summaryrefslogtreecommitdiff
path: root/src/mesh/assimp-master/code/AssetLib/Ply/PlyLoader.cpp
blob: 6cf1a1c748dd323ca3366b538fc4a3600df658b9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
/*
---------------------------------------------------------------------------
Open Asset Import Library (assimp)
---------------------------------------------------------------------------

Copyright (c) 2006-2022, assimp team

All rights reserved.

Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the following
conditions are met:

* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.

* Neither the name of the assimp team, nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission of the assimp team.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------
*/

/** @file  PlyLoader.cpp
 *  @brief Implementation of the PLY importer class
 */

#ifndef ASSIMP_BUILD_NO_PLY_IMPORTER

// internal headers
#include "PlyLoader.h"
#include <assimp/IOStreamBuffer.h>
#include <assimp/importerdesc.h>
#include <assimp/scene.h>
#include <assimp/IOSystem.hpp>
#include <memory>

using namespace ::Assimp;

static const aiImporterDesc desc = {
    "Stanford Polygon Library (PLY) Importer",
    "",
    "",
    "",
    aiImporterFlags_SupportBinaryFlavour | aiImporterFlags_SupportTextFlavour,
    0,
    0,
    0,
    0,
    "ply"
};

// ------------------------------------------------------------------------------------------------
// Internal stuff
namespace {
// ------------------------------------------------------------------------------------------------
// Checks that property index is within range
template <class T>
inline const T &GetProperty(const std::vector<T> &props, int idx) {
    if (static_cast<size_t>(idx) >= props.size()) {
        throw DeadlyImportError("Invalid .ply file: Property index is out of range.");
    }

    return props[idx];
}
} // namespace

// ------------------------------------------------------------------------------------------------
// Constructor to be privately used by Importer
PLYImporter::PLYImporter() :
        mBuffer(nullptr),
        pcDOM(nullptr),
        mGeneratedMesh(nullptr) {
    // empty
}

// ------------------------------------------------------------------------------------------------
// Destructor, private as well
PLYImporter::~PLYImporter() {
    // empty
}

// ------------------------------------------------------------------------------------------------
// Returns whether the class can handle the format of the given file.
bool PLYImporter::CanRead(const std::string &pFile, IOSystem *pIOHandler, bool /*checkSig*/) const {
    static const char *tokens[] = { "ply" };
    return SearchFileHeaderForToken(pIOHandler, pFile, tokens, AI_COUNT_OF(tokens));
}

// ------------------------------------------------------------------------------------------------
const aiImporterDesc *PLYImporter::GetInfo() const {
    return &desc;
}

// ------------------------------------------------------------------------------------------------
static bool isBigEndian(const char *szMe) {
    ai_assert(nullptr != szMe);

    // binary_little_endian
    // binary_big_endian
    bool isBigEndian(false);
#if (defined AI_BUILD_BIG_ENDIAN)
    if ('l' == *szMe || 'L' == *szMe) {
        isBigEndian = true;
    }
#else
    if ('b' == *szMe || 'B' == *szMe) {
        isBigEndian = true;
    }
#endif // ! AI_BUILD_BIG_ENDIAN

    return isBigEndian;
}

// ------------------------------------------------------------------------------------------------
// Imports the given file into the given scene structure.
void PLYImporter::InternReadFile(const std::string &pFile, aiScene *pScene, IOSystem *pIOHandler) {
    const std::string mode = "rb";
    std::unique_ptr<IOStream> fileStream(pIOHandler->Open(pFile, mode));
    if (!fileStream.get()) {
        throw DeadlyImportError("Failed to open file ", pFile, ".");
    }

    // Get the file-size
    const size_t fileSize(fileStream->FileSize());
    if (0 == fileSize) {
        throw DeadlyImportError("File ", pFile, " is empty.");
    }

    IOStreamBuffer<char> streamedBuffer(1024 * 1024);
    streamedBuffer.open(fileStream.get());

    // the beginning of the file must be PLY - magic, magic
    std::vector<char> headerCheck;
    streamedBuffer.getNextLine(headerCheck);

    if ((headerCheck.size() < 3) ||
            (headerCheck[0] != 'P' && headerCheck[0] != 'p') ||
            (headerCheck[1] != 'L' && headerCheck[1] != 'l') ||
            (headerCheck[2] != 'Y' && headerCheck[2] != 'y')) {
        streamedBuffer.close();
        throw DeadlyImportError("Invalid .ply file: Incorrect magic number (expected 'ply' or 'PLY').");
    }

    std::vector<char> mBuffer2;
    streamedBuffer.getNextLine(mBuffer2);
    mBuffer = (unsigned char *)&mBuffer2[0];

    char *szMe = (char *)&this->mBuffer[0];
    SkipSpacesAndLineEnd(szMe, (const char **)&szMe);

    // determine the format of the file data and construct the aiMesh
    PLY::DOM sPlyDom;
    this->pcDOM = &sPlyDom;

    if (TokenMatch(szMe, "format", 6)) {
        if (TokenMatch(szMe, "ascii", 5)) {
            SkipLine(szMe, (const char **)&szMe);
            if (!PLY::DOM::ParseInstance(streamedBuffer, &sPlyDom, this)) {
                if (mGeneratedMesh != nullptr) {
                    delete (mGeneratedMesh);
                    mGeneratedMesh = nullptr;
                }

                streamedBuffer.close();
                throw DeadlyImportError("Invalid .ply file: Unable to build DOM (#1)");
            }
        } else if (!::strncmp(szMe, "binary_", 7)) {
            szMe += 7;
            const bool bIsBE(isBigEndian(szMe));

            // skip the line, parse the rest of the header and build the DOM
            if (!PLY::DOM::ParseInstanceBinary(streamedBuffer, &sPlyDom, this, bIsBE)) {
                if (mGeneratedMesh != nullptr) {
                    delete (mGeneratedMesh);
                    mGeneratedMesh = nullptr;
                }

                streamedBuffer.close();
                throw DeadlyImportError("Invalid .ply file: Unable to build DOM (#2)");
            }
        } else {
            if (mGeneratedMesh != nullptr) {
                delete (mGeneratedMesh);
                mGeneratedMesh = nullptr;
            }

            streamedBuffer.close();
            throw DeadlyImportError("Invalid .ply file: Unknown file format");
        }
    } else {
        AI_DEBUG_INVALIDATE_PTR(this->mBuffer);
        if (mGeneratedMesh != nullptr) {
            delete (mGeneratedMesh);
            mGeneratedMesh = nullptr;
        }

        streamedBuffer.close();
        throw DeadlyImportError("Invalid .ply file: Missing format specification");
    }

    //free the file buffer
    streamedBuffer.close();

    if (mGeneratedMesh == nullptr) {
        throw DeadlyImportError("Invalid .ply file: Unable to extract mesh data ");
    }

    // if no face list is existing we assume that the vertex
    // list is containing a list of points
    bool pointsOnly = mGeneratedMesh->mFaces == nullptr ? true : false;
    if (pointsOnly) {
        mGeneratedMesh->mPrimitiveTypes = aiPrimitiveType::aiPrimitiveType_POINT;
    }

    // now load a list of all materials
    std::vector<aiMaterial *> avMaterials;
    std::string defaultTexture;
    LoadMaterial(&avMaterials, defaultTexture, pointsOnly);

    // now generate the output scene object. Fill the material list
    pScene->mNumMaterials = (unsigned int)avMaterials.size();
    pScene->mMaterials = new aiMaterial *[pScene->mNumMaterials];
    for (unsigned int i = 0; i < pScene->mNumMaterials; ++i) {
        pScene->mMaterials[i] = avMaterials[i];
    }

    // fill the mesh list
    pScene->mNumMeshes = 1;
    pScene->mMeshes = new aiMesh *[pScene->mNumMeshes];
    pScene->mMeshes[0] = mGeneratedMesh;
    mGeneratedMesh = nullptr;

    // generate a simple node structure
    pScene->mRootNode = new aiNode();
    pScene->mRootNode->mNumMeshes = pScene->mNumMeshes;
    pScene->mRootNode->mMeshes = new unsigned int[pScene->mNumMeshes];

    for (unsigned int i = 0; i < pScene->mRootNode->mNumMeshes; ++i) {
        pScene->mRootNode->mMeshes[i] = i;
    }
}

void PLYImporter::LoadVertex(const PLY::Element *pcElement, const PLY::ElementInstance *instElement, unsigned int pos) {
    ai_assert(nullptr != pcElement);
    ai_assert(nullptr != instElement);

    ai_uint aiPositions[3] = { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF };
    PLY::EDataType aiTypes[3] = { EDT_Char, EDT_Char, EDT_Char };

    ai_uint aiNormal[3] = { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF };
    PLY::EDataType aiNormalTypes[3] = { EDT_Char, EDT_Char, EDT_Char };

    unsigned int aiColors[4] = { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF };
    PLY::EDataType aiColorsTypes[4] = { EDT_Char, EDT_Char, EDT_Char, EDT_Char };

    unsigned int aiTexcoord[2] = { 0xFFFFFFFF, 0xFFFFFFFF };
    PLY::EDataType aiTexcoordTypes[2] = { EDT_Char, EDT_Char };

    // now check whether which normal components are available
    unsigned int _a(0), cnt(0);
    for (std::vector<PLY::Property>::const_iterator a = pcElement->alProperties.begin();
            a != pcElement->alProperties.end(); ++a, ++_a) {
        if ((*a).bIsList) {
            continue;
        }

        // Positions
        if (PLY::EST_XCoord == (*a).Semantic) {
            ++cnt;
            aiPositions[0] = _a;
            aiTypes[0] = (*a).eType;
        } else if (PLY::EST_YCoord == (*a).Semantic) {
            ++cnt;
            aiPositions[1] = _a;
            aiTypes[1] = (*a).eType;
        } else if (PLY::EST_ZCoord == (*a).Semantic) {
            ++cnt;
            aiPositions[2] = _a;
            aiTypes[2] = (*a).eType;
        } else if (PLY::EST_XNormal == (*a).Semantic) {
            // Normals
            ++cnt;
            aiNormal[0] = _a;
            aiNormalTypes[0] = (*a).eType;
        } else if (PLY::EST_YNormal == (*a).Semantic) {
            ++cnt;
            aiNormal[1] = _a;
            aiNormalTypes[1] = (*a).eType;
        } else if (PLY::EST_ZNormal == (*a).Semantic) {
            ++cnt;
            aiNormal[2] = _a;
            aiNormalTypes[2] = (*a).eType;
        } else if (PLY::EST_Red == (*a).Semantic) {
            // Colors
            ++cnt;
            aiColors[0] = _a;
            aiColorsTypes[0] = (*a).eType;
        } else if (PLY::EST_Green == (*a).Semantic) {
            ++cnt;
            aiColors[1] = _a;
            aiColorsTypes[1] = (*a).eType;
        } else if (PLY::EST_Blue == (*a).Semantic) {
            ++cnt;
            aiColors[2] = _a;
            aiColorsTypes[2] = (*a).eType;
        } else if (PLY::EST_Alpha == (*a).Semantic) {
            ++cnt;
            aiColors[3] = _a;
            aiColorsTypes[3] = (*a).eType;
        } else if (PLY::EST_UTextureCoord == (*a).Semantic) {
            // Texture coordinates
            ++cnt;
            aiTexcoord[0] = _a;
            aiTexcoordTypes[0] = (*a).eType;
        } else if (PLY::EST_VTextureCoord == (*a).Semantic) {
            ++cnt;
            aiTexcoord[1] = _a;
            aiTexcoordTypes[1] = (*a).eType;
        }
    }

    // check whether we have a valid source for the vertex data
    if (0 != cnt) {
        // Position
        aiVector3D vOut;
        if (0xFFFFFFFF != aiPositions[0]) {
            vOut.x = PLY::PropertyInstance::ConvertTo<ai_real>(
                    GetProperty(instElement->alProperties, aiPositions[0]).avList.front(), aiTypes[0]);
        }

        if (0xFFFFFFFF != aiPositions[1]) {
            vOut.y = PLY::PropertyInstance::ConvertTo<ai_real>(
                    GetProperty(instElement->alProperties, aiPositions[1]).avList.front(), aiTypes[1]);
        }

        if (0xFFFFFFFF != aiPositions[2]) {
            vOut.z = PLY::PropertyInstance::ConvertTo<ai_real>(
                    GetProperty(instElement->alProperties, aiPositions[2]).avList.front(), aiTypes[2]);
        }

        // Normals
        aiVector3D nOut;
        bool haveNormal = false;
        if (0xFFFFFFFF != aiNormal[0]) {
            nOut.x = PLY::PropertyInstance::ConvertTo<ai_real>(
                    GetProperty(instElement->alProperties, aiNormal[0]).avList.front(), aiNormalTypes[0]);
            haveNormal = true;
        }

        if (0xFFFFFFFF != aiNormal[1]) {
            nOut.y = PLY::PropertyInstance::ConvertTo<ai_real>(
                    GetProperty(instElement->alProperties, aiNormal[1]).avList.front(), aiNormalTypes[1]);
            haveNormal = true;
        }

        if (0xFFFFFFFF != aiNormal[2]) {
            nOut.z = PLY::PropertyInstance::ConvertTo<ai_real>(
                    GetProperty(instElement->alProperties, aiNormal[2]).avList.front(), aiNormalTypes[2]);
            haveNormal = true;
        }

        //Colors
        aiColor4D cOut;
        bool haveColor = false;
        if (0xFFFFFFFF != aiColors[0]) {
            cOut.r = NormalizeColorValue(GetProperty(instElement->alProperties,
                                                 aiColors[0])
                                                 .avList.front(),
                    aiColorsTypes[0]);
            haveColor = true;
        }

        if (0xFFFFFFFF != aiColors[1]) {
            cOut.g = NormalizeColorValue(GetProperty(instElement->alProperties,
                                                 aiColors[1])
                                                 .avList.front(),
                    aiColorsTypes[1]);
            haveColor = true;
        }

        if (0xFFFFFFFF != aiColors[2]) {
            cOut.b = NormalizeColorValue(GetProperty(instElement->alProperties,
                                                 aiColors[2])
                                                 .avList.front(),
                    aiColorsTypes[2]);
            haveColor = true;
        }

        // assume 1.0 for the alpha channel if it is not set
        if (0xFFFFFFFF == aiColors[3]) {
            cOut.a = 1.0;
        } else {
            cOut.a = NormalizeColorValue(GetProperty(instElement->alProperties,
                                                 aiColors[3])
                                                 .avList.front(),
                    aiColorsTypes[3]);

            haveColor = true;
        }

        //Texture coordinates
        aiVector3D tOut;
        tOut.z = 0;
        bool haveTextureCoords = false;
        if (0xFFFFFFFF != aiTexcoord[0]) {
            tOut.x = PLY::PropertyInstance::ConvertTo<ai_real>(
                    GetProperty(instElement->alProperties, aiTexcoord[0]).avList.front(), aiTexcoordTypes[0]);
            haveTextureCoords = true;
        }

        if (0xFFFFFFFF != aiTexcoord[1]) {
            tOut.y = PLY::PropertyInstance::ConvertTo<ai_real>(
                    GetProperty(instElement->alProperties, aiTexcoord[1]).avList.front(), aiTexcoordTypes[1]);
            haveTextureCoords = true;
        }

        //create aiMesh if needed
        if (nullptr == mGeneratedMesh) {
            mGeneratedMesh = new aiMesh();
            mGeneratedMesh->mMaterialIndex = 0;
        }

        if (nullptr == mGeneratedMesh->mVertices) {
            mGeneratedMesh->mNumVertices = pcElement->NumOccur;
            mGeneratedMesh->mVertices = new aiVector3D[mGeneratedMesh->mNumVertices];
        }

        mGeneratedMesh->mVertices[pos] = vOut;

        if (haveNormal) {
            if (nullptr == mGeneratedMesh->mNormals)
                mGeneratedMesh->mNormals = new aiVector3D[mGeneratedMesh->mNumVertices];
            mGeneratedMesh->mNormals[pos] = nOut;
        }

        if (haveColor) {
            if (nullptr == mGeneratedMesh->mColors[0])
                mGeneratedMesh->mColors[0] = new aiColor4D[mGeneratedMesh->mNumVertices];
            mGeneratedMesh->mColors[0][pos] = cOut;
        }

        if (haveTextureCoords) {
            if (nullptr == mGeneratedMesh->mTextureCoords[0]) {
                mGeneratedMesh->mNumUVComponents[0] = 2;
                mGeneratedMesh->mTextureCoords[0] = new aiVector3D[mGeneratedMesh->mNumVertices];
            }
            mGeneratedMesh->mTextureCoords[0][pos] = tOut;
        }
    }
}

// ------------------------------------------------------------------------------------------------
// Convert a color component to [0...1]
ai_real PLYImporter::NormalizeColorValue(PLY::PropertyInstance::ValueUnion val, PLY::EDataType eType) {
    switch (eType) {
    case EDT_Float:
        return val.fFloat;
    case EDT_Double:
        return (ai_real)val.fDouble;
    case EDT_UChar:
        return (ai_real)val.iUInt / (ai_real)0xFF;
    case EDT_Char:
        return (ai_real)(val.iInt + (0xFF / 2)) / (ai_real)0xFF;
    case EDT_UShort:
        return (ai_real)val.iUInt / (ai_real)0xFFFF;
    case EDT_Short:
        return (ai_real)(val.iInt + (0xFFFF / 2)) / (ai_real)0xFFFF;
    case EDT_UInt:
        return (ai_real)val.iUInt / (ai_real)0xFFFF;
    case EDT_Int:
        return ((ai_real)val.iInt / (ai_real)0xFF) + 0.5f;
    default:
        break;
    }

    return 0.0f;
}

// ------------------------------------------------------------------------------------------------
// Try to extract proper faces from the PLY DOM
void PLYImporter::LoadFace(const PLY::Element *pcElement, const PLY::ElementInstance *instElement,
        unsigned int pos) {
    ai_assert(nullptr != pcElement);
    ai_assert(nullptr != instElement);

    if (mGeneratedMesh == nullptr) {
        throw DeadlyImportError("Invalid .ply file: Vertices should be declared before faces");
    }

    bool bOne = false;

    // index of the vertex index list
    unsigned int iProperty = 0xFFFFFFFF;
    PLY::EDataType eType = EDT_Char;
    bool bIsTriStrip = false;

    // index of the material index property
    //unsigned int iMaterialIndex = 0xFFFFFFFF;
    //PLY::EDataType eType2 = EDT_Char;

    // texture coordinates
    unsigned int iTextureCoord = 0xFFFFFFFF;
    PLY::EDataType eType3 = EDT_Char;

    // face = unique number of vertex indices
    if (PLY::EEST_Face == pcElement->eSemantic) {
        unsigned int _a = 0;
        for (std::vector<PLY::Property>::const_iterator a = pcElement->alProperties.begin();
                a != pcElement->alProperties.end(); ++a, ++_a) {
            if (PLY::EST_VertexIndex == (*a).Semantic) {
                // must be a dynamic list!
                if (!(*a).bIsList) {
                    continue;
                }

                iProperty = _a;
                bOne = true;
                eType = (*a).eType;
            } else if (PLY::EST_TextureCoordinates == (*a).Semantic) {
                // must be a dynamic list!
                if (!(*a).bIsList) {
                    continue;
                }
                iTextureCoord = _a;
                bOne = true;
                eType3 = (*a).eType;
            }
        }
    }
    // triangle strip
    // TODO: triangle strip and material index support???
    else if (PLY::EEST_TriStrip == pcElement->eSemantic) {
        unsigned int _a = 0;
        for (std::vector<PLY::Property>::const_iterator a = pcElement->alProperties.begin();
                a != pcElement->alProperties.end(); ++a, ++_a) {
            // must be a dynamic list!
            if (!(*a).bIsList) {
                continue;
            }
            iProperty = _a;
            bOne = true;
            bIsTriStrip = true;
            eType = (*a).eType;
            break;
        }
    }

    // check whether we have at least one per-face information set
    if (bOne) {
        if (mGeneratedMesh->mFaces == nullptr) {
            mGeneratedMesh->mNumFaces = pcElement->NumOccur;
            mGeneratedMesh->mFaces = new aiFace[mGeneratedMesh->mNumFaces];
        }

        if (!bIsTriStrip) {
            // parse the list of vertex indices
            if (0xFFFFFFFF != iProperty) {
                const unsigned int iNum = (unsigned int)GetProperty(instElement->alProperties, iProperty).avList.size();
                mGeneratedMesh->mFaces[pos].mNumIndices = iNum;
                mGeneratedMesh->mFaces[pos].mIndices = new unsigned int[iNum];

                std::vector<PLY::PropertyInstance::ValueUnion>::const_iterator p =
                        GetProperty(instElement->alProperties, iProperty).avList.begin();

                for (unsigned int a = 0; a < iNum; ++a, ++p) {
                    mGeneratedMesh->mFaces[pos].mIndices[a] = PLY::PropertyInstance::ConvertTo<unsigned int>(*p, eType);
                }
            }

            // parse the material index
            // cannot be handled without processing the whole file first
            /*if (0xFFFFFFFF != iMaterialIndex)
        {
            mGeneratedMesh->mFaces[pos]. = PLY::PropertyInstance::ConvertTo<unsigned int>(
            GetProperty(instElement->alProperties, iMaterialIndex).avList.front(), eType2);
        }*/

            if (0xFFFFFFFF != iTextureCoord) {
                const unsigned int iNum = (unsigned int)GetProperty(instElement->alProperties, iTextureCoord).avList.size();

                //should be 6 coords
                std::vector<PLY::PropertyInstance::ValueUnion>::const_iterator p =
                        GetProperty(instElement->alProperties, iTextureCoord).avList.begin();

                if ((iNum / 3) == 2) // X Y coord
                {
                    for (unsigned int a = 0; a < iNum; ++a, ++p) {
                        unsigned int vindex = mGeneratedMesh->mFaces[pos].mIndices[a / 2];
                        if (vindex < mGeneratedMesh->mNumVertices) {
                            if (mGeneratedMesh->mTextureCoords[0] == nullptr) {
                                mGeneratedMesh->mNumUVComponents[0] = 2;
                                mGeneratedMesh->mTextureCoords[0] = new aiVector3D[mGeneratedMesh->mNumVertices];
                            }

                            if (a % 2 == 0) {
                                mGeneratedMesh->mTextureCoords[0][vindex].x = PLY::PropertyInstance::ConvertTo<ai_real>(*p, eType3);
                            } else {
                                mGeneratedMesh->mTextureCoords[0][vindex].y = PLY::PropertyInstance::ConvertTo<ai_real>(*p, eType3);
                            }

                            mGeneratedMesh->mTextureCoords[0][vindex].z = 0;
                        }
                    }
                }
            }
        } else { // triangle strips
            // normally we have only one triangle strip instance where
            // a value of -1 indicates a restart of the strip
            bool flip = false;
            const std::vector<PLY::PropertyInstance::ValueUnion> &quak = GetProperty(instElement->alProperties, iProperty).avList;
            //pvOut->reserve(pvOut->size() + quak.size() + (quak.size()>>2u)); //Limits memory consumption

            int aiTable[2] = { -1, -1 };
            for (std::vector<PLY::PropertyInstance::ValueUnion>::const_iterator a = quak.begin(); a != quak.end(); ++a) {
                const int p = PLY::PropertyInstance::ConvertTo<int>(*a, eType);

                if (-1 == p) {
                    // restart the strip ...
                    aiTable[0] = aiTable[1] = -1;
                    flip = false;
                    continue;
                }
                if (-1 == aiTable[0]) {
                    aiTable[0] = p;
                    continue;
                }
                if (-1 == aiTable[1]) {
                    aiTable[1] = p;
                    continue;
                }

                if (mGeneratedMesh->mFaces == nullptr) {
                    mGeneratedMesh->mNumFaces = pcElement->NumOccur;
                    mGeneratedMesh->mFaces = new aiFace[mGeneratedMesh->mNumFaces];
                }

                mGeneratedMesh->mFaces[pos].mNumIndices = 3;
                mGeneratedMesh->mFaces[pos].mIndices = new unsigned int[3];
                mGeneratedMesh->mFaces[pos].mIndices[0] = aiTable[0];
                mGeneratedMesh->mFaces[pos].mIndices[1] = aiTable[1];
                mGeneratedMesh->mFaces[pos].mIndices[2] = p;

                // every second pass swap the indices.
                flip = !flip;
                if (flip) {
                    std::swap(mGeneratedMesh->mFaces[pos].mIndices[0], mGeneratedMesh->mFaces[pos].mIndices[1]);
                }

                aiTable[0] = aiTable[1];
                aiTable[1] = p;
            }
        }
    }
}

// ------------------------------------------------------------------------------------------------
// Get a RGBA color in [0...1] range
void PLYImporter::GetMaterialColor(const std::vector<PLY::PropertyInstance> &avList,
        unsigned int aiPositions[4],
        PLY::EDataType aiTypes[4],
        aiColor4D *clrOut) {
    ai_assert(nullptr != clrOut);

    if (0xFFFFFFFF == aiPositions[0])
        clrOut->r = 0.0f;
    else {
        clrOut->r = NormalizeColorValue(GetProperty(avList,
                                                aiPositions[0])
                                                .avList.front(),
                aiTypes[0]);
    }

    if (0xFFFFFFFF == aiPositions[1])
        clrOut->g = 0.0f;
    else {
        clrOut->g = NormalizeColorValue(GetProperty(avList,
                                                aiPositions[1])
                                                .avList.front(),
                aiTypes[1]);
    }

    if (0xFFFFFFFF == aiPositions[2])
        clrOut->b = 0.0f;
    else {
        clrOut->b = NormalizeColorValue(GetProperty(avList,
                                                aiPositions[2])
                                                .avList.front(),
                aiTypes[2]);
    }

    // assume 1.0 for the alpha channel ifit is not set
    if (0xFFFFFFFF == aiPositions[3])
        clrOut->a = 1.0f;
    else {
        clrOut->a = NormalizeColorValue(GetProperty(avList,
                                                aiPositions[3])
                                                .avList.front(),
                aiTypes[3]);
    }
}

// ------------------------------------------------------------------------------------------------
// Extract a material from the PLY DOM
void PLYImporter::LoadMaterial(std::vector<aiMaterial *> *pvOut, std::string &defaultTexture, const bool pointsOnly) {
    ai_assert(nullptr != pvOut);

    // diffuse[4], specular[4], ambient[4]
    // rgba order
    unsigned int aaiPositions[3][4] = {

        { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF },
        { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF },
        { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF },
    };

    PLY::EDataType aaiTypes[3][4] = {
        { EDT_Char, EDT_Char, EDT_Char, EDT_Char },
        { EDT_Char, EDT_Char, EDT_Char, EDT_Char },
        { EDT_Char, EDT_Char, EDT_Char, EDT_Char }
    };
    PLY::ElementInstanceList *pcList = nullptr;

    unsigned int iPhong = 0xFFFFFFFF;
    PLY::EDataType ePhong = EDT_Char;

    unsigned int iOpacity = 0xFFFFFFFF;
    PLY::EDataType eOpacity = EDT_Char;

    // search in the DOM for a vertex entry
    unsigned int _i = 0;
    for (std::vector<PLY::Element>::const_iterator i = this->pcDOM->alElements.begin();
            i != this->pcDOM->alElements.end(); ++i, ++_i) {
        if (PLY::EEST_Material == (*i).eSemantic) {
            pcList = &this->pcDOM->alElementData[_i];

            // now check whether which coordinate sets are available
            unsigned int _a = 0;
            for (std::vector<PLY::Property>::const_iterator
                            a = (*i).alProperties.begin();
                    a != (*i).alProperties.end(); ++a, ++_a) {
                if ((*a).bIsList) continue;

                // pohng specularity      -----------------------------------
                if (PLY::EST_PhongPower == (*a).Semantic) {
                    iPhong = _a;
                    ePhong = (*a).eType;
                }

                // general opacity        -----------------------------------
                if (PLY::EST_Opacity == (*a).Semantic) {
                    iOpacity = _a;
                    eOpacity = (*a).eType;
                }

                // diffuse color channels -----------------------------------
                if (PLY::EST_DiffuseRed == (*a).Semantic) {
                    aaiPositions[0][0] = _a;
                    aaiTypes[0][0] = (*a).eType;
                } else if (PLY::EST_DiffuseGreen == (*a).Semantic) {
                    aaiPositions[0][1] = _a;
                    aaiTypes[0][1] = (*a).eType;
                } else if (PLY::EST_DiffuseBlue == (*a).Semantic) {
                    aaiPositions[0][2] = _a;
                    aaiTypes[0][2] = (*a).eType;
                } else if (PLY::EST_DiffuseAlpha == (*a).Semantic) {
                    aaiPositions[0][3] = _a;
                    aaiTypes[0][3] = (*a).eType;
                }
                // specular color channels -----------------------------------
                else if (PLY::EST_SpecularRed == (*a).Semantic) {
                    aaiPositions[1][0] = _a;
                    aaiTypes[1][0] = (*a).eType;
                } else if (PLY::EST_SpecularGreen == (*a).Semantic) {
                    aaiPositions[1][1] = _a;
                    aaiTypes[1][1] = (*a).eType;
                } else if (PLY::EST_SpecularBlue == (*a).Semantic) {
                    aaiPositions[1][2] = _a;
                    aaiTypes[1][2] = (*a).eType;
                } else if (PLY::EST_SpecularAlpha == (*a).Semantic) {
                    aaiPositions[1][3] = _a;
                    aaiTypes[1][3] = (*a).eType;
                }
                // ambient color channels -----------------------------------
                else if (PLY::EST_AmbientRed == (*a).Semantic) {
                    aaiPositions[2][0] = _a;
                    aaiTypes[2][0] = (*a).eType;
                } else if (PLY::EST_AmbientGreen == (*a).Semantic) {
                    aaiPositions[2][1] = _a;
                    aaiTypes[2][1] = (*a).eType;
                } else if (PLY::EST_AmbientBlue == (*a).Semantic) {
                    aaiPositions[2][2] = _a;
                    aaiTypes[2][2] = (*a).eType;
                } else if (PLY::EST_AmbientAlpha == (*a).Semantic) {
                    aaiPositions[2][3] = _a;
                    aaiTypes[2][3] = (*a).eType;
                }
            }
            break;
        } else if (PLY::EEST_TextureFile == (*i).eSemantic) {
            defaultTexture = (*i).szName;
        }
    }
    // check whether we have a valid source for the material data
    if (nullptr != pcList) {
        for (std::vector<ElementInstance>::const_iterator i = pcList->alInstances.begin(); i != pcList->alInstances.end(); ++i) {
            aiColor4D clrOut;
            aiMaterial *pcHelper = new aiMaterial();

            // build the diffuse material color
            GetMaterialColor((*i).alProperties, aaiPositions[0], aaiTypes[0], &clrOut);
            pcHelper->AddProperty<aiColor4D>(&clrOut, 1, AI_MATKEY_COLOR_DIFFUSE);

            // build the specular material color
            GetMaterialColor((*i).alProperties, aaiPositions[1], aaiTypes[1], &clrOut);
            pcHelper->AddProperty<aiColor4D>(&clrOut, 1, AI_MATKEY_COLOR_SPECULAR);

            // build the ambient material color
            GetMaterialColor((*i).alProperties, aaiPositions[2], aaiTypes[2], &clrOut);
            pcHelper->AddProperty<aiColor4D>(&clrOut, 1, AI_MATKEY_COLOR_AMBIENT);

            // handle phong power and shading mode
            int iMode = (int)aiShadingMode_Gouraud;
            if (0xFFFFFFFF != iPhong) {
                ai_real fSpec = PLY::PropertyInstance::ConvertTo<ai_real>(GetProperty((*i).alProperties, iPhong).avList.front(), ePhong);

                // if shininess is 0 (and the pow() calculation would therefore always
                // become 1, not depending on the angle), use gouraud lighting
                if (fSpec) {
                    // scale this with 15 ... hopefully this is correct
                    fSpec *= 15;
                    pcHelper->AddProperty<ai_real>(&fSpec, 1, AI_MATKEY_SHININESS);

                    iMode = (int)aiShadingMode_Phong;
                }
            }
            pcHelper->AddProperty<int>(&iMode, 1, AI_MATKEY_SHADING_MODEL);

            // handle opacity
            if (0xFFFFFFFF != iOpacity) {
                ai_real fOpacity = PLY::PropertyInstance::ConvertTo<ai_real>(GetProperty((*i).alProperties, iPhong).avList.front(), eOpacity);
                pcHelper->AddProperty<ai_real>(&fOpacity, 1, AI_MATKEY_OPACITY);
            }

            // The face order is absolutely undefined for PLY, so we have to
            // use two-sided rendering to be sure it's ok.
            const int two_sided = 1;
            pcHelper->AddProperty(&two_sided, 1, AI_MATKEY_TWOSIDED);

            //default texture
            if (!defaultTexture.empty()) {
                const aiString name(defaultTexture.c_str());
                pcHelper->AddProperty(&name, _AI_MATKEY_TEXTURE_BASE, aiTextureType_DIFFUSE, 0);
            }

            if (!pointsOnly) {
                pcHelper->AddProperty(&two_sided, 1, AI_MATKEY_TWOSIDED);
            }

            //set to wireframe, so when using this material info we can switch to points rendering
            if (pointsOnly) {
                const int wireframe = 1;
                pcHelper->AddProperty(&wireframe, 1, AI_MATKEY_ENABLE_WIREFRAME);
            }

            // add the newly created material instance to the list
            pvOut->push_back(pcHelper);
        }
    } else {
        // generate a default material
        aiMaterial *pcHelper = new aiMaterial();

        // fill in a default material
        int iMode = (int)aiShadingMode_Gouraud;
        pcHelper->AddProperty<int>(&iMode, 1, AI_MATKEY_SHADING_MODEL);

        //generate white material most 3D engine just multiply ambient / diffuse color with actual ambient / light color
        aiColor3D clr;
        clr.b = clr.g = clr.r = 1.0f;
        pcHelper->AddProperty<aiColor3D>(&clr, 1, AI_MATKEY_COLOR_DIFFUSE);
        pcHelper->AddProperty<aiColor3D>(&clr, 1, AI_MATKEY_COLOR_SPECULAR);

        clr.b = clr.g = clr.r = 1.0f;
        pcHelper->AddProperty<aiColor3D>(&clr, 1, AI_MATKEY_COLOR_AMBIENT);

        // The face order is absolutely undefined for PLY, so we have to
        // use two-sided rendering to be sure it's ok.
        if (!pointsOnly) {
            const int two_sided = 1;
            pcHelper->AddProperty(&two_sided, 1, AI_MATKEY_TWOSIDED);
        }

        //default texture
        if (!defaultTexture.empty()) {
            const aiString name(defaultTexture.c_str());
            pcHelper->AddProperty(&name, _AI_MATKEY_TEXTURE_BASE, aiTextureType_DIFFUSE, 0);
        }

        //set to wireframe, so when using this material info we can switch to points rendering
        if (pointsOnly) {
            const int wireframe = 1;
            pcHelper->AddProperty(&wireframe, 1, AI_MATKEY_ENABLE_WIREFRAME);
        }

        pvOut->push_back(pcHelper);
    }
}

#endif // !! ASSIMP_BUILD_NO_PLY_IMPORTER