
                DefaultIOSystem::completeBaseName(file_path_) + "T." +
                BaseImporter::GetExtension(file_path_);

        load_file_into_buffer<Header_HL1>(texture_file_path, texture_buffer_);
    } else {
        // Model has no external texture file. This means the texture is stored inside the main MDL file.
        texture_buffer_ = const_cast<unsigned char *>(buffer_);
    }

    texture_header_ = (const Header_HL1 *)texture_buffer_;

    // Validate texture header.
    validate_header(texture_header_, true);
}

// ------------------------------------------------------------------------------------------------
/*
    Load sequence group files if any.

    Due to the way StudioMDL works (tool used to compile SMDs into MDLs),
    it is assumed that a sequence group file follows the naming
    convention: <YourModelName>0X.mdl. Note the extra (0X) at the end of
    the model name, where (X) is the sequence group.

    .e.g For a given model named MyModel.mdl

    Sequence group 1 => MyModel01.mdl
    Sequence group 2 => MyModel02.mdl
    Sequence group X => MyModel0X.mdl

*/
void HL1MDLLoader::load_sequence_groups_files() {
    if (header_->numseqgroups <= 1) {
        return;
    }

    num_sequence_groups_ = header_->numseqgroups;

    anim_buffers_ = new unsigned char *[num_sequence_groups_];
    anim_headers_ = new SequenceHeader_HL1 *[num_sequence_groups_];
    for (int i = 0; i < num_sequence_groups_; ++i) {
        anim_buffers_[i] = nullptr;
        anim_headers_[i] = nullptr;
    }

    std::string file_path_without_extension =
            DefaultIOSystem::absolutePath(file_path_) +
            io_->getOsSeparator() +
            DefaultIOSystem::completeBaseName(file_path_);

    for (int i = 1; i < num_sequence_groups_; ++i) {
        std::stringstream ss;
        ss << file_path_without_extension;
        ss << std::setw(2) << std::setfill('0') << i;
        ss << '.' << BaseImporter::GetExtension(file_path_);

        std::string sequence_file_path = ss.str();

        load_file_into_buffer<SequenceHeader_HL1>(sequence_file_path, anim_buffers_[i]);

        anim_headers_[i] = (SequenceHeader_HL1 *)anim_buffers_[i];
    }
}

// ------------------------------------------------------------------------------------------------
// Read an MDL texture.
void HL1MDLLoader::read_texture(const Texture_HL1 *ptexture,
        uint8_t *data, uint8_t *pal, aiTexture *pResult,
        aiColor3D &last_palette_color) {
    pResult->mFilename = ptexture->name;
    pResult->mWidth = static_cast<unsigned int>(ptexture->width);
    pResult->mHeight = static_cast<unsigned int>(ptexture->height);
    pResult->achFormatHint[0] = 'r';
    pResult->achFormatHint[1] = 'g';
    pResult->achFormatHint[2] = 'b';
    pResult->achFormatHint[3] = 'a';
    pResult->achFormatHint[4] = '8';
    pResult->achFormatHint[5] = '8';
    pResult->achFormatHint[6] = '8';
    pResult->achFormatHint[7] = '8';
    pResult->achFormatHint[8] = '\0';

    const size_t num_pixels = pResult->mWidth * pResult->mHeight;
    aiTexel *out = pResult->pcData = new aiTexel[num_pixels];

    // Convert indexed 8 bit to 32 bit RGBA.
    for (size_t i = 0; i < num_pixels; ++i, ++out) {
        out->r = pal[data[i] * 3];
        out->g = pal[data[i] * 3 + 1];
        out->b = pal[data[i] * 3 + 2];
        out->a = 255;
    }

    // Get the last palette color.
    last_palette_color.r = pal[255 * 3];
    last_palette_color.g = pal[255 * 3 + 1];
    last_palette_color.b = pal[255 * 3 + 2];
}

// ------------------------------------------------------------------------------------------------
void HL1MDLLoader::read_textures() {
    const Texture_HL1 *ptexture = (const Texture_HL1 *)((uint8_t *)texture_header_ + texture_header_->textureindex);
    unsigned char *pin = texture_buffer_;

    scene_->mNumTextures = scene_->mNumMaterials = texture_header_->numtextures;
    scene_->mTextures = new aiTexture *[scene_->mNumTextures];
    scene_->mMaterials = new aiMaterial *[scene_->mNumMaterials];

    for (int i = 0; i < texture_header_->numtextures; ++i) {
        scene_->mTextures[i] = new aiTexture();

        aiColor3D last_palette_color;
        read_texture(&ptexture[i],
                pin + ptexture[i].index,
                pin + ptexture[i].width * ptexture[i].height + ptexture[i].index,
                scene_->mTextures[i],
                last_palette_color);

        aiMaterial *scene_material = scene_->mMaterials[i] = new aiMaterial();

        const aiTextureType texture_type = aiTextureType_DIFFUSE;
        aiString texture_name(ptexture[i].name);
        scene_material->AddProperty(&texture_name, AI_MATKEY_TEXTURE(texture_type, 0));

        // Is this a chrome texture?
        int chrome = ptexture[i].flags & AI_MDL_HL1_STUDIO_NF_CHROME ? 1 : 0;
        scene_material->AddProperty(&chrome, 1, AI_MDL_HL1_MATKEY_CHROME(texture_type, 0));

        if (ptexture[i].flags & AI_MDL_HL1_STUDIO_NF_FLATSHADE) {
            // Flat shading.
            const aiShadingMode shading_mode = aiShadingMode_Flat;
            scene_material->AddProperty(&shading_mode, 1, AI_MATKEY_SHADING_MODEL);
        }

        if (ptexture[i].flags & AI_MDL_HL1_STUDIO_NF_ADDITIVE) {
            // Additive texture.
            const aiBlendMode blend_mode = aiBlendMode_Additive;
            scene_material->AddProperty(&blend_mode, 1, AI_MATKEY_BLEND_FUNC);
        } else if (ptexture[i].flags & AI_MDL_HL1_STUDIO_NF_MASKED) {
            // Texture with 1 bit alpha test.
            const aiTextureFlags use_alpha = aiTextureFlags_UseAlpha;
            scene_material->AddProperty(&use_alpha, 1, AI_MATKEY_TEXFLAGS(texture_type, 0));
            scene_material->AddProperty(&last_palette_color, 1, AI_MATKEY_COLOR_TRANSPARENT);
        }
    }
}

// ------------------------------------------------------------------------------------------------
void HL1MDLLoader::read_skins() {
    // Read skins, if any.
    if (texture_header_->numskinfamilies <= 1) {
        return;
    }

    // Pointer to base texture index.
    short *default_skin_ptr = (short *)((uint8_t *)texture_header_ + texture_header_->skinindex);

    // Start at first replacement skin.
    short *replacement_skin_ptr = default_skin_ptr + texture_header_->numskinref;

    for (int i = 1; i < texture_header_->numskinfamilies; ++i, replacement_skin_ptr += texture_header_->numskinref) {
        for (int j = 0; j < texture_header_->numskinref; ++j) {
            if (default_skin_ptr[j] != replacement_skin_ptr[j]) {
                // Save replacement textures.
                aiString skinMaterialId(scene_->mTextures[replacement_skin_ptr[j]]->mFilename);
                scene_->mMaterials[default_skin_ptr[j]]->AddProperty(&skinMaterialId, AI_MATKEY_TEXTURE_DIFFUSE(i));
            }
        }
    }
}

// ------------------------------------------------------------------------------------------------
void HL1MDLLoader::read_bones() {
    if (!header_->numbones) {
        return;
    }

    const Bone_HL1 *pbone = (const Bone_HL1 *)((uint8_t *)header_ + header_->boneindex);

    std::vector<std::string> unique_bones_names(header_->numbones);
    for (int i = 0; i < header_->numbones; ++i) {
        unique_bones_names[i] = pbone[i].name;
    }

    // Ensure bones have unique names.
    unique_name_generator_.set_template_name("Bone");
    unique_name_generator_.make_unique(unique_bones_names);

    temp_bones_.resize(header_->numbones);

    aiNode *bones_node = new aiNode(AI_MDL_HL1_NODE_BONES);
    rootnode_children_.push_back(bones_node);
    bones_node->mNumChildren = static_cast<unsigned int>(header_->numbones);
    bones_node->mChildren = new aiNode *[bones_node->mNumChildren];

    // Create bone matrices in local space.
    for (int i = 0; i < header_->numbones; ++i) {
        aiNode *bone_node = temp_bones_[i].node = bones_node->mChildren[i] = new aiNode(unique_bones_names[i]);

        aiVector3D angles(pbone[i].value[3], pbone[i].value[4], pbone[i].value[5]);
        temp_bones_[i].absolute_transform = bone_node->mTransformation =
                aiMatrix4x4(aiVector3D(1), aiQuaternion(angles.y, angles.z, angles.x),
                        aiVector3D(pbone[i].value[0], pbone[i].value[1], pbone[i].value[2]));

        if (pbone[i].parent == -1) {
            bone_node->mParent = scene_->mRootNode;
        } else {
            bone_node->mParent = bones_node->mChildren[pbone[i].parent];

            temp_bones_[i].absolute_transform =
                    temp_bones_[pbone[i].parent].absolute_transform * bone_node->mTransformation;
        }

        temp_bones_[i].offset_matrix = temp_bones_[i].absolute_transform;
        temp_bones_[i].offset_matrix.Inverse();
    }
}

// ------------------------------------------------------------------------------------------------
/*
    Read meshes.

    Half-Life MDLs are structured such that each MDL
    contains one or more 'bodypart(s)', which contain one
    or more 'model(s)', which contains one or more mesh(es).

    * Bodyparts are used to group models that may be replaced
    in the game .e.g a character could have a 'heads' group,
    'torso' group, 'shoes' group, with each group containing
    different 'model(s)'.

    * Models, also called 'sub models', contain vertices as
    well as a reference to each mesh used by the sub model.

    * Meshes contain a list of tris, also known as 'triverts'.
    Each tris contains the following information:

        1. The index of the position to use for the vertex.
        2. The index of the normal to use for the vertex.
        3. The S coordinate to use for the vertex UV.
        4. The T coordinate ^

    These tris represent the way to represent the triangles
    for each mesh. Depending on how the tool compiled the MDL,
    those triangles were saved as strips and or fans.

    NOTE: Each tris is NOT unique. This means that you
    might encounter the same vertex index but with a different
    normal index, S coordinate, T coordinate.

    In addition, each mesh contains the texture's index.

    ------------------------------------------------------
    With the details above, there are several things to
    take into consideration.

    * The Half-Life models store the vertices by sub model
    rather than by mesh. Due to Assimp's structure, it
    is necessary to remap each model vertex to be used
    per mesh. Unfortunately, this has the consequence
    to duplicate vertices.

    * Because the mesh triangles are comprised of strips and
    fans, it is necessary to convert each primitive to
    triangles, respectively (3 indices per face).
*/
void HL1MDLLoader::read_meshes() {
    if (!header_->numbodyparts) {
        return;
    }

    int total_verts = 0;
    int total_triangles = 0;
    total_models_ = 0;

    const Bodypart_HL1 *pbodypart = (const Bodypart_HL1 *)((uint8_t *)header_ + header_->bodypartindex);
    const Model_HL1 *pmodel = nullptr;
    const Mesh_HL1 *pmesh = nullptr;

    const Texture_HL1 *ptexture = (const Texture_HL1 *)((uint8_t *)texture_header_ + texture_header_->textureindex);
    short *pskinref = (short *)((uint8_t *)texture_header_ + texture_header_->skinindex);

    scene_->mNumMeshes = 0;

    std::vector<std::string> unique_bodyparts_names;
    unique_bodyparts_names.resize(header_->numbodyparts);

    // Count the number of meshes.

    for (int i = 0; i < header_->numbodyparts; ++i, ++pbodypart) {
        unique_bodyparts_names[i] = pbodypart->name;

        pmodel = (Model_HL1 *)((uint8_t *)header_ + pbodypart->modelindex);
        for (int j = 0; j < pbodypart->nummodels; ++j, ++pmodel) {
            scene_->mNumMeshes += pmodel->nummesh;
            total_verts += pmodel->numverts;
        }

        total_models_ += pbodypart->nummodels;
    }

    // Display limit infos.
    if (total_verts > AI_MDL_HL1_MAX_VERTICES) {
        log_warning_limit_exceeded<AI_MDL_HL1_MAX_VERTICES>(total_verts, "vertices");
    }

    if (scene_->mNumMeshes > AI_MDL_HL1_MAX_MESHES) {
        log_warning_limit_exceeded<AI_MDL_HL1_MAX_MESHES>(scene_->mNumMeshes, "meshes");
    }

    if (total_models_ > AI_MDL_HL1_MAX_MODELS) {
        log_warning_limit_exceeded<AI_MDL_HL1_MAX_MODELS>(total_models_, "models");
    }

    // Ensure bodyparts have unique names.
    unique_name_generator_.set_template_name("Bodypart");
    unique_name_generator_.make_unique(unique_bodyparts_names);

    // Now do the same for each model.
    pbodypart = (const Bodypart_HL1 *)((uint8_t *)header_ + header_->bodypartindex);

    // Prepare template name for bodypart models.
    std::vector<std::string> unique_models_names;
    unique_models_names.resize(total_models_);

    unsigned int model_index = 0;

    for (int i = 0; i < header_->numbodyparts; ++i, ++pbodypart) {
        pmodel = (Model_HL1 *)((uint8_t *)header_ + pbodypart->modelindex);
        for (int j = 0; j < pbodypart->nummodels; ++j, ++pmodel, ++model_index)
            unique_models_names[model_index] = pmodel->name;
    }

    unique_name_generator_.set_template_name("Model");
    unique_name_generator_.make_unique(unique_models_names);

    unsigned int mesh_index = 0;

    scene_->mMeshes = new aiMesh *[scene_->mNumMeshes];

    pbodypart = (const Bodypart_HL1 *)((uint8_t *)header_ + header_->bodypartindex);

    /* Create a node that will represent the mesh hierarchy.

        <MDL_bodyparts>
            |
            +-- bodypart --+-- model -- [mesh index, mesh index, ...]
            |              |
            |              +-- model -- [mesh index, mesh index, ...]
            |              |
            |              ...
            |
            |-- bodypart -- ...
            |
            ...
     */
    aiNode *bodyparts_node = new aiNode(AI_MDL_HL1_NODE_BODYPARTS);
    rootnode_children_.push_back(bodyparts_node);
    bodyparts_node->mNumChildren = static_cast<unsigned int>(header_->numbodyparts);
    bodyparts_node->mChildren = new aiNode *[bodyparts_node->mNumChildren];
    aiNode **bodyparts_node_ptr = bodyparts_node->mChildren;

    // The following variables are defined here so they don't have
    // to be recreated every iteration.

    // Model_HL1 vertices, in bind pose space.
    std::vector<aiVector3D> bind_pose_vertices;

    // Model_HL1 normals, in bind pose space.
    std::vector<aiVector3D> bind_pose_normals;

    // Used to contain temporary information for building a mesh.
    std::vector<HL1MeshTrivert> triverts;

    std::vector<short> tricmds;

    // Which triverts to use for the mesh.
    std::vector<short> mesh_triverts_indices;

    std::vector<HL1MeshFace> mesh_faces;

    /* triverts that have the same vertindex, but have different normindex,s,t values.
       Similar triverts are mapped from vertindex to a list of similar triverts. */
    std::map<short, std::set<short>> triverts_similars;

    // triverts per bone.
    std::map<int, std::set<short>> bone_triverts;

    /** This function adds a trivert index to the list of triverts per bone.
     * \param[in] bone The bone that affects the trivert at index \p trivert_index.
     * \param[in] trivert_index The trivert index.
     */
    auto AddTrivertToBone = [&](int bone, short trivert_index) {
        if (bone_triverts.count(bone) == 0)
            bone_triverts.insert({ bone, std::set<short>{ trivert_index }});
        else
            bone_triverts[bone].insert(trivert_index);
    };

    /** This function creates and appends a new trivert to the list of triverts.
     * \param[in] trivert The trivert to use as a prototype.
     * \param[in] bone The bone that affects \p trivert.
     */
    auto AddSimilarTrivert = [&](const Trivert &trivert, const int bone) {
        HL1MeshTrivert new_trivert(trivert);
        new_trivert.localindex = static_cast<short>(mesh_triverts_indices.size());

        short new_trivert_index = static_cast<short>(triverts.size());

        if (triverts_similars.count(trivert.vertindex) == 0)
            triverts_similars.insert({ trivert.vertindex, std::set<short>{ new_trivert_index }});
        else
            triverts_similars[trivert.vertindex].insert(new_trivert_index);

        triverts.push_back(new_trivert);

        mesh_triverts_indices.push_back(new_trivert_index);
        tricmds.push_back(new_trivert.localindex);
        AddTrivertToBone(bone, new_trivert.localindex);
    };

    model_index = 0;

    for (int i = 0; i < header_->numbodyparts; ++i, ++pbodypart, ++bodyparts_node_ptr) {
        pmodel = (const Model_HL1 *)((uint8_t *)header_ + pbodypart->modelindex);

        // Create bodypart node for the mesh tree hierarchy.
        aiNode *bodypart_node = (*bodyparts_node_ptr) = new aiNode(unique_bodyparts_names[i]);
        bodypart_node->mParent = bodyparts_node;
        bodypart_node->mMetaData = aiMetadata::Alloc(1);
        bodypart_node->mMetaData->Set(0, "Base", pbodypart->base);

        bodypart_node->mNumChildren = static_cast<unsigned int>(pbodypart->nummodels);
        bodypart_node->mChildren = new aiNode *[bodypart_node->mNumChildren];
        aiNode **bodypart_models_ptr = bodypart_node->mChildren;

        for (int j = 0; j < pbodypart->nummodels;
                ++j, ++pmodel, ++bodypart_models_ptr, ++model_index) {

            pmesh = (const Mesh_HL1 *)((uint8_t *)header_ + pmodel->meshindex);

            uint8_t *pvertbone = ((uint8_t *)header_ + pmodel->vertinfoindex);
            uint8_t *pnormbone = ((uint8_t *)header_ + pmodel->norminfoindex);
            vec3_t *pstudioverts = (vec3_t *)((uint8_t *)header_ + pmodel->vertindex);
            vec3_t *pstudionorms = (vec3_t *)((uint8_t *)header_ + pmodel->normindex);

            // Each vertex and normal is in local space, so transform
            // each of them to bring them in bind pose.
            bind_pose_vertices.resize(pmodel->numverts);
            bind_pose_normals.resize(pmodel->numnorms);
            for (size_t k = 0; k < bind_pose_vertices.size(); ++k) {
                const vec3_t &vert = pstudioverts[k];
                bind_pose_vertices[k] = temp_bones_[pvertbone[k]].absolute_transform * aiVector3D(vert[0], vert[1], vert[2]);
            }
            for (size_t k = 0; k < bind_pose_normals.size(); ++k) {
                const vec3_t &norm = pstudionorms[k];
                // Compute the normal matrix to transform the normal into bind pose,
                // without affecting its length.
                const aiMatrix4x4 normal_matrix = aiMatrix4x4(temp_bones_[pnormbone[k]].absolute_transform).Inverse().Transpose();
                bind_pose_normals[k] = normal_matrix * aiVector3D(norm[0], norm[1], norm[2]);
            }

            // Create model node for the mesh tree hierarchy.
            aiNode *model_node = (*bodypart_models_ptr) = new aiNode(unique_models_names[model_index]);
            model_node->mParent = bodypart_node;
            model_node->mNumMeshes = static_cast<unsigned int>(pmodel->nummesh);
            model_node->mMeshes = new unsigned int[model_node->mNumMeshes];
            unsigned int *model_meshes_ptr = model_node->mMeshes;

            for (int k = 0; k < pmodel->nummesh; ++k, ++pmesh, ++mesh_index, ++model_meshes_ptr) {
                *model_meshes_ptr = mesh_index;

                // Read triverts.
                short *ptricmds = (short *)((uint8_t *)header_ + pmesh->triindex);
                float texcoords_s_scale = 1.0f / (float)ptexture[pskinref[pmesh->skinref]].width;
                float texcoords_t_scale = 1.0f / (float)ptexture[pskinref[pmesh->skinref]].height;

                // Reset the data for the upcoming mesh.
                triverts.clear();
                triverts.resize(pmodel->numverts);
                mesh_triverts_indices.clear();
                mesh_faces.clear();
                triverts_similars.clear();
                bone_triverts.clear();

                int l;
                while ((l = *(ptricmds++))) {
                    bool is_triangle_fan = false;

                    if (l < 0) {
                        l = -l;
                        is_triangle_fan = true;
                    }

                    // Clear the list of tris for the upcoming tris.
                    tricmds.clear();

                    for (; l > 0; l--, ptricmds += 4) {
                        const Trivert *input_trivert = reinterpret_cast<const Trivert *>(ptricmds);
                        const int bone = pvertbone[input_trivert->vertindex];

                        HL1MeshTrivert *private_trivert = &triverts[input_trivert->vertindex];
                        if (private_trivert->localindex == -1) {
                            // First time referenced.
                            *private_trivert = *input_trivert;
                            private_trivert->localindex = static_cast<short>(mesh_triverts_indices.size());
                            mesh_triverts_indices.push_back(input_trivert->vertindex);
                            tricmds.push_back(private_trivert->localindex);
                            AddTrivertToBone(bone, private_trivert->localindex);
                        } else if (*private_trivert == *input_trivert) {
                            // Exists and is the same.
                            tricmds.push_back(private_trivert->localindex);
                        } else {
                            // No similar trivert associated to the trivert currently processed.
                            if (triverts_similars.count(input_trivert->vertindex) == 0)
                                AddSimilarTrivert(*input_trivert, bone);
                            else {
                                // Search in the list of similar triverts to see if the
                                // trivert in process is already registered.
                                short similar_index = -1;
                                for (auto it = triverts_similars[input_trivert->vertindex].cbegin();
                                        similar_index == -1 && it != triverts_similars[input_trivert->vertindex].cend();
                                        ++it) {
                                    if (triverts[*it] == *input_trivert)
                                        similar_index = *it;
                                }

                                // If a similar trivert has been found, reuse it.
                                // Otherwise, add it.
                                if (similar_index == -1)
                                    AddSimilarTrivert(*input_trivert, bone);
                                else
                                    tricmds.push_back(triverts[similar_index].localindex);
                            }
                        }
                    }

                    // Build mesh faces.
                    const int num_faces = static_cast<int>(tricmds.size() - 2);
                    mesh_faces.reserve(num_faces);

                    if (is_triangle_fan) {
                        for (int faceIdx = 0; faceIdx < num_faces; ++faceIdx) {
                            mesh_faces.push_back(HL1MeshFace{
                                    tricmds[0],
                                    tricmds[faceIdx + 1],
                                    tricmds[faceIdx + 2] });
                        }
                    } else {
                        for (int faceIdx = 0; faceIdx < num_faces; ++faceIdx) {
                            if (faceIdx & 1) {
                                // Preserve winding order.
                                mesh_faces.push_back(HL1MeshFace{
                                        tricmds[faceIdx + 1],
                                        tricmds[faceIdx],
                                        tricmds[faceIdx + 2] });
                            } else {
                                mesh_faces.push_back(HL1MeshFace{
                                        tricmds[faceIdx],
                                        tricmds[faceIdx + 1],
                                        tricmds[faceIdx + 2] });
                            }
                        }
                    }

                    total_triangles += num_faces;
                }

                // Create the scene mesh.
                aiMesh *scene_mesh = scene_->mMeshes[mesh_index] = new aiMesh();
                scene_mesh->mPrimitiveTypes = aiPrimitiveType::aiPrimitiveType_TRIANGLE;
                scene_mesh->mMaterialIndex = pskinref[pmesh->skinref];

                scene_mesh->mNumVertices = static_cast<unsigned int>(mesh_triverts_indices.size());

                if (scene_mesh->mNumVertices) {
                    scene_mesh->mVertices = new aiVector3D[scene_mesh->mNumVertices];
                    scene_mesh->mNormals = new aiVector3D[scene_mesh->mNumVertices];

                    scene_mesh->mNumUVComponents[0] = 2;
                    scene_mesh->mTextureCoords[0] = new aiVector3D[scene_mesh->mNumVertices];

                    // Add vertices.
                    for (unsigned int v = 0; v < scene_mesh->mNumVertices; ++v) {
                        const HL1MeshTrivert *pTrivert = &triverts[mesh_triverts_indices[v]];
                        scene_mesh->mVertices[v] = bind_pose_vertices[pTrivert->vertindex];
                        scene_mesh->mNormals[v] = bind_pose_normals[pTrivert->normindex];
                        scene_mesh->mTextureCoords[0][v] = aiVector3D(
                                pTrivert->s * texcoords_s_scale,
                                pTrivert->t * -texcoords_t_scale, 0);
                    }

                    // Add face and indices.
                    scene_mesh->mNumFaces = static_cast<unsigned int>(mesh_faces.size());
                    scene_mesh->mFaces = new aiFace[scene_mesh->mNumFaces];

                    for (unsigned int f = 0; f < scene_mesh->mNumFaces; ++f) {
                        aiFace *face = &scene_mesh->mFaces[f];
                        face->mNumIndices = 3;
                        face->mIndices = new unsigned int[3];
                        face->mIndices[0] = mesh_faces[f].v2;
                        face->mIndices[1] = mesh_faces[f].v1;
                        face->mIndices[2] = mesh_faces[f].v0;
                    }

                    // Add mesh bones.
                    scene_mesh->mNumBones = static_cast<unsigned int>(bone_triverts.size());
                    scene_mesh->mBones = new aiBone *[scene_mesh->mNumBones];

                    aiBone **scene_bone_ptr = scene_mesh->mBones;

                    for (auto bone_it = bone_triverts.cbegin();
                            bone_it != bone_triverts.cend();
                            ++bone_it, ++scene_bone_ptr) {
                        const int bone_index = bone_it->first;

                        aiBone *scene_bone = (*scene_bone_ptr) = new aiBone();
                        scene_bone->mName = temp_bones_[bone_index].node->mName;

                        scene_bone->mOffsetMatrix = temp_bones_[bone_index].offset_matrix;

                        auto vertex_ids = bone_triverts.at(bone_index);

                        // Add vertex weight per bone.
                        scene_bone->mNumWeights = static_cast<unsigned int>(vertex_ids.size());
                        aiVertexWeight *vertex_weight_ptr = scene_bone->mWeights = new aiVertexWeight[scene_bone->mNumWeights];

                        for (auto vertex_it = vertex_ids.begin();
                                vertex_it != vertex_ids.end();
                                ++vertex_it, ++vertex_weight_ptr) {
                            vertex_weight_ptr->mVertexId = *vertex_it;
                            vertex_weight_ptr->mWeight = 1.0f;
                        }
                    }
                }
            }
        }
    }

    if (total_triangles > AI_MDL_HL1_MAX_TRIANGLES) {
        log_warning_limit_exceeded<AI_MDL_HL1_MAX_TRIANGLES>(total_triangles, "triangles");
    }
}

// ------------------------------------------------------------------------------------------------
void HL1MDLLoader::read_animations() {
    if (!header_->numseq) {
        return;
    }

    const SequenceDesc_HL1 *pseqdesc = (const SequenceDesc_HL1 *)((uint8_t *)header_ + header_->seqindex);
    const SequenceGroup_HL1 *pseqgroup = nullptr;
    const AnimValueOffset_HL1 *panim = nullptr;
    const AnimValue_HL1 *panimvalue = nullptr;

    unique_sequence_names_.resize(header_->numseq);
    for (int i = 0; i < header_->numseq; ++i)
        unique_sequence_names_[i] = pseqdesc[i].label;

    // Ensure sequences have unique names.
    unique_name_generator_.set_template_name("Sequence");
    unique_name_generator_.make_unique(unique_sequence_names_);

    scene_->mNumAnimations = 0;

    int highest_num_blend_animations = SequenceBlendMode_HL1::NoBlend;

    // Count the total number of animations.
    for (int i = 0; i < header_->numseq; ++i, ++pseqdesc) {
        scene_->mNumAnimations += pseqdesc->numblends;
        highest_num_blend_animations = std::max(pseqdesc->numblends, highest_num_blend_animations);
    }

    // Get the number of available blend controllers for global info.
    get_num_blend_controllers(highest_num_blend_animations, num_blend_controllers_);

    pseqdesc = (const SequenceDesc_HL1 *)((uint8_t *)header_ + header_->seqindex);

    aiAnimation **scene_animations_ptr = scene_->mAnimations = new aiAnimation *[scene_->mNumAnimations];

    for (int sequence = 0; sequence < header_->numseq; ++sequence, ++pseqdesc) {
        pseqgroup = (const SequenceGroup_HL1 *)((uint8_t *)header_ + header_->seqgroupindex) + pseqdesc->seqgroup;

        if (pseqdesc->seqgroup == 0) {
            panim = (const AnimValueOffset_HL1 *)((uint8_t *)header_ + pseqgroup->unused2 + pseqdesc->animindex);
        } else {
            panim = (const AnimValueOffset_HL1 *)((uint8_t *)anim_headers_[pseqdesc->seqgroup] + pseqdesc->animindex);
        }

        for (int blend = 0; blend < pseqdesc->numblends; ++blend, ++scene_animations_ptr) {

            const Bone_HL1 *pbone = (const Bone_HL1 *)((uint8_t *)header_ + header_->boneindex);

            aiAnimation *scene_animation = (*scene_animations_ptr) = new aiAnimation();

            scene_animation->mName = unique_sequence_names_[sequence];
            scene_animation->mTicksPerSecond = pseqdesc->fps;
            scene_animation->mDuration = static_cast<double>(pseqdesc->fps) * pseqdesc->numframes;
            scene_animation->mNumChannels = static_cast<unsigned int>(header_->numbones);
            scene_animation->mChannels = new aiNodeAnim *[scene_animation->mNumChannels];

            for (int bone = 0; bone < header_->numbones; bone++, ++pbone, ++panim) {
                aiNodeAnim *node_anim = scene_animation->mChannels[bone] = new aiNodeAnim();
                node_anim->mNodeName = temp_bones_[bone].node->mName;

                node_anim->mNumPositionKeys = pseqdesc->numframes;
                node_anim->mNumRotationKeys = node_anim->mNumPositionKeys;
                node_anim->mNumScalingKeys = 0;

                node_anim->mPositionKeys = new aiVectorKey[node_anim->mNumPositionKeys];
                node_anim->mRotationKeys = new aiQuatKey[node_anim->mNumRotationKeys];

                for (int frame = 0; frame < pseqdesc->numframes; ++frame) {
                    aiVectorKey *position_key = &node_anim->mPositionKeys[frame];
                    aiQuatKey *rotation_key = &node_anim->mRotationKeys[frame];

                    aiVector3D angle1;
                    for (int j = 0; j < 3; ++j) {
                        if (panim->offset[j + 3] != 0) {
                            // Read compressed rotation delta.
                            panimvalue = (const AnimValue_HL1 *)((uint8_t *)panim + panim->offset[j + 3]);
                            extract_anim_value(panimvalue, frame, pbone->scale[j + 3], angle1[j]);
                        }

                        // Add the default rotation value.
                        angle1[j] += pbone->value[j + 3];

                        if (panim->offset[j] != 0) {
                            // Read compressed position delta.
                            panimvalue = (const AnimValue_HL1 *)((uint8_t *)panim + panim->offset[j]);
                            extract_anim_value(panimvalue, frame, pbone->scale[j], position_key->mValue[j]);
                        }

                        // Add the default position value.
                        position_key->mValue[j] += pbone->value[j];
                    }

                    position_key->mTime = rotation_key->mTime = static_cast<double>(frame);
                    /* The Half-Life engine uses X as forward, Y as left, Z as up. Therefore,
                       pitch,yaw,roll is represented as (YZX). */
                    rotation_key->mValue = aiQuaternion(angle1.y, angle1.z, angle1.x);
                    rotation_key->mValue.Normalize();
                }
            }
        }
    }
}

// ------------------------------------------------------------------------------------------------
void HL1MDLLoader::read_sequence_groups_info() {
    if (!header_->numseqgroups) {
        return;
    }

    aiNode *sequence_groups_node = new aiNode(AI_MDL_HL1_NODE_SEQUENCE_GROUPS);
    rootnode_children_.push_back(sequence_groups_node);

    sequence_groups_node->mNumChildren = static_cast<unsigned int>(header_->numseqgroups);
    sequence_groups_node->mChildren = new aiNode *[sequence_groups_node->mNumChildren];

    const SequenceGroup_HL1 *pseqgroup = (const SequenceGroup_HL1 *)((uint8_t *)header_ + header_->seqgroupindex);

    unique_sequence_groups_names_.resize(header_->numseqgroups);
    for (int i = 0; i < header_->numseqgroups; ++i) {
        unique_sequence_groups_names_[i] = pseqgroup[i].label;
    }

    // Ensure sequence groups have unique names.
    unique_name_generator_.set_template_name("SequenceGroup");
    unique_name_generator_.make_unique(unique_sequence_groups_names_);

    for (int i = 0; i < header_->numseqgroups; ++i, ++pseqgroup) {
        aiNode *sequence_group_node = sequence_groups_node->mChildren[i] = new aiNode(unique_sequence_groups_names_[i]);
        sequence_group_node->mParent = sequence_groups_node;

        aiMetadata *md = sequence_group_node->mMetaData = aiMetadata::Alloc(1);
        if (i == 0) {
            /* StudioMDL does not write the file name for the default sequence group,
               so we will write it. */
            md->Set(0, "File", aiString(file_path_));
        } else {
            md->Set(0, "File", aiString(pseqgroup->name));
        }
    }
}

// ------------------------------------------------------------------------------------------------
void HL1MDLLoader::read_sequence_infos() {
    if (!header_->numseq) {
        return;
    }

    const SequenceDesc_HL1 *pseqdesc = (const SequenceDesc_HL1 *)((uint8_t *)header_ + header_->seqindex);

    aiNode *sequence_infos_node = new aiNode(AI_MDL_HL1_NODE_SEQUENCE_INFOS);
    rootnode_children_.push_back(sequence_infos_node);

    sequence_infos_node->mNumChildren = static_cast<unsigned int>(header_->numseq);
    sequence_infos_node->mChildren = new aiNode *[sequence_infos_node->mNumChildren];

    std::vector<aiNode *> sequence_info_node_children;

    int animation_index = 0;
    for (int i = 0; i < header_->numseq; ++i, ++pseqdesc) {
        // Clear the list of children for the upcoming sequence info node.
        sequence_info_node_children.clear();

        aiNode *sequence_info_node = sequence_infos_node->mChildren[i] = new aiNode(unique_sequence_names_[i]);
        sequence_info_node->mParent = sequence_infos_node;

        // Setup sequence info node Metadata.
        aiMetadata *md = sequence_info_node->mMetaData = aiMetadata::Alloc(16);
        md->Set(0, "AnimationIndex", animation_index);
        animation_index += pseqdesc->numblends;

        // Reference the sequence group by name. This allows us to search a particular
        // sequence group by name using aiNode(s).
        md->Set(1, "SequenceGroup", aiString(unique_sequence_groups_names_[pseqdesc->seqgroup]));
        md->Set(2, "FramesPerSecond", pseqdesc->fps);
        md->Set(3, "NumFrames", pseqdesc->numframes);
        md->Set(4, "NumBlends", pseqdesc->numblends);
        md->Set(5, "Activity", pseqdesc->activity);
        md->Set(6, "ActivityWeight", pseqdesc->actweight);
        md->Set(7, "MotionFlags", pseqdesc->motiontype);
        md->Set(8, "MotionBone", temp_bones_[pseqdesc->motionbone].node->mName);
        md->Set(9, "LinearMovement", aiVector3D(pseqdesc->linearmovement[0], pseqdesc->linearmovement[1], pseqdesc->linearmovement[2]));
        md->Set(10, "BBMin", aiVector3D(pseqdesc->bbmin[0], pseqdesc->bbmin[1], pseqdesc->bbmin[2]));
        md->Set(11, "BBMax", aiVector3D(pseqdesc->bbmax[0], pseqdesc->bbmax[1], pseqdesc->bbmax[2]));
        md->Set(12, "EntryNode", pseqdesc->entrynode);
        md->Set(13, "ExitNode", pseqdesc->exitnode);
        md->Set(14, "NodeFlags", pseqdesc->nodeflags);
        md->Set(15, "Flags", pseqdesc->flags);

        if (import_settings_.read_blend_controllers) {
            int num_blend_controllers;
            if (get_num_blend_controllers(pseqdesc->numblends, num_blend_controllers) && num_blend_controllers) {
                // Read blend controllers info.
                aiNode *blend_controllers_node = new aiNode(AI_MDL_HL1_NODE_BLEND_CONTROLLERS);
                sequence_info_node_children.push_back(blend_controllers_node);
                blend_controllers_node->mParent = sequence_info_node;
                blend_controllers_node->mNumChildren = static_cast<unsigned int>(num_blend_controllers);
                blend_controllers_node->mChildren = new aiNode *[blend_controllers_node->mNumChildren];

                for (unsigned int j = 0; j < blend_controllers_node->mNumChildren; ++j) {
                    aiNode *blend_controller_node = blend_controllers_node->mChildren[j] = new aiNode();
                    blend_controller_node->mParent = blend_controllers_node;

                    aiMetadata *metaData = blend_controller_node->mMetaData = aiMetadata::Alloc(3);
                    metaData->Set(0, "Start", pseqdesc->blendstart[j]);
                    metaData->Set(1, "End", pseqdesc->blendend[j]);
                    metaData->Set(2, "MotionFlags", pseqdesc->blendtype[j]);
                }
            }
        }

        if (import_settings_.read_animation_events && pseqdesc->numevents) {
            // Read animation events.

            if (pseqdesc->numevents > AI_MDL_HL1_MAX_EVENTS) {
                log_warning_limit_exceeded<AI_MDL_HL1_MAX_EVENTS>(
                        "Sequence " + std::string(pseqdesc->label),
                        pseqdesc->numevents, "animation events");
            }

            const AnimEvent_HL1 *pevent = (const AnimEvent_HL1 *)((uint8_t *)header_ + pseqdesc->eventindex);

            aiNode *pEventsNode = new aiNode(AI_MDL_HL1_NODE_ANIMATION_EVENTS);
            sequence_info_node_children.push_back(pEventsNode);
            pEventsNode->mParent = sequence_info_node;
            pEventsNode->mNumChildren = static_cast<unsigned int>(pseqdesc->numevents);
            pEventsNode->mChildren = new aiNode *[pEventsNode->mNumChildren];

            for (unsigned int j = 0; j < pEventsNode->mNumChildren; ++j, ++pevent) {
                aiNode *pEvent = pEventsNode->mChildren[j] = new aiNode();
                pEvent->mParent = pEventsNode;

                aiMetadata *metaData = pEvent->mMetaData = aiMetadata::Alloc(3);
                metaData->Set(0, "Frame", pevent->frame);
                metaData->Set(1, "ScriptEvent", pevent->event);
                metaData->Set(2, "Options", aiString(pevent->options));
            }
        }

        if (sequence_info_node_children.size()) {
            sequence_info_node->addChildren(
                    static_cast<unsigned int>(sequence_info_node_children.size()),
                    sequence_info_node_children.data());
        }
    }
}

// ------------------------------------------------------------------------------------------------
void HL1MDLLoader::read_sequence_transitions() {
    if (!header_->numtransitions) {
        return;
    }

    // Read sequence transition graph.
    aiNode *transition_graph_node = new aiNode(AI_MDL_HL1_NODE_SEQUENCE_TRANSITION_GRAPH);
    rootnode_children_.push_back(transition_graph_node);

    uint8_t *ptransitions = ((uint8_t *)header_ + header_->transitionindex);
    aiMetadata *md = transition_graph_node->mMetaData = aiMetadata::Alloc(header_->numtransitions * header_->numtransitions);
    for (unsigned int i = 0; i < md->mNumProperties; ++i)
        md->Set(i, std::to_string(i), static_cast<int>(ptransitions[i]));
}

void HL1MDLLoader::read_attachments() {
    if (!header_->numattachments) {
        return;
    }

    const Attachment_HL1 *pattach = (const Attachment_HL1 *)((uint8_t *)header_ + header_->attachmentindex);

    aiNode *attachments_node = new aiNode(AI_MDL_HL1_NODE_ATTACHMENTS);
    rootnode_children_.push_back(attachments_node);
    attachments_node->mNumChildren = static_cast<unsigned int>(header_->numattachments);
    attachments_node->mChildren = new aiNode *[attachments_node->mNumChildren];

    for (int i = 0; i < header_->numattachments; ++i, ++pattach) {
        aiNode *attachment_node = attachments_node->mChildren[i] = new aiNode();
        attachment_node->mParent = attachments_node;
        attachment_node->mMetaData = aiMetadata::Alloc(2);
        attachment_node->mMetaData->Set(0, "Position", aiVector3D(pattach->org[0], pattach->org[1], pattach->org[2]));
        // Reference the bone by name. This allows us to search a particular
        // bone by name using aiNode(s).
        attachment_node->mMetaData->Set(1, "Bone", temp_bones_[pattach->bone].node->mName);
    }
}

// ------------------------------------------------------------------------------------------------
void HL1MDLLoader::read_hitboxes() {
    if (!header_->numhitboxes) {
        return;
    }

    const Hitbox_HL1 *phitbox = (const Hitbox_HL1 *)((uint8_t *)header_ + header_->hitboxindex);

    aiNode *hitboxes_node = new aiNode(AI_MDL_HL1_NODE_HITBOXES);
    rootnode_children_.push_back(hitboxes_node);
    hitboxes_node->mNumChildren = static_cast<unsigned int>(header_->numhitboxes);
    hitboxes_node->mChildren = new aiNode *[hitboxes_node->mNumChildren];

    for (int i = 0; i < header_->numhitboxes; ++i, ++phitbox) {
        aiNode *hitbox_node = hitboxes_node->mChildren[i] = new aiNode();
        hitbox_node->mParent = hitboxes_node;

        aiMetadata *md = hitbox_node->mMetaData = aiMetadata::Alloc(4);
        // Reference the bone by name. This allows us to search a particular
        // bone by name using aiNode(s).
        md->Set(0, "Bone", temp_bones_[phitbox->bone].node->mName);
        md->Set(1, "HitGroup", phitbox->group);
        md->Set(2, "BBMin", aiVector3D(phitbox->bbmin[0], phitbox->bbmin[1], phitbox->bbmin[2]));
        md->Set(3, "BBMax", aiVector3D(phitbox->bbmax[0], phitbox->bbmax[1], phitbox->bbmax[2]));
    }
}

// ------------------------------------------------------------------------------------------------
void HL1MDLLoader::read_bone_controllers() {
    if (!header_->numbonecontrollers) {
        return;
    }

    const BoneController_HL1 *pbonecontroller = (const BoneController_HL1 *)((uint8_t *)header_ + header_->bonecontrollerindex);

    aiNode *bones_controller_node = new aiNode(AI_MDL_HL1_NODE_BONE_CONTROLLERS);
    rootnode_children_.push_back(bones_controller_node);
    bones_controller_node->mNumChildren = static_cast<unsigned int>(header_->numbonecontrollers);
    bones_controller_node->mChildren = new aiNode *[bones_controller_node->mNumChildren];

    for (int i = 0; i < header_->numbonecontrollers; ++i, ++pbonecontroller) {
        aiNode *bone_controller_node = bones_controller_node->mChildren[i] = new aiNode();
        bone_controller_node->mParent = bones_controller_node;

        aiMetadata *md = bone_controller_node->mMetaData = aiMetadata::Alloc(5);
        // Reference the bone by name. This allows us to search a particular
        // bone by name using aiNode(s).
        md->Set(0, "Bone", temp_bones_[pbonecontroller->bone].node->mName);
        md->Set(1, "MotionFlags", pbonecontroller->type);
        md->Set(2, "Start", pbonecontroller->start);
        md->Set(3, "End", pbonecontroller->end);
        md->Set(4, "Channel", pbonecontroller->index);
    }
}

// ------------------------------------------------------------------------------------------------
void HL1MDLLoader::read_global_info() {
    aiNode *global_info_node = new aiNode(AI_MDL_HL1_NODE_GLOBAL_INFO);
    rootnode_children_.push_back(global_info_node);

    aiMetadata *md = global_info_node->mMetaData = aiMetadata::Alloc(import_settings_.read_misc_global_info ? 16 : 11);
    md->Set(0, "Version", AI_MDL_HL1_VERSION);
    md->Set(1, "NumBodyparts", header_->numbodyparts);
    md->Set(2, "NumModels", total_models_);
    md->Set(3, "NumBones", header_->numbones);
    md->Set(4, "NumAttachments", import_settings_.read_attachments ? header_->numattachments : 0);
    md->Set(5, "NumSkinFamilies", texture_header_->numskinfamilies);
    md->Set(6, "NumHitboxes", import_settings_.read_hitboxes ? header_->numhitboxes : 0);
    md->Set(7, "NumBoneControllers", import_settings_.read_bone_controllers ? header_->numbonecontrollers : 0);
    md->Set(8, "NumSequences", import_settings_.read_animations ? header_->numseq : 0);
    md->Set(9, "NumBlendControllers", import_settings_.read_blend_controllers ? num_blend_controllers_ : 0);
    md->Set(10, "NumTransitionNodes", import_settings_.read_sequence_transitions ? header_->numtransitions : 0);

    if (import_settings_.read_misc_global_info) {
        md->Set(11, "EyePosition", aiVector3D(header_->eyeposition[0], header_->eyeposition[1], header_->eyeposition[2]));
        md->Set(12, "HullMin", aiVector3D(header_->min[0], header_->min[1], header_->min[2]));
        md->Set(13, "HullMax", aiVector3D(header_->max[0], header_->max[1], header_->max[2]));
        md->Set(14, "CollisionMin", aiVector3D(header_->bbmin[0], header_->bbmin[1], header_->bbmin[2]));
        md->Set(15, "CollisionMax", aiVector3D(header_->bbmax[0], header_->bbmax[1], header_->bbmax[2]));
    }
}

// ------------------------------------------------------------------------------------------------
/** @brief This method reads a compressed anim value.
*
*   @note The structure of this method is taken from HL2 source code.
*   Although this is from HL2, it's implementation is almost identical
*   to code found in HL1 SDK. See HL1 and HL2 SDKs for more info.
*
*   source:
*       HL1 source code.
*           file: studio_render.cpp
*           function(s): CalcBoneQuaternion and CalcBonePosition
*
*       HL2 source code.
*           file: bone_setup.cpp
*           function(s): ExtractAnimValue
*/
void HL1MDLLoader::extract_anim_value(
        const AnimValue_HL1 *panimvalue,
        int frame, float bone_scale, ai_real &value) {
    int k = frame;

    // find span of values that includes the frame we want
    while (panimvalue->num.total <= k) {
        k -= panimvalue->num.total;
        panimvalue += panimvalue->num.valid + 1;
    }

    // Bah, missing blend!
    if (panimvalue->num.valid > k) {
        value = panimvalue[k + 1].value * bone_scale;
    } else {
        value = panimvalue[panimvalue->num.valid].value * bone_scale;
    }
}

// ------------------------------------------------------------------------------------------------
// Get the number of blend controllers.
bool HL1MDLLoader::get_num_blend_controllers(const int num_blend_animations, int &num_blend_controllers) {

    switch (num_blend_animations) {
        case SequenceBlendMode_HL1::NoBlend:
            num_blend_controllers = 0;
            return true;
        case SequenceBlendMode_HL1::TwoWayBlending:
            num_blend_controllers = 1;
            return true;
        case SequenceBlendMode_HL1::FourWayBlending:
            num_blend_controllers = 2;
            return true;
        default:
            num_blend_controllers = 0;
            ASSIMP_LOG_WARN(MDL_HALFLIFE_LOG_HEADER "Unsupported number of blend animations (", num_blend_animations, ")");
            return false;
    }
}

} // namespace HalfLife
} // namespace MDL
} // namespace Assimp