summaryrefslogtreecommitdiff
path: root/src/mesh/assimp-master/code/AssetLib/Obj/ObjFileImporter.cpp
blob: 68fdb2172fc58d08a017587402504b460c78cd69 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
/*
---------------------------------------------------------------------------
Open Asset Import Library (assimp)
---------------------------------------------------------------------------

Copyright (c) 2006-2020, assimp team

All rights reserved.

Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the following
conditions are met:

* Redistributions of source code must retain the above
  copyright notice, this list of conditions and the
  following disclaimer.

* Redistributions in binary form must reproduce the above
  copyright notice, this list of conditions and the
  following disclaimer in the documentation and/or other
  materials provided with the distribution.

* Neither the name of the assimp team, nor the names of its
  contributors may be used to endorse or promote products
  derived from this software without specific prior
  written permission of the assimp team.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------
*/

#ifndef ASSIMP_BUILD_NO_OBJ_IMPORTER

#include "ObjFileImporter.h"
#include "ObjFileData.h"
#include "ObjFileParser.h"
#include <assimp/DefaultIOSystem.h>
#include <assimp/IOStreamBuffer.h>
#include <assimp/ai_assert.h>
#include <assimp/importerdesc.h>
#include <assimp/scene.h>
#include <assimp/DefaultLogger.hpp>
#include <assimp/Importer.hpp>
#include <assimp/ObjMaterial.h>
#include <memory>

static const aiImporterDesc desc = {
    "Wavefront Object Importer",
    "",
    "",
    "surfaces not supported",
    aiImporterFlags_SupportTextFlavour,
    0,
    0,
    0,
    0,
    "obj"
};

static const unsigned int ObjMinSize = 16;

namespace Assimp {

using namespace std;

// ------------------------------------------------------------------------------------------------
//  Default constructor
ObjFileImporter::ObjFileImporter() :
        m_Buffer(),
        m_pRootObject(nullptr),
        m_strAbsPath(std::string(1, DefaultIOSystem().getOsSeparator())) {}

// ------------------------------------------------------------------------------------------------
//  Destructor.
ObjFileImporter::~ObjFileImporter() {
    delete m_pRootObject;
    m_pRootObject = nullptr;
}

// ------------------------------------------------------------------------------------------------
//  Returns true if file is an obj file.
bool ObjFileImporter::CanRead(const std::string &pFile, IOSystem *pIOHandler, bool /*checkSig*/) const {
    static const char *tokens[] = { "mtllib", "usemtl", "v ", "vt ", "vn ", "o ", "g ", "s ", "f " };
    return BaseImporter::SearchFileHeaderForToken(pIOHandler, pFile, tokens, AI_COUNT_OF(tokens), 200, false, true);
}

// ------------------------------------------------------------------------------------------------
const aiImporterDesc *ObjFileImporter::GetInfo() const {
    return &desc;
}

// ------------------------------------------------------------------------------------------------
//  Obj-file import implementation
void ObjFileImporter::InternReadFile(const std::string &file, aiScene *pScene, IOSystem *pIOHandler) {
    // Read file into memory
    static const std::string mode = "rb";
    auto streamCloser = [&](IOStream *pStream) {
        pIOHandler->Close(pStream);
    };
    std::unique_ptr<IOStream, decltype(streamCloser)> fileStream(pIOHandler->Open(file, mode), streamCloser);
    if (!fileStream.get()) {
        throw DeadlyImportError("Failed to open file ", file, ".");
    }

    // Get the file-size and validate it, throwing an exception when fails
    size_t fileSize = fileStream->FileSize();
    if (fileSize < ObjMinSize) {
        throw DeadlyImportError("OBJ-file is too small.");
    }

    IOStreamBuffer<char> streamedBuffer;
    streamedBuffer.open(fileStream.get());

    // Allocate buffer and read file into it
    //TextFileToBuffer( fileStream.get(),m_Buffer);

    // Get the model name
    std::string modelName, folderName;
    std::string::size_type pos = file.find_last_of("\\/");
    if (pos != std::string::npos) {
        modelName = file.substr(pos + 1, file.size() - pos - 1);
        folderName = file.substr(0, pos);
        if (!folderName.empty()) {
            pIOHandler->PushDirectory(folderName);
        }
    } else {
        modelName = file;
    }

    // parse the file into a temporary representation
    ObjFileParser parser(streamedBuffer, modelName, pIOHandler, m_progress, file);

    // And create the proper return structures out of it
    CreateDataFromImport(parser.GetModel(), pScene);

    streamedBuffer.close();

    // Clean up allocated storage for the next import
    m_Buffer.clear();

    // Pop directory stack
    if (pIOHandler->StackSize() > 0) {
        pIOHandler->PopDirectory();
    }
}

// ------------------------------------------------------------------------------------------------
//  Create the data from parsed obj-file
void ObjFileImporter::CreateDataFromImport(const ObjFile::Model *pModel, aiScene *pScene) {
    if (nullptr == pModel) {
        return;
    }

    // Create the root node of the scene
    pScene->mRootNode = new aiNode;
    if (!pModel->m_ModelName.empty()) {
        // Set the name of the scene
        pScene->mRootNode->mName.Set(pModel->m_ModelName);
    } else {
        // This is a fatal error, so break down the application
        ai_assert(false);
    }

    if (!pModel->m_Objects.empty()) {

        unsigned int meshCount = 0;
        unsigned int childCount = 0;

        for (auto object : pModel->m_Objects) {
            if (object) {
                ++childCount;
                meshCount += (unsigned int)object->m_Meshes.size();
            }
        }

        // Allocate space for the child nodes on the root node
        pScene->mRootNode->mChildren = new aiNode *[childCount];

        // Create nodes for the whole scene
        std::vector<aiMesh *> MeshArray;
        MeshArray.reserve(meshCount);
        for (size_t index = 0; index < pModel->m_Objects.size(); ++index) {
            createNodes(pModel, pModel->m_Objects[index], pScene->mRootNode, pScene, MeshArray);
        }

        ai_assert(pScene->mRootNode->mNumChildren == childCount);

        // Create mesh pointer buffer for this scene
        if (pScene->mNumMeshes > 0) {
            pScene->mMeshes = new aiMesh *[MeshArray.size()];
            for (size_t index = 0; index < MeshArray.size(); ++index) {
                pScene->mMeshes[index] = MeshArray[index];
            }
        }

        // Create all materials
        createMaterials(pModel, pScene);
    } else {
        if (pModel->m_Vertices.empty()) {
            return;
        }

        std::unique_ptr<aiMesh> mesh(new aiMesh);
        mesh->mPrimitiveTypes = aiPrimitiveType_POINT;
        unsigned int n = (unsigned int)pModel->m_Vertices.size();
        mesh->mNumVertices = n;

        mesh->mVertices = new aiVector3D[n];
        memcpy(mesh->mVertices, pModel->m_Vertices.data(), n * sizeof(aiVector3D));

        if (!pModel->m_Normals.empty()) {
            mesh->mNormals = new aiVector3D[n];
            if (pModel->m_Normals.size() < n) {
                throw DeadlyImportError("OBJ: vertex normal index out of range");
            }
            memcpy(mesh->mNormals, pModel->m_Normals.data(), n * sizeof(aiVector3D));
        }

        if (!pModel->m_VertexColors.empty()) {
            mesh->mColors[0] = new aiColor4D[mesh->mNumVertices];
            for (unsigned int i = 0; i < n; ++i) {
                if (i < pModel->m_VertexColors.size()) {
                    const aiVector3D &color = pModel->m_VertexColors[i];
                    mesh->mColors[0][i] = aiColor4D(color.x, color.y, color.z, 1.0);
                } else {
                    throw DeadlyImportError("OBJ: vertex color index out of range");
                }
            }
        }

        pScene->mRootNode->mNumMeshes = 1;
        pScene->mRootNode->mMeshes = new unsigned int[1];
        pScene->mRootNode->mMeshes[0] = 0;
        pScene->mMeshes = new aiMesh *[1];
        pScene->mNumMeshes = 1;
        pScene->mMeshes[0] = mesh.release();
    }
}

// ------------------------------------------------------------------------------------------------
//  Creates all nodes of the model
aiNode *ObjFileImporter::createNodes(const ObjFile::Model *pModel, const ObjFile::Object *pObject,
        aiNode *pParent, aiScene *pScene,
        std::vector<aiMesh *> &MeshArray) {
    ai_assert(nullptr != pModel);
    if (nullptr == pObject) {
        return nullptr;
    }

    // Store older mesh size to be able to computes mesh offsets for new mesh instances
    const size_t oldMeshSize = MeshArray.size();
    aiNode *pNode = new aiNode;

    pNode->mName = pObject->m_strObjName;

    // If we have a parent node, store it
    ai_assert(nullptr != pParent);
    appendChildToParentNode(pParent, pNode);

    for (size_t i = 0; i < pObject->m_Meshes.size(); ++i) {
        unsigned int meshId = pObject->m_Meshes[i];
        aiMesh *pMesh = createTopology(pModel, pObject, meshId);
        if (pMesh) {
            if (pMesh->mNumFaces > 0) {
                MeshArray.push_back(pMesh);
            } else {
                delete pMesh;
            }
        }
    }

    // Create all nodes from the sub-objects stored in the current object
    if (!pObject->m_SubObjects.empty()) {
        size_t numChilds = pObject->m_SubObjects.size();
        pNode->mNumChildren = static_cast<unsigned int>(numChilds);
        pNode->mChildren = new aiNode *[numChilds];
        pNode->mNumMeshes = 1;
        pNode->mMeshes = new unsigned int[1];
    }

    // Set mesh instances into scene- and node-instances
    const size_t meshSizeDiff = MeshArray.size() - oldMeshSize;
    if (meshSizeDiff > 0) {
        pNode->mMeshes = new unsigned int[meshSizeDiff];
        pNode->mNumMeshes = static_cast<unsigned int>(meshSizeDiff);
        size_t index = 0;
        for (size_t i = oldMeshSize; i < MeshArray.size(); ++i) {
            pNode->mMeshes[index] = pScene->mNumMeshes;
            pScene->mNumMeshes++;
            ++index;
        }
    }

    return pNode;
}

// ------------------------------------------------------------------------------------------------
//  Create topology data
aiMesh *ObjFileImporter::createTopology(const ObjFile::Model *pModel, const ObjFile::Object *pData, unsigned int meshIndex) {
    // Checking preconditions
    ai_assert(nullptr != pModel);

    if (nullptr == pData) {
        return nullptr;
    }

    // Create faces
    ObjFile::Mesh *pObjMesh = pModel->m_Meshes[meshIndex];
    if (!pObjMesh) {
        return nullptr;
    }

    if (pObjMesh->m_Faces.empty()) {
        return nullptr;
    }

    std::unique_ptr<aiMesh> pMesh(new aiMesh);
    if (!pObjMesh->m_name.empty()) {
        pMesh->mName.Set(pObjMesh->m_name);
    }

    for (size_t index = 0; index < pObjMesh->m_Faces.size(); index++) {
        ObjFile::Face *const inp = pObjMesh->m_Faces[index];
        ai_assert(nullptr != inp);

        if (inp->m_PrimitiveType == aiPrimitiveType_LINE) {
            pMesh->mNumFaces += static_cast<unsigned int>(inp->m_vertices.size() - 1);
            pMesh->mPrimitiveTypes |= aiPrimitiveType_LINE;
        } else if (inp->m_PrimitiveType == aiPrimitiveType_POINT) {
            pMesh->mNumFaces += static_cast<unsigned int>(inp->m_vertices.size());
            pMesh->mPrimitiveTypes |= aiPrimitiveType_POINT;
        } else {
            ++pMesh->mNumFaces;
            if (inp->m_vertices.size() > 3) {
                pMesh->mPrimitiveTypes |= aiPrimitiveType_POLYGON;
            } else {
                pMesh->mPrimitiveTypes |= aiPrimitiveType_TRIANGLE;
            }
        }
    }

    unsigned int uiIdxCount(0u);
    if (pMesh->mNumFaces > 0) {
        pMesh->mFaces = new aiFace[pMesh->mNumFaces];
        if (pObjMesh->m_uiMaterialIndex != ObjFile::Mesh::NoMaterial) {
            pMesh->mMaterialIndex = pObjMesh->m_uiMaterialIndex;
        }

        unsigned int outIndex(0);

        // Copy all data from all stored meshes
        for (auto &face : pObjMesh->m_Faces) {
            ObjFile::Face *const inp = face;
            if (inp->m_PrimitiveType == aiPrimitiveType_LINE) {
                for (size_t i = 0; i < inp->m_vertices.size() - 1; ++i) {
                    aiFace &f = pMesh->mFaces[outIndex++];
                    uiIdxCount += f.mNumIndices = 2;
                    f.mIndices = new unsigned int[2];
                }
                continue;
            } else if (inp->m_PrimitiveType == aiPrimitiveType_POINT) {
                for (size_t i = 0; i < inp->m_vertices.size(); ++i) {
                    aiFace &f = pMesh->mFaces[outIndex++];
                    uiIdxCount += f.mNumIndices = 1;
                    f.mIndices = new unsigned int[1];
                }
                continue;
            }

            aiFace *pFace = &pMesh->mFaces[outIndex++];
            const unsigned int uiNumIndices = (unsigned int)face->m_vertices.size();
            uiIdxCount += pFace->mNumIndices = (unsigned int)uiNumIndices;
            if (pFace->mNumIndices > 0) {
                pFace->mIndices = new unsigned int[uiNumIndices];
            }
        }
    }

    // Create mesh vertices
    createVertexArray(pModel, pData, meshIndex, pMesh.get(), uiIdxCount);

    return pMesh.release();
}

// ------------------------------------------------------------------------------------------------
//  Creates a vertex array
void ObjFileImporter::createVertexArray(const ObjFile::Model *pModel,
        const ObjFile::Object *pCurrentObject,
        unsigned int uiMeshIndex,
        aiMesh *pMesh,
        unsigned int numIndices) {
    // Checking preconditions
    ai_assert(nullptr != pCurrentObject);

    // Break, if no faces are stored in object
    if (pCurrentObject->m_Meshes.empty())
        return;

    // Get current mesh
    ObjFile::Mesh *pObjMesh = pModel->m_Meshes[uiMeshIndex];
    if (nullptr == pObjMesh || pObjMesh->m_uiNumIndices < 1) {
        return;
    }

    // Copy vertices of this mesh instance
    pMesh->mNumVertices = numIndices;
    if (pMesh->mNumVertices == 0) {
        throw DeadlyImportError("OBJ: no vertices");
    } else if (pMesh->mNumVertices > AI_MAX_VERTICES) {
        throw DeadlyImportError("OBJ: Too many vertices");
    }
    pMesh->mVertices = new aiVector3D[pMesh->mNumVertices];

    // Allocate buffer for normal vectors
    if (!pModel->m_Normals.empty() && pObjMesh->m_hasNormals)
        pMesh->mNormals = new aiVector3D[pMesh->mNumVertices];

    // Allocate buffer for vertex-color vectors
    if (!pModel->m_VertexColors.empty())
        pMesh->mColors[0] = new aiColor4D[pMesh->mNumVertices];

    // Allocate buffer for texture coordinates
    if (!pModel->m_TextureCoord.empty() && pObjMesh->m_uiUVCoordinates[0]) {
        pMesh->mNumUVComponents[0] = pModel->m_TextureCoordDim;
        pMesh->mTextureCoords[0] = new aiVector3D[pMesh->mNumVertices];
    }

    // Copy vertices, normals and textures into aiMesh instance
    bool normalsok = true, uvok = true;
    unsigned int newIndex = 0, outIndex = 0;
    for (auto sourceFace : pObjMesh->m_Faces) {
        // Copy all index arrays
        for (size_t vertexIndex = 0, outVertexIndex = 0; vertexIndex < sourceFace->m_vertices.size(); vertexIndex++) {
            const unsigned int vertex = sourceFace->m_vertices.at(vertexIndex);
            if (vertex >= pModel->m_Vertices.size()) {
                throw DeadlyImportError("OBJ: vertex index out of range");
            }

            if (pMesh->mNumVertices <= newIndex) {
                throw DeadlyImportError("OBJ: bad vertex index");
            }

            pMesh->mVertices[newIndex] = pModel->m_Vertices[vertex];

            // Copy all normals
            if (normalsok && !pModel->m_Normals.empty() && vertexIndex < sourceFace->m_normals.size()) {
                const unsigned int normal = sourceFace->m_normals.at(vertexIndex);
                if (normal >= pModel->m_Normals.size()) {
                    normalsok = false;
                } else {
                    pMesh->mNormals[newIndex] = pModel->m_Normals[normal];
                }
            }

            // Copy all vertex colors
            if (vertex < pModel->m_VertexColors.size()) {
                const aiVector3D &color = pModel->m_VertexColors[vertex];
                pMesh->mColors[0][newIndex] = aiColor4D(color.x, color.y, color.z, 1.0);
            }

            // Copy all texture coordinates
            if (uvok && !pModel->m_TextureCoord.empty() && vertexIndex < sourceFace->m_texturCoords.size()) {
                const unsigned int tex = sourceFace->m_texturCoords.at(vertexIndex);

                if (tex >= pModel->m_TextureCoord.size()) {
                    uvok = false;
                } else {
                    const aiVector3D &coord3d = pModel->m_TextureCoord[tex];
                    pMesh->mTextureCoords[0][newIndex] = aiVector3D(coord3d.x, coord3d.y, coord3d.z);
                }
            }

            // Get destination face
            aiFace *pDestFace = &pMesh->mFaces[outIndex];

            const bool last = (vertexIndex == sourceFace->m_vertices.size() - 1);
            if (sourceFace->m_PrimitiveType != aiPrimitiveType_LINE || !last) {
                pDestFace->mIndices[outVertexIndex] = newIndex;
                outVertexIndex++;
            }

            if (sourceFace->m_PrimitiveType == aiPrimitiveType_POINT) {
                outIndex++;
                outVertexIndex = 0;
            } else if (sourceFace->m_PrimitiveType == aiPrimitiveType_LINE) {
                outVertexIndex = 0;

                if (!last)
                    outIndex++;

                if (vertexIndex) {
                    if (!last) {
                        pMesh->mVertices[newIndex + 1] = pMesh->mVertices[newIndex];
                        if (!sourceFace->m_normals.empty() && !pModel->m_Normals.empty()) {
                            pMesh->mNormals[newIndex + 1] = pMesh->mNormals[newIndex];
                        }
                        if (!pModel->m_TextureCoord.empty()) {
                            for (size_t i = 0; i < pMesh->GetNumUVChannels(); i++) {
                                pMesh->mTextureCoords[i][newIndex + 1] = pMesh->mTextureCoords[i][newIndex];
                            }
                        }
                        ++newIndex;
                    }

                    pDestFace[-1].mIndices[1] = newIndex;
                }
            } else if (last) {
                outIndex++;
            }
            ++newIndex;
        }
    }

    if (!normalsok) {
        delete[] pMesh->mNormals;
        pMesh->mNormals = nullptr;
    }

    if (!uvok) {
        delete[] pMesh->mTextureCoords[0];
        pMesh->mTextureCoords[0] = nullptr;
    }
}

// ------------------------------------------------------------------------------------------------
//  Counts all stored meshes
void ObjFileImporter::countObjects(const std::vector<ObjFile::Object *> &rObjects, int &iNumMeshes) {
    iNumMeshes = 0;
    if (rObjects.empty())
        return;

    iNumMeshes += static_cast<unsigned int>(rObjects.size());
    for (auto object : rObjects) {
        if (!object->m_SubObjects.empty()) {
            countObjects(object->m_SubObjects, iNumMeshes);
        }
    }
}

// ------------------------------------------------------------------------------------------------
//   Add clamp mode property to material if necessary
void ObjFileImporter::addTextureMappingModeProperty(aiMaterial *mat, aiTextureType type, int clampMode, int index) {
    if (nullptr == mat) {
        return;
    }

    mat->AddProperty<int>(&clampMode, 1, AI_MATKEY_MAPPINGMODE_U(type, index));
    mat->AddProperty<int>(&clampMode, 1, AI_MATKEY_MAPPINGMODE_V(type, index));
}

// ------------------------------------------------------------------------------------------------
//  Creates the material
void ObjFileImporter::createMaterials(const ObjFile::Model *pModel, aiScene *pScene) {
    if (nullptr == pScene) {
        return;
    }

    const unsigned int numMaterials = (unsigned int)pModel->m_MaterialLib.size();
    pScene->mNumMaterials = 0;
    if (pModel->m_MaterialLib.empty()) {
        ASSIMP_LOG_DEBUG("OBJ: no materials specified");
        return;
    }

    pScene->mMaterials = new aiMaterial *[numMaterials];
    for (unsigned int matIndex = 0; matIndex < numMaterials; matIndex++) {
        // Store material name
        std::map<std::string, ObjFile::Material *>::const_iterator it;
        it = pModel->m_MaterialMap.find(pModel->m_MaterialLib[matIndex]);

        // No material found, use the default material
        if (pModel->m_MaterialMap.end() == it)
            continue;

        aiMaterial *mat = new aiMaterial;
        ObjFile::Material *pCurrentMaterial = (*it).second;
        mat->AddProperty(&pCurrentMaterial->MaterialName, AI_MATKEY_NAME);

        // convert illumination model
        int sm = 0;
        switch (pCurrentMaterial->illumination_model) {
        case 0:
            sm = aiShadingMode_NoShading;
            break;
        case 1:
            sm = aiShadingMode_Gouraud;
            break;
        case 2:
            sm = aiShadingMode_Phong;
            break;
        default:
            sm = aiShadingMode_Gouraud;
            ASSIMP_LOG_ERROR("OBJ: unexpected illumination model (0-2 recognized)");
        }

        mat->AddProperty<int>(&sm, 1, AI_MATKEY_SHADING_MODEL);

        // Preserve the original illum value
        mat->AddProperty<int>(&pCurrentMaterial->illumination_model, 1, AI_MATKEY_OBJ_ILLUM);

        // Adding material colors
        mat->AddProperty(&pCurrentMaterial->ambient, 1, AI_MATKEY_COLOR_AMBIENT);
        mat->AddProperty(&pCurrentMaterial->diffuse, 1, AI_MATKEY_COLOR_DIFFUSE);
        mat->AddProperty(&pCurrentMaterial->specular, 1, AI_MATKEY_COLOR_SPECULAR);
        mat->AddProperty(&pCurrentMaterial->emissive, 1, AI_MATKEY_COLOR_EMISSIVE);
        mat->AddProperty(&pCurrentMaterial->shineness, 1, AI_MATKEY_SHININESS);
        mat->AddProperty(&pCurrentMaterial->alpha, 1, AI_MATKEY_OPACITY);
        mat->AddProperty(&pCurrentMaterial->transparent, 1, AI_MATKEY_COLOR_TRANSPARENT);
        mat->AddProperty(&pCurrentMaterial->roughness, 1, AI_MATKEY_ROUGHNESS_FACTOR);
        mat->AddProperty(&pCurrentMaterial->metallic, 1, AI_MATKEY_METALLIC_FACTOR);
        mat->AddProperty(&pCurrentMaterial->sheen, 1, AI_MATKEY_SHEEN_COLOR_FACTOR);
        mat->AddProperty(&pCurrentMaterial->clearcoat_thickness, 1, AI_MATKEY_CLEARCOAT_FACTOR);
        mat->AddProperty(&pCurrentMaterial->clearcoat_roughness, 1, AI_MATKEY_CLEARCOAT_ROUGHNESS_FACTOR);
        mat->AddProperty(&pCurrentMaterial->anisotropy, 1, AI_MATKEY_ANISOTROPY_FACTOR);

        // Adding refraction index
        mat->AddProperty(&pCurrentMaterial->ior, 1, AI_MATKEY_REFRACTI);

        // Adding textures
        const int uvwIndex = 0;

        if (0 != pCurrentMaterial->texture.length) {
            mat->AddProperty(&pCurrentMaterial->texture, AI_MATKEY_TEXTURE_DIFFUSE(0));
            mat->AddProperty(&uvwIndex, 1, AI_MATKEY_UVWSRC_DIFFUSE(0));
            if (pCurrentMaterial->clamp[ObjFile::Material::TextureDiffuseType]) {
                addTextureMappingModeProperty(mat, aiTextureType_DIFFUSE);
            }
        }

        if (0 != pCurrentMaterial->textureAmbient.length) {
            mat->AddProperty(&pCurrentMaterial->textureAmbient, AI_MATKEY_TEXTURE_AMBIENT(0));
            mat->AddProperty(&uvwIndex, 1, AI_MATKEY_UVWSRC_AMBIENT(0));
            if (pCurrentMaterial->clamp[ObjFile::Material::TextureAmbientType]) {
                addTextureMappingModeProperty(mat, aiTextureType_AMBIENT);
            }
        }

        if (0 != pCurrentMaterial->textureEmissive.length) {
            mat->AddProperty(&pCurrentMaterial->textureEmissive, AI_MATKEY_TEXTURE_EMISSIVE(0));
            mat->AddProperty(&uvwIndex, 1, AI_MATKEY_UVWSRC_EMISSIVE(0));
        }

        if (0 != pCurrentMaterial->textureSpecular.length) {
            mat->AddProperty(&pCurrentMaterial->textureSpecular, AI_MATKEY_TEXTURE_SPECULAR(0));
            mat->AddProperty(&uvwIndex, 1, AI_MATKEY_UVWSRC_SPECULAR(0));
            if (pCurrentMaterial->clamp[ObjFile::Material::TextureSpecularType]) {
                addTextureMappingModeProperty(mat, aiTextureType_SPECULAR);
            }
        }

        if (0 != pCurrentMaterial->textureBump.length) {
            mat->AddProperty(&pCurrentMaterial->textureBump, AI_MATKEY_TEXTURE_HEIGHT(0));
            mat->AddProperty(&uvwIndex, 1, AI_MATKEY_UVWSRC_HEIGHT(0));
            if (pCurrentMaterial->bump_multiplier != 1.0) {
                mat->AddProperty(&pCurrentMaterial->bump_multiplier, 1, AI_MATKEY_OBJ_BUMPMULT_HEIGHT(0));
            }
            if (pCurrentMaterial->clamp[ObjFile::Material::TextureBumpType]) {
                addTextureMappingModeProperty(mat, aiTextureType_HEIGHT);
            }
        }

        if (0 != pCurrentMaterial->textureNormal.length) {
            mat->AddProperty(&pCurrentMaterial->textureNormal, AI_MATKEY_TEXTURE_NORMALS(0));
            mat->AddProperty(&uvwIndex, 1, AI_MATKEY_UVWSRC_NORMALS(0));
            if (pCurrentMaterial->bump_multiplier != 1.0) {
                mat->AddProperty(&pCurrentMaterial->bump_multiplier, 1, AI_MATKEY_OBJ_BUMPMULT_NORMALS(0));
            }
            if (pCurrentMaterial->clamp[ObjFile::Material::TextureNormalType]) {
                addTextureMappingModeProperty(mat, aiTextureType_NORMALS);
            }
        }

        if (0 != pCurrentMaterial->textureReflection[0].length) {
            ObjFile::Material::TextureType type = 0 != pCurrentMaterial->textureReflection[1].length ?
                                                          ObjFile::Material::TextureReflectionCubeTopType :
                                                          ObjFile::Material::TextureReflectionSphereType;

            unsigned count = type == ObjFile::Material::TextureReflectionSphereType ? 1 : 6;
            for (unsigned i = 0; i < count; i++) {
                mat->AddProperty(&pCurrentMaterial->textureReflection[i], AI_MATKEY_TEXTURE_REFLECTION(i));
                mat->AddProperty(&uvwIndex, 1, AI_MATKEY_UVWSRC_REFLECTION(i));

                if (pCurrentMaterial->clamp[type])
                    addTextureMappingModeProperty(mat, aiTextureType_REFLECTION, 1, i);
            }
        }

        if (0 != pCurrentMaterial->textureDisp.length) {
            mat->AddProperty(&pCurrentMaterial->textureDisp, AI_MATKEY_TEXTURE_DISPLACEMENT(0));
            mat->AddProperty(&uvwIndex, 1, AI_MATKEY_UVWSRC_DISPLACEMENT(0));
            if (pCurrentMaterial->clamp[ObjFile::Material::TextureDispType]) {
                addTextureMappingModeProperty(mat, aiTextureType_DISPLACEMENT);
            }
        }

        if (0 != pCurrentMaterial->textureOpacity.length) {
            mat->AddProperty(&pCurrentMaterial->textureOpacity, AI_MATKEY_TEXTURE_OPACITY(0));
            mat->AddProperty(&uvwIndex, 1, AI_MATKEY_UVWSRC_OPACITY(0));
            if (pCurrentMaterial->clamp[ObjFile::Material::TextureOpacityType]) {
                addTextureMappingModeProperty(mat, aiTextureType_OPACITY);
            }
        }

        if (0 != pCurrentMaterial->textureSpecularity.length) {
            mat->AddProperty(&pCurrentMaterial->textureSpecularity, AI_MATKEY_TEXTURE_SHININESS(0));
            mat->AddProperty(&uvwIndex, 1, AI_MATKEY_UVWSRC_SHININESS(0));
            if (pCurrentMaterial->clamp[ObjFile::Material::TextureSpecularityType]) {
                addTextureMappingModeProperty(mat, aiTextureType_SHININESS);
            }
        }

        if (0 != pCurrentMaterial->textureRoughness.length) {
            mat->AddProperty(&pCurrentMaterial->textureRoughness, _AI_MATKEY_TEXTURE_BASE, aiTextureType_DIFFUSE_ROUGHNESS, 0);
            mat->AddProperty(&uvwIndex, 1, _AI_MATKEY_UVWSRC_BASE, aiTextureType_DIFFUSE_ROUGHNESS, 0 );
            if (pCurrentMaterial->clamp[ObjFile::Material::TextureRoughnessType]) {
                addTextureMappingModeProperty(mat, aiTextureType_DIFFUSE_ROUGHNESS);
            }
        }

        if (0 != pCurrentMaterial->textureMetallic.length) {
            mat->AddProperty(&pCurrentMaterial->textureMetallic, _AI_MATKEY_TEXTURE_BASE, aiTextureType_METALNESS, 0);
            mat->AddProperty(&uvwIndex, 1, _AI_MATKEY_UVWSRC_BASE, aiTextureType_METALNESS, 0 );
            if (pCurrentMaterial->clamp[ObjFile::Material::TextureMetallicType]) {
                addTextureMappingModeProperty(mat, aiTextureType_METALNESS);
            }
        }

        if (0 != pCurrentMaterial->textureSheen.length) {
            mat->AddProperty(&pCurrentMaterial->textureSheen, _AI_MATKEY_TEXTURE_BASE, aiTextureType_SHEEN, 0);
            mat->AddProperty(&uvwIndex, 1, _AI_MATKEY_UVWSRC_BASE, aiTextureType_SHEEN, 0 );
            if (pCurrentMaterial->clamp[ObjFile::Material::TextureSheenType]) {
                addTextureMappingModeProperty(mat, aiTextureType_SHEEN);
            }
        }

        if (0 != pCurrentMaterial->textureRMA.length) {
            // NOTE: glTF importer places Rough/Metal/AO texture in Unknown so doing the same here for consistency.
            mat->AddProperty(&pCurrentMaterial->textureRMA, _AI_MATKEY_TEXTURE_BASE, aiTextureType_UNKNOWN, 0);
            mat->AddProperty(&uvwIndex, 1, _AI_MATKEY_UVWSRC_BASE, aiTextureType_UNKNOWN, 0 );
            if (pCurrentMaterial->clamp[ObjFile::Material::TextureRMAType]) {
                addTextureMappingModeProperty(mat, aiTextureType_UNKNOWN);
            }
        }

        // Store material property info in material array in scene
        pScene->mMaterials[pScene->mNumMaterials] = mat;
        pScene->mNumMaterials++;
    }

    // Test number of created materials.
    ai_assert(pScene->mNumMaterials == numMaterials);
}

// ------------------------------------------------------------------------------------------------
//  Appends this node to the parent node
void ObjFileImporter::appendChildToParentNode(aiNode *pParent, aiNode *pChild) {
    // Checking preconditions
    ai_assert(nullptr != pParent);
    ai_assert(nullptr != pChild);

    // Assign parent to child
    pChild->mParent = pParent;

    // Copy node instances into parent node
    pParent->mNumChildren++;
    pParent->mChildren[pParent->mNumChildren - 1] = pChild;
}

// ------------------------------------------------------------------------------------------------

} // Namespace Assimp

#endif // !! ASSIMP_BUILD_NO_OBJ_IMPORTER