summaryrefslogtreecommitdiff
path: root/src/mesh/assimp-master/code/AssetLib/SIB/SIBImporter.cpp
blob: 7b66afa446570a7d13b753b0034f85a56c6fd9a9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
/*
---------------------------------------------------------------------------
Open Asset Import Library (assimp)
---------------------------------------------------------------------------

Copyright (c) 2006-2022, assimp team

All rights reserved.

Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the following
conditions are met:

* Redistributions of source code must retain the above
  copyright notice, this list of conditions and the
  following disclaimer.

* Redistributions in binary form must reproduce the above
  copyright notice, this list of conditions and the
  following disclaimer in the documentation and/or other
  materials provided with the distribution.

* Neither the name of the assimp team, nor the names of its
  contributors may be used to endorse or promote products
  derived from this software without specific prior
  written permission of the assimp team.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------
*/

/** @file  SIBImporter.cpp
 *  @brief Implementation of the SIB importer class.
 *
 *  The Nevercenter Silo SIB format is undocumented.
 *  All details here have been reverse engineered from
 *  studying the binary files output by Silo.
 *
 *  Nevertheless, this implementation is reasonably complete.
 */

#ifndef ASSIMP_BUILD_NO_SIB_IMPORTER

// internal headers
#include "SIBImporter.h"
#include <assimp/ByteSwapper.h>
#include <assimp/StreamReader.h>
#include <assimp/TinyFormatter.h>
#ifdef ASSIMP_USE_HUNTER
#include <utf8.h>
#else
#include "../contrib/utf8cpp/source/utf8.h"
#endif
#include <assimp/importerdesc.h>
#include <assimp/scene.h>
#include <assimp/DefaultLogger.hpp>
#include <assimp/IOSystem.hpp>
#include <assimp/StringUtils.h>

#include <map>

using namespace Assimp;

static const aiImporterDesc desc = {
    "Silo SIB Importer",
    "Richard Mitton (http://www.codersnotes.com/about)",
    "",
    "Does not apply subdivision.",
    aiImporterFlags_SupportBinaryFlavour,
    0, 0,
    0, 0,
    "sib"
};

struct SIBChunk {
    uint32_t Tag;
    uint32_t Size;
} PACK_STRUCT;

enum {
    POS,
    NRM,
    UV,
    N
};

typedef std::pair<uint32_t, uint32_t> SIBPair;

struct SIBEdge {
    uint32_t faceA, faceB;
    bool creased;
};

struct SIBMesh {
    aiMatrix4x4 axis;
    uint32_t numPts;
    std::vector<aiVector3D> pos, nrm, uv;
    std::vector<uint32_t> idx;
    std::vector<uint32_t> faceStart;
    std::vector<uint32_t> mtls;
    std::vector<SIBEdge> edges;
    std::map<SIBPair, uint32_t> edgeMap;
};

struct SIBObject {
    aiString name;
    aiMatrix4x4 axis;
    size_t meshIdx, meshCount;
};

struct SIB {
    std::vector<aiMaterial *> mtls;
    std::vector<aiMesh *> meshes;
    std::vector<aiLight *> lights;
    std::vector<SIBObject> objs, insts;
};

// ------------------------------------------------------------------------------------------------
static SIBEdge &GetEdge(SIBMesh *mesh, uint32_t posA, uint32_t posB) {
    SIBPair pair = (posA < posB) ? SIBPair(posA, posB) : SIBPair(posB, posA);
    std::map<SIBPair, uint32_t>::iterator it = mesh->edgeMap.find(pair);
    if (it != mesh->edgeMap.end())
        return mesh->edges[it->second];

    SIBEdge edge;
    edge.creased = false;
    edge.faceA = edge.faceB = 0xffffffff;
    mesh->edgeMap[pair] = static_cast<uint32_t>(mesh->edges.size());
    mesh->edges.push_back(edge);
    return mesh->edges.back();
}

// ------------------------------------------------------------------------------------------------
// Helpers for reading chunked data.

#define TAG(A, B, C, D) ((A << 24) | (B << 16) | (C << 8) | D)

static SIBChunk ReadChunk(StreamReaderLE *stream) {
    SIBChunk chunk;
    chunk.Tag = stream->GetU4();
    chunk.Size = stream->GetU4();
    if (chunk.Size > stream->GetRemainingSizeToLimit())
        ASSIMP_LOG_ERROR("SIB: Chunk overflow");
    ByteSwap::Swap4(&chunk.Tag);
    return chunk;
}

static aiColor3D ReadColor(StreamReaderLE *stream) {
    float r = stream->GetF4();
    float g = stream->GetF4();
    float b = stream->GetF4();
    stream->GetU4(); // Colors have an unused(?) 4th component.
    return aiColor3D(r, g, b);
}

static void UnknownChunk(StreamReaderLE * /*stream*/, const SIBChunk &chunk) {
    char temp[4] = {
        static_cast<char>((chunk.Tag >> 24) & 0xff),
        static_cast<char>((chunk.Tag >> 16) & 0xff),
        static_cast<char>((chunk.Tag >> 8) & 0xff),
        static_cast<char>(chunk.Tag & 0xff)
    };

    ASSIMP_LOG_WARN("SIB: Skipping unknown '", ai_str_toprintable(temp, 4), "' chunk.");
}

// Reads a UTF-16LE string and returns it at UTF-8.
static aiString ReadString(StreamReaderLE *stream, uint32_t numWChars) {
    if (nullptr == stream || 0 == numWChars) {
        return aiString();
    }

    // Allocate buffers (max expansion is 1 byte -> 4 bytes for UTF-8)
    std::vector<unsigned char> str;
    str.reserve(numWChars * 4 + 1);
    uint16_t *temp = new uint16_t[numWChars];
    for (uint32_t n = 0; n < numWChars; ++n) {
        temp[n] = stream->GetU2();
    }

    // Convert it and NUL-terminate.
    const uint16_t *start(temp), *end(temp + numWChars);
    utf8::utf16to8(start, end, back_inserter(str));
    str[str.size() - 1] = '\0';

    // Return the final string.
    aiString result = aiString((const char *)&str[0]);
    delete[] temp;

    return result;
}

// ------------------------------------------------------------------------------------------------
// Constructor to be privately used by Importer
SIBImporter::SIBImporter() {
    // empty
}

// ------------------------------------------------------------------------------------------------
// Destructor, private as well
SIBImporter::~SIBImporter() {
    // empty
}

// ------------------------------------------------------------------------------------------------
// Returns whether the class can handle the format of the given file.
bool SIBImporter::CanRead(const std::string &filename, IOSystem * /*pIOHandler*/, bool /*checkSig*/) const {
    return SimpleExtensionCheck(filename, "sib");
}

// ------------------------------------------------------------------------------------------------
const aiImporterDesc *SIBImporter::GetInfo() const {
    return &desc;
}

// ------------------------------------------------------------------------------------------------
static void ReadVerts(SIBMesh *mesh, StreamReaderLE *stream, uint32_t count) {
    if (nullptr == mesh || nullptr == stream) {
        return;
    }

    mesh->pos.resize(count);
    for (uint32_t n = 0; n < count; ++n) {
        mesh->pos[n].x = stream->GetF4();
        mesh->pos[n].y = stream->GetF4();
        mesh->pos[n].z = stream->GetF4();
    }
}

// ------------------------------------------------------------------------------------------------
static void ReadFaces(SIBMesh *mesh, StreamReaderLE *stream) {
    uint32_t ptIdx = 0;
    while (stream->GetRemainingSizeToLimit() > 0) {
        uint32_t numPoints = stream->GetU4();

        // Store room for the N index channels, plus the point count.
        size_t pos = mesh->idx.size() + 1;
        mesh->idx.resize(pos + numPoints * N);
        mesh->idx[pos - 1] = numPoints;
        uint32_t *idx = &mesh->idx[pos];

        mesh->faceStart.push_back(static_cast<uint32_t>(pos - 1));
        mesh->mtls.push_back(0);

        // Read all the position data.
        // UV/normals will be supplied later.
        // Positions are supplied indexed already, so we preserve that
        // mapping. UVs are supplied uniquely, so we allocate unique indices.
        for (uint32_t n = 0; n < numPoints; n++, idx += N, ptIdx++) {
            uint32_t p = stream->GetU4();
            if (p >= mesh->pos.size())
                throw DeadlyImportError("Vertex index is out of range.");
            idx[POS] = p;
            idx[NRM] = ptIdx;
            idx[UV] = ptIdx;
        }
    }

    // Allocate data channels for normals/UVs.
    mesh->nrm.resize(ptIdx, aiVector3D(0, 0, 0));
    mesh->uv.resize(ptIdx, aiVector3D(0, 0, 0));

    mesh->numPts = ptIdx;
}

// ------------------------------------------------------------------------------------------------
static void ReadUVs(SIBMesh *mesh, StreamReaderLE *stream) {
    while (stream->GetRemainingSizeToLimit() > 0) {
        uint32_t faceIdx = stream->GetU4();
        uint32_t numPoints = stream->GetU4();

        if (faceIdx >= mesh->faceStart.size())
            throw DeadlyImportError("Invalid face index.");

        uint32_t pos = mesh->faceStart[faceIdx];
        uint32_t *idx = &mesh->idx[pos + 1];

        for (uint32_t n = 0; n < numPoints; n++, idx += N) {
            uint32_t id = idx[UV];
            mesh->uv[id].x = stream->GetF4();
            mesh->uv[id].y = stream->GetF4();
        }
    }
}

// ------------------------------------------------------------------------------------------------
static void ReadMtls(SIBMesh *mesh, StreamReaderLE *stream) {
    // Material assignments are stored run-length encoded.
    // Also, we add 1 to each material so that we can use mtl #0
    // as the default material.
    uint32_t prevFace = stream->GetU4();
    uint32_t prevMtl = stream->GetU4() + 1;
    while (stream->GetRemainingSizeToLimit() > 0) {
        uint32_t face = stream->GetU4();
        uint32_t mtl = stream->GetU4() + 1;
        while (prevFace < face) {
            if (prevFace >= mesh->mtls.size())
                throw DeadlyImportError("Invalid face index.");
            mesh->mtls[prevFace++] = prevMtl;
        }

        prevFace = face;
        prevMtl = mtl;
    }

    while (prevFace < mesh->mtls.size())
        mesh->mtls[prevFace++] = prevMtl;
}

// ------------------------------------------------------------------------------------------------
static void ReadAxis(aiMatrix4x4 &axis, StreamReaderLE *stream) {
    axis.a4 = stream->GetF4();
    axis.b4 = stream->GetF4();
    axis.c4 = stream->GetF4();
    axis.d4 = 1;
    axis.a1 = stream->GetF4();
    axis.b1 = stream->GetF4();
    axis.c1 = stream->GetF4();
    axis.d1 = 0;
    axis.a2 = stream->GetF4();
    axis.b2 = stream->GetF4();
    axis.c2 = stream->GetF4();
    axis.d2 = 0;
    axis.a3 = stream->GetF4();
    axis.b3 = stream->GetF4();
    axis.c3 = stream->GetF4();
    axis.d3 = 0;
}

// ------------------------------------------------------------------------------------------------
static void ReadEdges(SIBMesh *mesh, StreamReaderLE *stream) {
    while (stream->GetRemainingSizeToLimit() > 0) {
        uint32_t posA = stream->GetU4();
        uint32_t posB = stream->GetU4();
        GetEdge(mesh, posA, posB);
    }
}

// ------------------------------------------------------------------------------------------------
static void ReadCreases(SIBMesh *mesh, StreamReaderLE *stream) {
    while (stream->GetRemainingSizeToLimit() > 0) {
        uint32_t edge = stream->GetU4();
        if (edge >= mesh->edges.size())
            throw DeadlyImportError("SIB: Invalid edge index.");
        mesh->edges[edge].creased = true;
    }
}

// ------------------------------------------------------------------------------------------------
static void ConnectFaces(SIBMesh *mesh) {
    // Find faces connected to each edge.
    size_t numFaces = mesh->faceStart.size();
    for (size_t faceIdx = 0; faceIdx < numFaces; faceIdx++) {
        uint32_t *idx = &mesh->idx[mesh->faceStart[faceIdx]];
        uint32_t numPoints = *idx++;
        uint32_t prev = idx[(numPoints - 1) * N + POS];

        for (uint32_t i = 0; i < numPoints; i++, idx += N) {
            uint32_t next = idx[POS];

            // Find this edge.
            SIBEdge &edge = GetEdge(mesh, prev, next);

            // Link this face onto it.
            // This gives potentially undesirable normals when used
            // with non-2-manifold surfaces, but then so does Silo to begin with.
            if (edge.faceA == 0xffffffff)
                edge.faceA = static_cast<uint32_t>(faceIdx);
            else if (edge.faceB == 0xffffffff)
                edge.faceB = static_cast<uint32_t>(faceIdx);

            prev = next;
        }
    }
}

// ------------------------------------------------------------------------------------------------
static aiVector3D CalculateVertexNormal(SIBMesh *mesh, uint32_t faceIdx, uint32_t pos,
        const std::vector<aiVector3D> &faceNormals) {
    // Creased edges complicate this. We need to find the start/end range of the
    // ring of faces that touch this position.
    // We do this in two passes. The first pass is to find the end of the range,
    // the second is to work backwards to the start and calculate the final normal.
    aiVector3D vtxNormal;
    for (int pass = 0; pass < 2; pass++) {
        vtxNormal = aiVector3D(0, 0, 0);
        uint32_t startFaceIdx = faceIdx;
        uint32_t prevFaceIdx = faceIdx;

        // Process each connected face.
        while (true) {
            // Accumulate the face normal.
            vtxNormal += faceNormals[faceIdx];

            uint32_t nextFaceIdx = 0xffffffff;

            // Move to the next edge sharing this position.
            uint32_t *idx = &mesh->idx[mesh->faceStart[faceIdx]];
            uint32_t numPoints = *idx++;
            uint32_t posA = idx[(numPoints - 1) * N + POS];
            for (uint32_t n = 0; n < numPoints; n++, idx += N) {
                uint32_t posB = idx[POS];

                // Test if this edge shares our target position.
                if (posA == pos || posB == pos) {
                    SIBEdge &edge = GetEdge(mesh, posA, posB);

                    // Non-manifold meshes can produce faces which share
                    // positions but have no edge entry, so check it.
                    if (edge.faceA == faceIdx || edge.faceB == faceIdx) {
                        // Move to whichever side we didn't just come from.
                        if (!edge.creased) {
                            if (edge.faceA != prevFaceIdx && edge.faceA != faceIdx && edge.faceA != 0xffffffff)
                                nextFaceIdx = edge.faceA;
                            else if (edge.faceB != prevFaceIdx && edge.faceB != faceIdx && edge.faceB != 0xffffffff)
                                nextFaceIdx = edge.faceB;
                        }
                    }
                }

                posA = posB;
            }

            // Stop once we hit either an creased/unconnected edge, or we
            // wrapped around and hit our start point.
            if (nextFaceIdx == 0xffffffff || nextFaceIdx == startFaceIdx)
                break;

            prevFaceIdx = faceIdx;
            faceIdx = nextFaceIdx;
        }
    }

    // Normalize it.
    float len = vtxNormal.Length();
    if (len > 0.000000001f)
        vtxNormal /= len;
    return vtxNormal;
}

// ------------------------------------------------------------------------------------------------
static void CalculateNormals(SIBMesh *mesh) {
    size_t numFaces = mesh->faceStart.size();

    // Calculate face normals.
    std::vector<aiVector3D> faceNormals(numFaces);
    for (size_t faceIdx = 0; faceIdx < numFaces; faceIdx++) {
        uint32_t *idx = &mesh->idx[mesh->faceStart[faceIdx]];
        uint32_t numPoints = *idx++;

        aiVector3D faceNormal(0, 0, 0);

        uint32_t *prev = &idx[(numPoints - 1) * N];

        for (uint32_t i = 0; i < numPoints; i++) {
            uint32_t *next = &idx[i * N];

            faceNormal += mesh->pos[prev[POS]] ^ mesh->pos[next[POS]];
            prev = next;
        }

        faceNormals[faceIdx] = faceNormal;
    }

    // Calculate vertex normals.
    for (size_t faceIdx = 0; faceIdx < numFaces; faceIdx++) {
        uint32_t *idx = &mesh->idx[mesh->faceStart[faceIdx]];
        uint32_t numPoints = *idx++;

        for (uint32_t i = 0; i < numPoints; i++) {
            uint32_t pos = idx[i * N + POS];
            uint32_t nrm = idx[i * N + NRM];
            aiVector3D vtxNorm = CalculateVertexNormal(mesh, static_cast<uint32_t>(faceIdx), pos, faceNormals);
            mesh->nrm[nrm] = vtxNorm;
        }
    }
}

// ------------------------------------------------------------------------------------------------
struct TempMesh {
    std::vector<aiVector3D> vtx;
    std::vector<aiVector3D> nrm;
    std::vector<aiVector3D> uv;
    std::vector<aiFace> faces;
};

static void ReadShape(SIB *sib, StreamReaderLE *stream) {
    SIBMesh smesh;
    aiString name;

    while (stream->GetRemainingSizeToLimit() >= sizeof(SIBChunk)) {
        SIBChunk chunk = ReadChunk(stream);
        unsigned oldLimit = stream->SetReadLimit(stream->GetCurrentPos() + chunk.Size);

        switch (chunk.Tag) {
        case TAG('M', 'I', 'R', 'P'): break; // mirror plane maybe?
        case TAG('I', 'M', 'R', 'P'): break; // instance mirror? (not supported here yet)
        case TAG('D', 'I', 'N', 'F'): break; // display info, not needed
        case TAG('P', 'I', 'N', 'F'): break; // ?
        case TAG('V', 'M', 'I', 'R'): break; // ?
        case TAG('F', 'M', 'I', 'R'): break; // ?
        case TAG('T', 'X', 'S', 'M'): break; // ?
        case TAG('F', 'A', 'H', 'S'): break; // ?
        case TAG('V', 'R', 'T', 'S'): ReadVerts(&smesh, stream, chunk.Size / 12); break;
        case TAG('F', 'A', 'C', 'S'): ReadFaces(&smesh, stream); break;
        case TAG('F', 'T', 'V', 'S'): ReadUVs(&smesh, stream); break;
        case TAG('S', 'N', 'A', 'M'): name = ReadString(stream, chunk.Size / 2); break;
        case TAG('F', 'A', 'M', 'A'): ReadMtls(&smesh, stream); break;
        case TAG('A', 'X', 'I', 'S'): ReadAxis(smesh.axis, stream); break;
        case TAG('E', 'D', 'G', 'S'): ReadEdges(&smesh, stream); break;
        case TAG('E', 'C', 'R', 'S'): ReadCreases(&smesh, stream); break;
        default: UnknownChunk(stream, chunk); break;
        }

        stream->SetCurrentPos(stream->GetReadLimit());
        stream->SetReadLimit(oldLimit);
    }

    ai_assert(smesh.faceStart.size() == smesh.mtls.size()); // sanity check

    // Silo doesn't store any normals in the file - we need to compute
    // them ourselves. We can't let AssImp handle it as AssImp doesn't
    // know about our creased edges.
    ConnectFaces(&smesh);
    CalculateNormals(&smesh);

    // Construct the transforms.
    aiMatrix4x4 worldToLocal = smesh.axis;
    worldToLocal.Inverse();
    aiMatrix4x4 worldToLocalN = worldToLocal;
    worldToLocalN.a4 = worldToLocalN.b4 = worldToLocalN.c4 = 0.0f;
    worldToLocalN.Inverse().Transpose();

    // Allocate final mesh data.
    // We'll allocate one mesh for each material. (we'll strip unused ones after)
    std::vector<TempMesh> meshes(sib->mtls.size());

    // Un-index the source data and apply to each vertex.
    for (unsigned fi = 0; fi < smesh.faceStart.size(); fi++) {
        uint32_t start = smesh.faceStart[fi];
        uint32_t mtl = smesh.mtls[fi];
        uint32_t *idx = &smesh.idx[start];

        if (mtl >= meshes.size()) {
            ASSIMP_LOG_ERROR("SIB: Face material index is invalid.");
            mtl = 0;
        }

        TempMesh &dest = meshes[mtl];

        aiFace face;
        face.mNumIndices = *idx++;
        face.mIndices = new unsigned[face.mNumIndices];
        for (unsigned pt = 0; pt < face.mNumIndices; pt++, idx += N) {
            size_t vtxIdx = dest.vtx.size();
            face.mIndices[pt] = static_cast<unsigned int>(vtxIdx);

            // De-index it. We don't need to validate here as
            // we did it when creating the data.
            aiVector3D pos = smesh.pos[idx[POS]];
            aiVector3D nrm = smesh.nrm[idx[NRM]];
            aiVector3D uv = smesh.uv[idx[UV]];

            // The verts are supplied in world-space, so let's
            // transform them back into the local space of this mesh:
            pos = worldToLocal * pos;
            nrm = worldToLocalN * nrm;

            dest.vtx.push_back(pos);
            dest.nrm.push_back(nrm);
            dest.uv.push_back(uv);
        }
        dest.faces.push_back(face);
    }

    SIBObject obj;
    obj.name = name;
    obj.axis = smesh.axis;
    obj.meshIdx = sib->meshes.size();

    // Now that we know the size of everything,
    // we can build the final one-material-per-mesh data.
    for (size_t n = 0; n < meshes.size(); n++) {
        TempMesh &src = meshes[n];
        if (src.faces.empty())
            continue;

        aiMesh *mesh = new aiMesh;
        mesh->mName = name;
        mesh->mNumFaces = static_cast<unsigned int>(src.faces.size());
        mesh->mFaces = new aiFace[mesh->mNumFaces];
        mesh->mNumVertices = static_cast<unsigned int>(src.vtx.size());
        mesh->mVertices = new aiVector3D[mesh->mNumVertices];
        mesh->mNormals = new aiVector3D[mesh->mNumVertices];
        mesh->mTextureCoords[0] = new aiVector3D[mesh->mNumVertices];
        mesh->mNumUVComponents[0] = 2;
        mesh->mMaterialIndex = static_cast<unsigned int>(n);

        for (unsigned i = 0; i < mesh->mNumVertices; i++) {
            mesh->mVertices[i] = src.vtx[i];
            mesh->mNormals[i] = src.nrm[i];
            mesh->mTextureCoords[0][i] = src.uv[i];
        }
        for (unsigned i = 0; i < mesh->mNumFaces; i++) {
            mesh->mFaces[i] = src.faces[i];
        }

        sib->meshes.push_back(mesh);
    }

    obj.meshCount = sib->meshes.size() - obj.meshIdx;
    sib->objs.push_back(obj);
}

// ------------------------------------------------------------------------------------------------
static void ReadMaterial(SIB *sib, StreamReaderLE *stream) {
    aiColor3D diff = ReadColor(stream);
    aiColor3D ambi = ReadColor(stream);
    aiColor3D spec = ReadColor(stream);
    aiColor3D emis = ReadColor(stream);
    float shiny = (float)stream->GetU4();

    uint32_t nameLen = stream->GetU4();
    aiString name = ReadString(stream, nameLen / 2);
    uint32_t texLen = stream->GetU4();
    aiString tex = ReadString(stream, texLen / 2);

    aiMaterial *mtl = new aiMaterial();
    mtl->AddProperty(&diff, 1, AI_MATKEY_COLOR_DIFFUSE);
    mtl->AddProperty(&ambi, 1, AI_MATKEY_COLOR_AMBIENT);
    mtl->AddProperty(&spec, 1, AI_MATKEY_COLOR_SPECULAR);
    mtl->AddProperty(&emis, 1, AI_MATKEY_COLOR_EMISSIVE);
    mtl->AddProperty(&shiny, 1, AI_MATKEY_SHININESS);
    mtl->AddProperty(&name, AI_MATKEY_NAME);
    if (tex.length > 0) {
        mtl->AddProperty(&tex, AI_MATKEY_TEXTURE_DIFFUSE(0));
        mtl->AddProperty(&tex, AI_MATKEY_TEXTURE_AMBIENT(0));
    }

    sib->mtls.push_back(mtl);
}

// ------------------------------------------------------------------------------------------------
static void ReadLightInfo(aiLight *light, StreamReaderLE *stream) {
    uint32_t type = stream->GetU4();
    switch (type) {
    case 0: light->mType = aiLightSource_POINT; break;
    case 1: light->mType = aiLightSource_SPOT; break;
    case 2: light->mType = aiLightSource_DIRECTIONAL; break;
    default: light->mType = aiLightSource_UNDEFINED; break;
    }

    light->mPosition.x = stream->GetF4();
    light->mPosition.y = stream->GetF4();
    light->mPosition.z = stream->GetF4();
    light->mDirection.x = stream->GetF4();
    light->mDirection.y = stream->GetF4();
    light->mDirection.z = stream->GetF4();
    light->mColorDiffuse = ReadColor(stream);
    light->mColorAmbient = ReadColor(stream);
    light->mColorSpecular = ReadColor(stream);
    ai_real spotExponent = stream->GetF4();
    ai_real spotCutoff = stream->GetF4();
    light->mAttenuationConstant = stream->GetF4();
    light->mAttenuationLinear = stream->GetF4();
    light->mAttenuationQuadratic = stream->GetF4();

    // Silo uses the OpenGL default lighting model for it's
    // spot cutoff/exponent. AssImp unfortunately, does not.
    // Let's try and approximate it by solving for the
    // 99% and 1% percentiles.
    //    OpenGL: I = cos(angle)^E
    //   Solving: angle = acos(I^(1/E))
    ai_real E = ai_real(1.0) / std::max(spotExponent, (ai_real)0.00001);
    ai_real inner = std::acos(std::pow((ai_real)0.99, E));
    ai_real outer = std::acos(std::pow((ai_real)0.01, E));

    // Apply the cutoff.
    outer = std::min(outer, AI_DEG_TO_RAD(spotCutoff));

    light->mAngleInnerCone = std::min(inner, outer);
    light->mAngleOuterCone = outer;
}

static void ReadLight(SIB *sib, StreamReaderLE *stream) {
    aiLight *light = new aiLight();

    while (stream->GetRemainingSizeToLimit() >= sizeof(SIBChunk)) {
        SIBChunk chunk = ReadChunk(stream);
        unsigned oldLimit = stream->SetReadLimit(stream->GetCurrentPos() + chunk.Size);

        switch (chunk.Tag) {
        case TAG('L', 'N', 'F', 'O'): ReadLightInfo(light, stream); break;
        case TAG('S', 'N', 'A', 'M'): light->mName = ReadString(stream, chunk.Size / 2); break;
        default: UnknownChunk(stream, chunk); break;
        }

        stream->SetCurrentPos(stream->GetReadLimit());
        stream->SetReadLimit(oldLimit);
    }

    sib->lights.push_back(light);
}

// ------------------------------------------------------------------------------------------------
static void ReadScale(aiMatrix4x4 &axis, StreamReaderLE *stream) {
    aiMatrix4x4 scale;
    scale.a1 = stream->GetF4();
    scale.b1 = stream->GetF4();
    scale.c1 = stream->GetF4();
    scale.d1 = stream->GetF4();
    scale.a2 = stream->GetF4();
    scale.b2 = stream->GetF4();
    scale.c2 = stream->GetF4();
    scale.d2 = stream->GetF4();
    scale.a3 = stream->GetF4();
    scale.b3 = stream->GetF4();
    scale.c3 = stream->GetF4();
    scale.d3 = stream->GetF4();
    scale.a4 = stream->GetF4();
    scale.b4 = stream->GetF4();
    scale.c4 = stream->GetF4();
    scale.d4 = stream->GetF4();

    axis = axis * scale;
}

static void ReadInstance(SIB *sib, StreamReaderLE *stream) {
    SIBObject inst;
    uint32_t shapeIndex = 0;

    while (stream->GetRemainingSizeToLimit() >= sizeof(SIBChunk)) {
        SIBChunk chunk = ReadChunk(stream);
        unsigned oldLimit = stream->SetReadLimit(stream->GetCurrentPos() + chunk.Size);

        switch (chunk.Tag) {
        case TAG('D', 'I', 'N', 'F'): break; // display info, not needed
        case TAG('P', 'I', 'N', 'F'): break; // ?
        case TAG('A', 'X', 'I', 'S'): ReadAxis(inst.axis, stream); break;
        case TAG('I', 'N', 'S', 'I'): shapeIndex = stream->GetU4(); break;
        case TAG('S', 'M', 'T', 'X'): ReadScale(inst.axis, stream); break;
        case TAG('S', 'N', 'A', 'M'): inst.name = ReadString(stream, chunk.Size / 2); break;
        default: UnknownChunk(stream, chunk); break;
        }

        stream->SetCurrentPos(stream->GetReadLimit());
        stream->SetReadLimit(oldLimit);
    }

    if (shapeIndex >= sib->objs.size()) {
        throw DeadlyImportError("SIB: Invalid shape index.");
    }

    const SIBObject &src = sib->objs[shapeIndex];
    inst.meshIdx = src.meshIdx;
    inst.meshCount = src.meshCount;
    sib->insts.push_back(inst);
}

// ------------------------------------------------------------------------------------------------
static void CheckVersion(StreamReaderLE *stream) {
    uint32_t version = stream->GetU4();
    if (version < 1 || version > 2) {
        throw DeadlyImportError("SIB: Unsupported file version.");
    }
}

static void ReadScene(SIB *sib, StreamReaderLE *stream) {
    // Parse each chunk in turn.
    while (stream->GetRemainingSizeToLimit() >= sizeof(SIBChunk)) {
        SIBChunk chunk = ReadChunk(stream);
        unsigned oldLimit = stream->SetReadLimit(stream->GetCurrentPos() + chunk.Size);

        switch (chunk.Tag) {
        case TAG('H', 'E', 'A', 'D'): CheckVersion(stream); break;
        case TAG('S', 'H', 'A', 'P'): ReadShape(sib, stream); break;
        case TAG('G', 'R', 'P', 'S'): break; // group assignment, we don't import this
        case TAG('T', 'E', 'X', 'P'): break; // ?
        case TAG('I', 'N', 'S', 'T'): ReadInstance(sib, stream); break;
        case TAG('M', 'A', 'T', 'R'): ReadMaterial(sib, stream); break;
        case TAG('L', 'G', 'H', 'T'): ReadLight(sib, stream); break;
        default: UnknownChunk(stream, chunk); break;
        }

        stream->SetCurrentPos(stream->GetReadLimit());
        stream->SetReadLimit(oldLimit);
    }
}

// ------------------------------------------------------------------------------------------------
// Imports the given file into the given scene structure.
void SIBImporter::InternReadFile(const std::string &pFile,
        aiScene *pScene, IOSystem *pIOHandler) {

    auto file = pIOHandler->Open(pFile, "rb");
    if (!file)
        throw DeadlyImportError("SIB: Could not open ", pFile);

    StreamReaderLE stream(file);

    // We should have at least one chunk
    if (stream.GetRemainingSize() < 16)
        throw DeadlyImportError("SIB file is either empty or corrupt: ", pFile);

    SIB sib;

    // Default material.
    aiMaterial *defmtl = new aiMaterial;
    aiString defname = aiString(AI_DEFAULT_MATERIAL_NAME);
    defmtl->AddProperty(&defname, AI_MATKEY_NAME);
    sib.mtls.push_back(defmtl);

    // Read it all.
    ReadScene(&sib, &stream);

    // Join the instances and objects together.
    size_t firstInst = sib.objs.size();
    sib.objs.insert(sib.objs.end(), sib.insts.begin(), sib.insts.end());
    sib.insts.clear();

    // Transfer to the aiScene.
    pScene->mNumMaterials = static_cast<unsigned int>(sib.mtls.size());
    pScene->mNumMeshes = static_cast<unsigned int>(sib.meshes.size());
    pScene->mNumLights = static_cast<unsigned int>(sib.lights.size());
    pScene->mMaterials = pScene->mNumMaterials ? new aiMaterial *[pScene->mNumMaterials] : nullptr;
    pScene->mMeshes = pScene->mNumMeshes ? new aiMesh *[pScene->mNumMeshes] : nullptr;
    pScene->mLights = pScene->mNumLights ? new aiLight *[pScene->mNumLights] : nullptr;
    if (pScene->mNumMaterials)
        memcpy(pScene->mMaterials, &sib.mtls[0], sizeof(aiMaterial *) * pScene->mNumMaterials);
    if (pScene->mNumMeshes)
        memcpy(pScene->mMeshes, &sib.meshes[0], sizeof(aiMesh *) * pScene->mNumMeshes);
    if (pScene->mNumLights)
        memcpy(pScene->mLights, &sib.lights[0], sizeof(aiLight *) * pScene->mNumLights);

    // Construct the root node.
    size_t childIdx = 0;
    aiNode *root = new aiNode();
    root->mName.Set("<SIBRoot>");
    root->mNumChildren = static_cast<unsigned int>(sib.objs.size() + sib.lights.size());
    root->mChildren = root->mNumChildren ? new aiNode *[root->mNumChildren] : nullptr;
    pScene->mRootNode = root;

    // Add nodes for each object.
    for (size_t n = 0; n < sib.objs.size(); n++) {
        ai_assert(root->mChildren);
        SIBObject &obj = sib.objs[n];
        aiNode *node = new aiNode;
        root->mChildren[childIdx++] = node;
        node->mName = obj.name;
        node->mParent = root;
        node->mTransformation = obj.axis;

        node->mNumMeshes = static_cast<unsigned int>(obj.meshCount);
        node->mMeshes = node->mNumMeshes ? new unsigned[node->mNumMeshes] : nullptr;
        for (unsigned i = 0; i < node->mNumMeshes; i++)
            node->mMeshes[i] = static_cast<unsigned int>(obj.meshIdx + i);

        // Mark instanced objects as being so.
        if (n >= firstInst) {
            node->mMetaData = aiMetadata::Alloc(1);
            node->mMetaData->Set(0, "IsInstance", true);
        }
    }

    // Add nodes for each light.
    // (no transformation as the light is already in world space)
    for (size_t n = 0; n < sib.lights.size(); n++) {
        ai_assert(root->mChildren);
        aiLight *light = sib.lights[n];
        if (nullptr != light) {
            aiNode *node = new aiNode;
            root->mChildren[childIdx++] = node;
            node->mName = light->mName;
            node->mParent = root;
        }
    }
}

#endif // !! ASSIMP_BUILD_NO_SIB_IMPORTER