summaryrefslogtreecommitdiff
path: root/src/mesh/assimp-master/code/AssetLib/X3D/X3DImporter_Geometry3D.cpp
blob: b9fc2a4d8500d2cd9a0df48ba6fea8b9edca0f3c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
/*
Open Asset Import Library (assimp)
----------------------------------------------------------------------

Copyright (c) 2006-2019, assimp team


All rights reserved.

Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the
following conditions are met:

* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.

* Neither the name of the assimp team, nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission of the assimp team.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

----------------------------------------------------------------------
*/
/// \file   X3DImporter_Geometry3D.cpp
/// \brief  Parsing data from nodes of "Geometry3D" set of X3D.
/// \date   2015-2016
/// \author smal.root@gmail.com

#ifndef ASSIMP_BUILD_NO_X3D_IMPORTER

#include "X3DGeoHelper.h"
#include "X3DImporter.hpp"
#include "X3DImporter_Macro.hpp"
#include "X3DXmlHelper.h"

// Header files, Assimp.
#include <assimp/StandardShapes.h>

namespace Assimp {

// <Box
// DEF=""       ID
// USE=""       IDREF
// size="2 2 2" SFVec3f [initializeOnly]
// solid="true" SFBool  [initializeOnly]
// />
// The Box node specifies a rectangular parallelepiped box centred at (0, 0, 0) in the local coordinate system and aligned with the local coordinate axes.
// By default, the box measures 2 units in each dimension, from -1 to +1. The size field specifies the extents of the box along the X-, Y-, and Z-axes
// respectively and each component value shall be greater than zero.
void X3DImporter::readBox(XmlNode &node) {
    std::string def, use;
    bool solid = true;
    aiVector3D size(2, 2, 2);
    X3DNodeElementBase *ne(nullptr);

    MACRO_ATTRREAD_CHECKUSEDEF_RET(node, def, use);
    X3DXmlHelper::getVector3DAttribute(node, "size", size);
    XmlParser::getBoolAttribute(node, "solid", solid);

    // if "USE" defined then find already defined element.
    if (!use.empty()) {
        ne = MACRO_USE_CHECKANDAPPLY(node, def, use, ENET_Box, ne);
    } else {
        // create and if needed - define new geometry object.
        ne = new X3DNodeElementGeometry3D(X3DElemType::ENET_Box, mNodeElementCur);
        if (!def.empty()) ne->ID = def;

        X3DGeoHelper::rect_parallel_epiped(size, ((X3DNodeElementGeometry3D *)ne)->Vertices); // get quad list
        ((X3DNodeElementGeometry3D *)ne)->Solid = solid;
        ((X3DNodeElementGeometry3D *)ne)->NumIndices = 4;
        // check for X3DMetadataObject childs.
        if (!isNodeEmpty(node))
            childrenReadMetadata(node, ne, "Box");
        else
            mNodeElementCur->Children.push_back(ne); // add made object as child to current element

        NodeElement_List.push_back(ne); // add element to node element list because its a new object in graph
    } // if(!use.empty()) else
}

// <Cone
// DEF=""           ID
// USE=""           IDREF
// bottom="true"    SFBool [initializeOnly]
// bottomRadius="1" SFloat [initializeOnly]
// height="2"       SFloat [initializeOnly]
// side="true"      SFBool [initializeOnly]
// solid="true"     SFBool [initializeOnly]
// />
void X3DImporter::readCone(XmlNode &node) {
    std::string use, def;
    bool bottom = true;
    float bottomRadius = 1;
    float height = 2;
    bool side = true;
    bool solid = true;
    X3DNodeElementBase *ne(nullptr);

    MACRO_ATTRREAD_CHECKUSEDEF_RET(node, def, use);
    XmlParser::getBoolAttribute(node, "solid", solid);
    XmlParser::getBoolAttribute(node, "side", side);
    XmlParser::getBoolAttribute(node, "bottom", bottom);
    XmlParser::getFloatAttribute(node, "height", height);
    XmlParser::getFloatAttribute(node, "bottomRadius", bottomRadius);

    // if "USE" defined then find already defined element.
    if (!use.empty()) {
        ne = MACRO_USE_CHECKANDAPPLY(node, def, use, ENET_Cone, ne);
    } else {
        const unsigned int tess = 30; ///TODO: IME tessellation factor through ai_property

        std::vector<aiVector3D> tvec; // temp array for vertices.

        // create and if needed - define new geometry object.
        ne = new X3DNodeElementGeometry3D(X3DElemType::ENET_Cone, mNodeElementCur);
        if (!def.empty()) ne->ID = def;

        // make cone or parts according to flags.
        if (side) {
            StandardShapes::MakeCone(height, 0, bottomRadius, tess, tvec, !bottom);
        } else if (bottom) {
            StandardShapes::MakeCircle(bottomRadius, tess, tvec);
            height = -(height / 2);
            for (std::vector<aiVector3D>::iterator it = tvec.begin(); it != tvec.end(); ++it)
                it->y = height; // y - because circle made in oXZ.
        }

        // copy data from temp array
        for (std::vector<aiVector3D>::iterator it = tvec.begin(); it != tvec.end(); ++it)
            ((X3DNodeElementGeometry3D *)ne)->Vertices.push_back(*it);

        ((X3DNodeElementGeometry3D *)ne)->Solid = solid;
        ((X3DNodeElementGeometry3D *)ne)->NumIndices = 3;
        // check for X3DMetadataObject childs.
        if (!isNodeEmpty(node))
            childrenReadMetadata(node, ne, "Cone");
        else
            mNodeElementCur->Children.push_back(ne); // add made object as child to current element

        NodeElement_List.push_back(ne); // add element to node element list because its a new object in graph
    } // if(!use.empty()) else
}

// <Cylinder
// DEF=""        ID
// USE=""        IDREF
// bottom="true" SFBool [initializeOnly]
// height="2"    SFloat [initializeOnly]
// radius="1"    SFloat [initializeOnly]
// side="true"   SFBool [initializeOnly]
// solid="true"  SFBool [initializeOnly]
// top="true"    SFBool [initializeOnly]
// />
void X3DImporter::readCylinder(XmlNode &node) {
    std::string use, def;
    bool bottom = true;
    float height = 2;
    float radius = 1;
    bool side = true;
    bool solid = true;
    bool top = true;
    X3DNodeElementBase *ne(nullptr);

    MACRO_ATTRREAD_CHECKUSEDEF_RET(node, def, use);
    XmlParser::getFloatAttribute(node, "radius", radius);
    XmlParser::getBoolAttribute(node, "solid", solid);
    XmlParser::getBoolAttribute(node, "bottom", bottom);
    XmlParser::getBoolAttribute(node, "top", top);
    XmlParser::getBoolAttribute(node, "side", side);
    XmlParser::getFloatAttribute(node, "height", height);

    // if "USE" defined then find already defined element.
    if (!use.empty()) {
        ne = MACRO_USE_CHECKANDAPPLY(node, def, use, ENET_Cylinder, ne);
    } else {
        const unsigned int tess = 30; ///TODO: IME tessellation factor through ai_property

        std::vector<aiVector3D> tside; // temp array for vertices of side.
        std::vector<aiVector3D> tcir; // temp array for vertices of circle.

        // create and if needed - define new geometry object.
        ne = new X3DNodeElementGeometry3D(X3DElemType::ENET_Cylinder, mNodeElementCur);
        if (!def.empty()) ne->ID = def;

        // make cilynder or parts according to flags.
        if (side) StandardShapes::MakeCone(height, radius, radius, tess, tside, true);

        height /= 2; // height defined for whole cylinder, when creating top and bottom circle we are using just half of height.
        if (top || bottom) StandardShapes::MakeCircle(radius, tess, tcir);
        // copy data from temp arrays
        std::list<aiVector3D> &vlist = ((X3DNodeElementGeometry3D *)ne)->Vertices; // just short alias.

        for (std::vector<aiVector3D>::iterator it = tside.begin(); it != tside.end(); ++it)
            vlist.push_back(*it);

        if (top) {
            for (std::vector<aiVector3D>::iterator it = tcir.begin(); it != tcir.end(); ++it) {
                (*it).y = height; // y - because circle made in oXZ.
                vlist.push_back(*it);
            }
        } // if(top)

        if (bottom) {
            for (std::vector<aiVector3D>::iterator it = tcir.begin(); it != tcir.end(); ++it) {
                (*it).y = -height; // y - because circle made in oXZ.
                vlist.push_back(*it);
            }
        } // if(top)

        ((X3DNodeElementGeometry3D *)ne)->Solid = solid;
        ((X3DNodeElementGeometry3D *)ne)->NumIndices = 3;
        // check for X3DMetadataObject childs.
        if (!isNodeEmpty(node))
            childrenReadMetadata(node, ne, "Cylinder");
        else
            mNodeElementCur->Children.push_back(ne); // add made object as child to current element

        NodeElement_List.push_back(ne); // add element to node element list because its a new object in graph
    } // if(!use.empty()) else
}

// <ElevationGrid
// DEF=""                 ID
// USE=""                 IDREF
// ccw="true"             SFBool  [initializeOnly]
// colorPerVertex="true"  SFBool  [initializeOnly]
// creaseAngle="0"        SFloat  [initializeOnly]
// height=""              MFloat  [initializeOnly]
// normalPerVertex="true" SFBool  [initializeOnly]
// solid="true"           SFBool  [initializeOnly]
// xDimension="0"         SFInt32 [initializeOnly]
// xSpacing="1.0"         SFloat  [initializeOnly]
// zDimension="0"         SFInt32 [initializeOnly]
// zSpacing="1.0"         SFloat  [initializeOnly]
// >
//   <!-- ColorNormalTexCoordContentModel -->
// ColorNormalTexCoordContentModel can contain Color (or ColorRGBA), Normal and TextureCoordinate, in any order. No more than one instance of any single
// node type is allowed. A ProtoInstance node (with the proper node type) can be substituted for any node in this content model.
// </ElevationGrid>
// The ElevationGrid node specifies a uniform rectangular grid of varying height in the Y=0 plane of the local coordinate system. The geometry is described
// by a scalar array of height values that specify the height of a surface above each point of the grid. The xDimension and zDimension fields indicate
// the number of elements of the grid height array in the X and Z directions. Both xDimension and zDimension shall be greater than or equal to zero.
// If either the xDimension or the zDimension is less than two, the ElevationGrid contains no quadrilaterals.
void X3DImporter::readElevationGrid(XmlNode &node) {
    std::string use, def;
    bool ccw = true;
    bool colorPerVertex = true;
    float creaseAngle = 0;
    std::vector<float> height;
    bool normalPerVertex = true;
    bool solid = true;
    int32_t xDimension = 0;
    float xSpacing = 1;
    int32_t zDimension = 0;
    float zSpacing = 1;
    X3DNodeElementBase *ne(nullptr);

    MACRO_ATTRREAD_CHECKUSEDEF_RET(node, def, use);
    XmlParser::getBoolAttribute(node, "solid", solid);
    XmlParser::getBoolAttribute(node, "ccw", ccw);
    XmlParser::getBoolAttribute(node, "colorPerVertex", colorPerVertex);
    XmlParser::getBoolAttribute(node, "normalPerVertex", normalPerVertex);
    XmlParser::getFloatAttribute(node, "creaseAngle", creaseAngle);
    X3DXmlHelper::getFloatArrayAttribute(node, "height", height);
    XmlParser::getIntAttribute(node, "xDimension", xDimension);
    XmlParser::getFloatAttribute(node, "xSpacing", xSpacing);
    XmlParser::getIntAttribute(node, "zDimension", zDimension);
    XmlParser::getFloatAttribute(node, "zSpacing", zSpacing);

    // if "USE" defined then find already defined element.
    if (!use.empty()) {
        ne = MACRO_USE_CHECKANDAPPLY(node, def, use, ENET_ElevationGrid, ne);
    } else {
        if ((xSpacing == 0.0f) || (zSpacing == 0.0f)) throw DeadlyImportError("Spacing in <ElevationGrid> must be grater than zero.");
        if ((xDimension <= 0) || (zDimension <= 0)) throw DeadlyImportError("Dimension in <ElevationGrid> must be grater than zero.");
        if ((size_t)(xDimension * zDimension) != height.size()) DeadlyImportError("Heights count must be equal to \"xDimension * zDimension\" in <ElevationGrid>");

        // create and if needed - define new geometry object.
        ne = new X3DNodeElementElevationGrid(X3DElemType::ENET_ElevationGrid, mNodeElementCur);
        if (!def.empty()) ne->ID = def;

        X3DNodeElementElevationGrid &grid_alias = *((X3DNodeElementElevationGrid *)ne); // create alias for conveience

        { // create grid vertices list
            std::vector<float>::const_iterator he_it = height.begin();

            for (int32_t zi = 0; zi < zDimension; zi++) // rows
            {
                for (int32_t xi = 0; xi < xDimension; xi++) // columns
                {
                    aiVector3D tvec(xSpacing * xi, *he_it, zSpacing * zi);

                    grid_alias.Vertices.push_back(tvec);
                    ++he_it;
                }
            }
        } // END: create grid vertices list
        //
        // create faces list. In "coordIdx" format
        //
        // check if we have quads
        if ((xDimension < 2) || (zDimension < 2)) // only one element in dimension is set, create line set.
        {
            ((X3DNodeElementElevationGrid *)ne)->NumIndices = 2; // will be holded as line set.
            for (size_t i = 0, i_e = (grid_alias.Vertices.size() - 1); i < i_e; i++) {
                grid_alias.CoordIdx.push_back(static_cast<int32_t>(i));
                grid_alias.CoordIdx.push_back(static_cast<int32_t>(i + 1));
                grid_alias.CoordIdx.push_back(-1);
            }
        } else // two or more elements in every dimension is set. create quad set.
        {
            ((X3DNodeElementElevationGrid *)ne)->NumIndices = 4;
            for (int32_t fzi = 0, fzi_e = (zDimension - 1); fzi < fzi_e; fzi++) // rows
            {
                for (int32_t fxi = 0, fxi_e = (xDimension - 1); fxi < fxi_e; fxi++) // columns
                {
                    // points direction in face.
                    if (ccw) {
                        // CCW:
                        //	3 2
                        //	0 1
                        grid_alias.CoordIdx.push_back((fzi + 1) * xDimension + fxi);
                        grid_alias.CoordIdx.push_back((fzi + 1) * xDimension + (fxi + 1));
                        grid_alias.CoordIdx.push_back(fzi * xDimension + (fxi + 1));
                        grid_alias.CoordIdx.push_back(fzi * xDimension + fxi);
                    } else {
                        // CW:
                        //	0 1
                        //	3 2
                        grid_alias.CoordIdx.push_back(fzi * xDimension + fxi);
                        grid_alias.CoordIdx.push_back(fzi * xDimension + (fxi + 1));
                        grid_alias.CoordIdx.push_back((fzi + 1) * xDimension + (fxi + 1));
                        grid_alias.CoordIdx.push_back((fzi + 1) * xDimension + fxi);
                    } // if(ccw) else

                    grid_alias.CoordIdx.push_back(-1);
                } // for(int32_t fxi = 0, fxi_e = (xDimension - 1); fxi < fxi_e; fxi++)
            } // for(int32_t fzi = 0, fzi_e = (zDimension - 1); fzi < fzi_e; fzi++)
        } // if((xDimension < 2) || (zDimension < 2)) else

        grid_alias.ColorPerVertex = colorPerVertex;
        grid_alias.NormalPerVertex = normalPerVertex;
        grid_alias.CreaseAngle = creaseAngle;
        grid_alias.Solid = solid;
        // check for child nodes
        if (!isNodeEmpty(node)) {
            ParseHelper_Node_Enter(ne);
            for (auto currentChildNode : node.children()) {
                const std::string &currentChildName = currentChildNode.name();
                // check for X3DComposedGeometryNodes
                if (currentChildName == "Color")
                    readColor(currentChildNode);
                else if (currentChildName == "ColorRGBA")
                    readColorRGBA(currentChildNode);
                else if (currentChildName == "Normal")
                    readNormal(currentChildNode);
                else if (currentChildName == "TextureCoordinate")
                    readTextureCoordinate(currentChildNode);
                // check for X3DMetadataObject
                else if (!checkForMetadataNode(currentChildNode))
                    skipUnsupportedNode("ElevationGrid", currentChildNode);
            }
            ParseHelper_Node_Exit();
        } // if(!mReader->isEmptyElement())
        else {
            mNodeElementCur->Children.push_back(ne); // add made object as child to current element
        } // if(!mReader->isEmptyElement()) else

        NodeElement_List.push_back(ne); // add element to node element list because its a new object in graph
    } // if(!use.empty()) else
}

template <typename TVector>
static void GeometryHelper_Extrusion_CurveIsClosed(std::vector<TVector> &pCurve, const bool pDropTail, const bool pRemoveLastPoint, bool &pCurveIsClosed) {
    size_t cur_sz = pCurve.size();

    pCurveIsClosed = false;
    // for curve with less than four points checking is have no sense,
    if (cur_sz < 4) return;

    for (size_t s = 3, s_e = cur_sz; s < s_e; s++) {
        // search for first point of duplicated part.
        if (pCurve[0] == pCurve[s]) {
            bool found = true;

            // check if tail(indexed by b2) is duplicate of head(indexed by b1).
            for (size_t b1 = 1, b2 = (s + 1); b2 < cur_sz; b1++, b2++) {
                if (pCurve[b1] != pCurve[b2]) { // points not match: clear flag and break loop.
                    found = false;

                    break;
                }
            } // for(size_t b1 = 1, b2 = (s + 1); b2 < cur_sz; b1++, b2++)

            // if duplicate tail is found then drop or not it depending on flags.
            if (found) {
                pCurveIsClosed = true;
                if (pDropTail) {
                    if (!pRemoveLastPoint) s++; // prepare value for iterator's arithmetics.

                    pCurve.erase(pCurve.begin() + s, pCurve.end()); // remove tail
                }

                break;
            } // if(found)
        } // if(pCurve[0] == pCurve[s])
    } // for(size_t s = 3, s_e = (cur_sz - 1); s < s_e; s++)
}

static aiVector3D GeometryHelper_Extrusion_GetNextY(const size_t pSpine_PointIdx, const std::vector<aiVector3D> &pSpine, const bool pSpine_Closed) {
    const size_t spine_idx_last = pSpine.size() - 1;
    aiVector3D tvec;

    if ((pSpine_PointIdx == 0) || (pSpine_PointIdx == spine_idx_last)) // at first special cases
    {
        if (pSpine_Closed) { // If the spine curve is closed: The SCP for the first and last points is the same and is found using (spine[1] - spine[n - 2]) to compute the Y-axis.
            // As we even for closed spine curve last and first point in pSpine are not the same: duplicates(spine[n - 1] which are equivalent to spine[0])
            // in tail are removed.
            // So, last point in pSpine is a spine[n - 2]
            tvec = pSpine[1] - pSpine[spine_idx_last];
        } else if (pSpine_PointIdx == 0) { // The Y-axis used for the first point is the vector from spine[0] to spine[1]
            tvec = pSpine[1] - pSpine[0];
        } else { // The Y-axis used for the last point it is the vector from spine[n-2] to spine[n-1]. In our case(see above about dropping tail) spine[n - 1] is
            // the spine[0].
            tvec = pSpine[spine_idx_last] - pSpine[spine_idx_last - 1];
        }
    } // if((pSpine_PointIdx == 0) || (pSpine_PointIdx == spine_idx_last))
    else { // For all points other than the first or last: The Y-axis for spine[i] is found by normalizing the vector defined by (spine[i+1] - spine[i-1]).
        tvec = pSpine[pSpine_PointIdx + 1] - pSpine[pSpine_PointIdx - 1];
    } // if((pSpine_PointIdx == 0) || (pSpine_PointIdx == spine_idx_last)) else

    return tvec.Normalize();
}

static aiVector3D GeometryHelper_Extrusion_GetNextZ(const size_t pSpine_PointIdx, const std::vector<aiVector3D> &pSpine, const bool pSpine_Closed,
        const aiVector3D pVecZ_Prev) {
    const aiVector3D zero_vec(0);
    const size_t spine_idx_last = pSpine.size() - 1;

    aiVector3D tvec;

    // at first special cases
    if (pSpine.size() < 3) // spine have not enough points for vector calculations.
    {
        tvec.Set(0, 0, 1);
    } else if (pSpine_PointIdx == 0) // special case: first point
    {
        if (pSpine_Closed) // for calculating use previous point in curve s[n - 2]. In list it's a last point, because point s[n - 1] was removed as duplicate.
        {
            tvec = (pSpine[1] - pSpine[0]) ^ (pSpine[spine_idx_last] - pSpine[0]);
        } else // for not closed curve first and next point(s[0] and s[1]) has the same vector Z.
        {
            bool found = false;

            // As said: "If the Z-axis of the first point is undefined (because the spine is not closed and the first two spine segments are collinear)
            // then the Z-axis for the first spine point with a defined Z-axis is used."
            // Walk through spine and find Z.
            for (size_t next_point = 2; (next_point <= spine_idx_last) && !found; next_point++) {
                // (pSpine[2] - pSpine[1]) ^ (pSpine[0] - pSpine[1])
                tvec = (pSpine[next_point] - pSpine[next_point - 1]) ^ (pSpine[next_point - 2] - pSpine[next_point - 1]);
                found = !tvec.Equal(zero_vec);
            }

            // if entire spine are collinear then use OZ axis.
            if (!found) tvec.Set(0, 0, 1);
        } // if(pSpine_Closed) else
    } // else if(pSpine_PointIdx == 0)
    else if (pSpine_PointIdx == spine_idx_last) // special case: last point
    {
        if (pSpine_Closed) { // do not forget that real last point s[n - 1] is removed as duplicated. And in this case we are calculating vector Z for point s[n - 2].
            tvec = (pSpine[0] - pSpine[pSpine_PointIdx]) ^ (pSpine[pSpine_PointIdx - 1] - pSpine[pSpine_PointIdx]);
            // if taken spine vectors are collinear then use previous vector Z.
            if (tvec.Equal(zero_vec)) tvec = pVecZ_Prev;
        } else { // vector Z for last point of not closed curve is previous vector Z.
            tvec = pVecZ_Prev;
        }
    } else // regular point
    {
        tvec = (pSpine[pSpine_PointIdx + 1] - pSpine[pSpine_PointIdx]) ^ (pSpine[pSpine_PointIdx - 1] - pSpine[pSpine_PointIdx]);
        // if taken spine vectors are collinear then use previous vector Z.
        if (tvec.Equal(zero_vec)) tvec = pVecZ_Prev;
    }

    // After determining the Z-axis, its dot product with the Z-axis of the previous spine point is computed. If this value is negative, the Z-axis
    // is flipped (multiplied by -1).
    if ((tvec * pVecZ_Prev) < 0) tvec = -tvec;

    return tvec.Normalize();
}

// <Extrusion
// DEF=""                                 ID
// USE=""                                 IDREF
// beginCap="true"                        SFBool     [initializeOnly]
// ccw="true"                             SFBool     [initializeOnly]
// convex="true"                          SFBool     [initializeOnly]
// creaseAngle="0.0"                      SFloat     [initializeOnly]
// crossSection="1 1 1 -1 -1 -1 -1 1 1 1" MFVec2f    [initializeOnly]
// endCap="true"                          SFBool     [initializeOnly]
// orientation="0 0 1 0"                  MFRotation [initializeOnly]
// scale="1 1"                            MFVec2f    [initializeOnly]
// solid="true"                           SFBool     [initializeOnly]
// spine="0 0 0 0 1 0"                    MFVec3f    [initializeOnly]
// />
void X3DImporter::readExtrusion(XmlNode &node) {
    std::string use, def;
    bool beginCap = true;
    bool ccw = true;
    bool convex = true;
    float creaseAngle = 0;
    std::vector<aiVector2D> crossSection;
    bool endCap = true;
    std::vector<float> orientation;
    std::vector<aiVector2D> scale;
    bool solid = true;
    std::vector<aiVector3D> spine;
    X3DNodeElementBase *ne(nullptr);

    MACRO_ATTRREAD_CHECKUSEDEF_RET(node, def, use);
    XmlParser::getBoolAttribute(node, "beginCap", beginCap);
    XmlParser::getBoolAttribute(node, "ccw", ccw);
    XmlParser::getBoolAttribute(node, "convex", convex);
    XmlParser::getFloatAttribute(node, "creaseAngle", creaseAngle);
    X3DXmlHelper::getVector2DArrayAttribute(node, "crossSection", crossSection);
    XmlParser::getBoolAttribute(node, "endCap", endCap);
    X3DXmlHelper::getFloatArrayAttribute(node, "orientation", orientation);
    X3DXmlHelper::getVector2DArrayAttribute(node, "scale", scale);
    XmlParser::getBoolAttribute(node, "solid", solid);
    X3DXmlHelper::getVector3DArrayAttribute(node, "spine", spine);

    // if "USE" defined then find already defined element.
    if (!use.empty()) {
        ne = MACRO_USE_CHECKANDAPPLY(node, def, use, ENET_Extrusion, ne);
    } else {
        //
        // check if default values must be assigned
        //
        if (spine.size() == 0) {
            spine.resize(2);
            spine[0].Set(0, 0, 0), spine[1].Set(0, 1, 0);
        } else if (spine.size() == 1) {
            throw DeadlyImportError("ParseNode_Geometry3D_Extrusion. Spine must have at least two points.");
        }

        if (crossSection.size() == 0) {
            crossSection.resize(5);
            crossSection[0].Set(1, 1), crossSection[1].Set(1, -1), crossSection[2].Set(-1, -1), crossSection[3].Set(-1, 1), crossSection[4].Set(1, 1);
        }

        { // orientation
            size_t ori_size = orientation.size() / 4;

            if (ori_size < spine.size()) {
                float add_ori[4]; // values that will be added

                if (ori_size == 1) // if "orientation" has one element(means one MFRotation with four components) then use it value for all spine points.
                {
                    add_ori[0] = orientation[0], add_ori[1] = orientation[1], add_ori[2] = orientation[2], add_ori[3] = orientation[3];
                } else // else - use default values
                {
                    add_ori[0] = 0, add_ori[1] = 0, add_ori[2] = 1, add_ori[3] = 0;
                }

                orientation.reserve(spine.size() * 4);
                for (size_t i = 0, i_e = (spine.size() - ori_size); i < i_e; i++)
                    orientation.push_back(add_ori[0]), orientation.push_back(add_ori[1]), orientation.push_back(add_ori[2]), orientation.push_back(add_ori[3]);
            }

            if (orientation.size() % 4) throw DeadlyImportError("Attribute \"orientation\" in <Extrusion> must has multiple four quantity of numbers.");
        } // END: orientation

        { // scale
            if (scale.size() < spine.size()) {
                aiVector2D add_sc;

                if (scale.size() == 1) // if "scale" has one element then use it value for all spine points.
                    add_sc = scale[0];
                else // else - use default values
                    add_sc.Set(1, 1);

                scale.reserve(spine.size());
                for (size_t i = 0, i_e = (spine.size() - scale.size()); i < i_e; i++)
                    scale.push_back(add_sc);
            }
        } // END: scale
        //
        // create and if needed - define new geometry object.
        //
        ne = new X3DNodeElementIndexedSet(X3DElemType::ENET_Extrusion, mNodeElementCur);
        if (!def.empty()) ne->ID = def;

        X3DNodeElementIndexedSet &ext_alias = *((X3DNodeElementIndexedSet *)ne); // create alias for conveience
        // assign part of input data
        ext_alias.CCW = ccw;
        ext_alias.Convex = convex;
        ext_alias.CreaseAngle = creaseAngle;
        ext_alias.Solid = solid;

        //
        // How we done it at all?
        // 1. At first we will calculate array of basises for every point in spine(look SCP in ISO-dic). Also "orientation" vector
        // are applied vor every basis.
        // 2. After that we can create array of point sets: which are scaled, transferred to basis of relative basis and at final translated to real position
        // using relative spine point.
        // 3. Next step is creating CoordIdx array(do not forget "-1" delimiter). While creating CoordIdx also created faces for begin and end caps, if
        // needed. While createing CootdIdx is taking in account CCW flag.
        // 4. The last step: create Vertices list.
        //
        bool spine_closed; // flag: true if spine curve is closed.
        bool cross_closed; // flag: true if cross curve is closed.
        std::vector<aiMatrix3x3> basis_arr; // array of basises. ROW_a - X, ROW_b - Y, ROW_c - Z.
        std::vector<std::vector<aiVector3D>> pointset_arr; // array of point sets: cross curves.

        // detect closed curves
        GeometryHelper_Extrusion_CurveIsClosed(crossSection, true, true, cross_closed); // true - drop tail, true - remove duplicate end.
        GeometryHelper_Extrusion_CurveIsClosed(spine, true, true, spine_closed); // true - drop tail, true - remove duplicate end.
        // If both cap are requested and spine curve is closed then we can make only one cap. Because second cap will be the same surface.
        if (spine_closed) {
            beginCap |= endCap;
            endCap = false;
        }

        { // 1. Calculate array of basises.
            aiMatrix4x4 rotmat;
            aiVector3D vecX(0), vecY(0), vecZ(0);

            basis_arr.resize(spine.size());
            for (size_t i = 0, i_e = spine.size(); i < i_e; i++) {
                aiVector3D tvec;

                // get axises of basis.
                vecY = GeometryHelper_Extrusion_GetNextY(i, spine, spine_closed);
                vecZ = GeometryHelper_Extrusion_GetNextZ(i, spine, spine_closed, vecZ);
                vecX = (vecY ^ vecZ).Normalize();
                // get rotation matrix and apply "orientation" to basis
                aiMatrix4x4::Rotation(orientation[i * 4 + 3], aiVector3D(orientation[i * 4], orientation[i * 4 + 1], orientation[i * 4 + 2]), rotmat);
                tvec = vecX, tvec *= rotmat, basis_arr[i].a1 = tvec.x, basis_arr[i].a2 = tvec.y, basis_arr[i].a3 = tvec.z;
                tvec = vecY, tvec *= rotmat, basis_arr[i].b1 = tvec.x, basis_arr[i].b2 = tvec.y, basis_arr[i].b3 = tvec.z;
                tvec = vecZ, tvec *= rotmat, basis_arr[i].c1 = tvec.x, basis_arr[i].c2 = tvec.y, basis_arr[i].c3 = tvec.z;
            } // for(size_t i = 0, i_e = spine.size(); i < i_e; i++)
        } // END: 1. Calculate array of basises

        { // 2. Create array of point sets.
            aiMatrix4x4 scmat;
            std::vector<aiVector3D> tcross(crossSection.size());

            pointset_arr.resize(spine.size());
            for (size_t spi = 0, spi_e = spine.size(); spi < spi_e; spi++) {
                aiVector3D tc23vec;

                tc23vec.Set(scale[spi].x, 0, scale[spi].y);
                aiMatrix4x4::Scaling(tc23vec, scmat);
                for (size_t cri = 0, cri_e = crossSection.size(); cri < cri_e; cri++) {
                    aiVector3D tvecX, tvecY, tvecZ;

                    tc23vec.Set(crossSection[cri].x, 0, crossSection[cri].y);
                    // apply scaling to point
                    tcross[cri] = scmat * tc23vec;
                    //
                    // transfer point to new basis
                    // calculate coordinate in new basis
                    tvecX.Set(basis_arr[spi].a1, basis_arr[spi].a2, basis_arr[spi].a3), tvecX *= tcross[cri].x;
                    tvecY.Set(basis_arr[spi].b1, basis_arr[spi].b2, basis_arr[spi].b3), tvecY *= tcross[cri].y;
                    tvecZ.Set(basis_arr[spi].c1, basis_arr[spi].c2, basis_arr[spi].c3), tvecZ *= tcross[cri].z;
                    // apply new coordinates and translate it to spine point.
                    tcross[cri] = tvecX + tvecY + tvecZ + spine[spi];
                } // for(size_t cri = 0, cri_e = crossSection.size(); cri < cri_e; i++)

                pointset_arr[spi] = tcross; // store transferred point set
            } // for(size_t spi = 0, spi_e = spine.size(); spi < spi_e; i++)
        } // END: 2. Create array of point sets.

        { // 3. Create CoordIdx.
            // add caps if needed
            if (beginCap) {
                // add cap as polygon. vertices of cap are places at begin, so just add numbers from zero.
                for (size_t i = 0, i_e = crossSection.size(); i < i_e; i++)
                    ext_alias.CoordIndex.push_back(static_cast<int32_t>(i));

                // add delimiter
                ext_alias.CoordIndex.push_back(-1);
            } // if(beginCap)

            if (endCap) {
                // add cap as polygon. vertices of cap are places at end, as for beginCap use just sequence of numbers but with offset.
                size_t beg = (pointset_arr.size() - 1) * crossSection.size();

                for (size_t i = beg, i_e = (beg + crossSection.size()); i < i_e; i++)
                    ext_alias.CoordIndex.push_back(static_cast<int32_t>(i));

                // add delimiter
                ext_alias.CoordIndex.push_back(-1);
            } // if(beginCap)

            // add quads
            for (size_t spi = 0, spi_e = (spine.size() - 1); spi <= spi_e; spi++) {
                const size_t cr_sz = crossSection.size();
                const size_t cr_last = crossSection.size() - 1;

                size_t right_col; // hold index basis for points of quad placed in right column;

                if (spi != spi_e)
                    right_col = spi + 1;
                else if (spine_closed) // if spine curve is closed then one more quad is needed: between first and last points of curve.
                    right_col = 0;
                else
                    break; // if spine curve is not closed then break the loop, because spi is out of range for that type of spine.

                for (size_t cri = 0; cri < cr_sz; cri++) {
                    if (cri != cr_last) {
                        MACRO_FACE_ADD_QUAD(ccw, ext_alias.CoordIndex,
                                static_cast<int32_t>(spi * cr_sz + cri),
                                static_cast<int32_t>(right_col * cr_sz + cri),
                                static_cast<int32_t>(right_col * cr_sz + cri + 1),
                                static_cast<int32_t>(spi * cr_sz + cri + 1));
                        // add delimiter
                        ext_alias.CoordIndex.push_back(-1);
                    } else if (cross_closed) // if cross curve is closed then one more quad is needed: between first and last points of curve.
                    {
                        MACRO_FACE_ADD_QUAD(ccw, ext_alias.CoordIndex,
                                static_cast<int32_t>(spi * cr_sz + cri),
                                static_cast<int32_t>(right_col * cr_sz + cri),
                                static_cast<int32_t>(right_col * cr_sz + 0),
                                static_cast<int32_t>(spi * cr_sz + 0));
                        // add delimiter
                        ext_alias.CoordIndex.push_back(-1);
                    }
                } // for(size_t cri = 0; cri < cr_sz; cri++)
            } // for(size_t spi = 0, spi_e = (spine.size() - 2); spi < spi_e; spi++)
        } // END: 3. Create CoordIdx.

        { // 4. Create vertices list.
            // just copy all vertices
            for (size_t spi = 0, spi_e = spine.size(); spi < spi_e; spi++) {
                for (size_t cri = 0, cri_e = crossSection.size(); cri < cri_e; cri++) {
                    ext_alias.Vertices.emplace_back(pointset_arr[spi][cri]);
                }
            }
        } // END: 4. Create vertices list.
        //PrintVectorSet("Ext. CoordIdx", ext_alias.CoordIndex);
        //PrintVectorSet("Ext. Vertices", ext_alias.Vertices);
        // check for child nodes
        if (!isNodeEmpty(node))
            childrenReadMetadata(node, ne, "Extrusion");
        else
            mNodeElementCur->Children.push_back(ne); // add made object as child to current element

        NodeElement_List.push_back(ne); // add element to node element list because its a new object in graph
    } // if(!use.empty()) else
}

// <IndexedFaceSet
// DEF=""                         ID
// USE=""                         IDREF
// ccw="true"             SFBool  [initializeOnly]
// colorIndex=""          MFInt32 [initializeOnly]
// colorPerVertex="true"  SFBool  [initializeOnly]
// convex="true"          SFBool  [initializeOnly]
// coordIndex=""          MFInt32 [initializeOnly]
// creaseAngle="0"        SFFloat [initializeOnly]
// normalIndex=""         MFInt32 [initializeOnly]
// normalPerVertex="true" SFBool  [initializeOnly]
// solid="true"           SFBool  [initializeOnly]
// texCoordIndex=""       MFInt32 [initializeOnly]
// >
//    <!-- ComposedGeometryContentModel -->
// ComposedGeometryContentModel is the child-node content model corresponding to X3DComposedGeometryNodes. It can contain Color (or ColorRGBA), Coordinate,
// Normal and TextureCoordinate, in any order. No more than one instance of these nodes is allowed. Multiple VertexAttribute (FloatVertexAttribute,
// Matrix3VertexAttribute, Matrix4VertexAttribute) nodes can also be contained.
// A ProtoInstance node (with the proper node type) can be substituted for any node in this content model.
// </IndexedFaceSet>
void X3DImporter::readIndexedFaceSet(XmlNode &node) {
    std::string use, def;
    bool ccw = true;
    std::vector<int32_t> colorIndex;
    bool colorPerVertex = true;
    bool convex = true;
    std::vector<int32_t> coordIndex;
    float creaseAngle = 0;
    std::vector<int32_t> normalIndex;
    bool normalPerVertex = true;
    bool solid = true;
    std::vector<int32_t> texCoordIndex;
    X3DNodeElementBase *ne(nullptr);

    MACRO_ATTRREAD_CHECKUSEDEF_RET(node, def, use);
    XmlParser::getBoolAttribute(node, "ccw", ccw);
    X3DXmlHelper::getInt32ArrayAttribute(node, "colorIndex", colorIndex);
    XmlParser::getBoolAttribute(node, "colorPerVertex", colorPerVertex);
    XmlParser::getBoolAttribute(node, "convex", convex);
    X3DXmlHelper::getInt32ArrayAttribute(node, "coordIndex", coordIndex);
    XmlParser::getFloatAttribute(node, "creaseAngle", creaseAngle);
    X3DXmlHelper::getInt32ArrayAttribute(node, "normalIndex", normalIndex);
    XmlParser::getBoolAttribute(node, "normalPerVertex", normalPerVertex);
    XmlParser::getBoolAttribute(node, "solid", solid);
    X3DXmlHelper::getInt32ArrayAttribute(node, "texCoordIndex", texCoordIndex);

    // if "USE" defined then find already defined element.
    if (!use.empty()) {
        ne = MACRO_USE_CHECKANDAPPLY(node, def, use, ENET_IndexedFaceSet, ne);
    } else {
        // check data
        if (coordIndex.size() == 0) throw DeadlyImportError("IndexedFaceSet must contain not empty \"coordIndex\" attribute.");

        // create and if needed - define new geometry object.
        ne = new X3DNodeElementIndexedSet(X3DElemType::ENET_IndexedFaceSet, mNodeElementCur);
        if (!def.empty()) ne->ID = def;

        X3DNodeElementIndexedSet &ne_alias = *((X3DNodeElementIndexedSet *)ne);

        ne_alias.CCW = ccw;
        ne_alias.ColorIndex = colorIndex;
        ne_alias.ColorPerVertex = colorPerVertex;
        ne_alias.Convex = convex;
        ne_alias.CoordIndex = coordIndex;
        ne_alias.CreaseAngle = creaseAngle;
        ne_alias.NormalIndex = normalIndex;
        ne_alias.NormalPerVertex = normalPerVertex;
        ne_alias.Solid = solid;
        ne_alias.TexCoordIndex = texCoordIndex;
        // check for child nodes
        if (!isNodeEmpty(node)) {
            ParseHelper_Node_Enter(ne);
            for (auto currentChildNode : node.children()) {
                const std::string &currentChildName = currentChildNode.name();
                // check for X3DComposedGeometryNodes
                if (currentChildName == "Color")
                    readColor(currentChildNode);
                else if (currentChildName == "ColorRGBA")
                    readColorRGBA(currentChildNode);
                else if (currentChildName == "Coordinate")
                    readCoordinate(currentChildNode);
                else if (currentChildName == "Normal")
                    readNormal(currentChildNode);
                else if (currentChildName == "TextureCoordinate")
                    readTextureCoordinate(currentChildNode);
                // check for X3DMetadataObject
                else if (!checkForMetadataNode(currentChildNode))
                    skipUnsupportedNode("IndexedFaceSet", currentChildNode);
            }
            ParseHelper_Node_Exit();
        } // if(!isNodeEmpty(node))
        else {
            mNodeElementCur->Children.push_back(ne); // add made object as child to current element
        }

        NodeElement_List.push_back(ne); // add element to node element list because its a new object in graph
    } // if(!use.empty()) else
}

// <Sphere
// DEF=""       ID
// USE=""       IDREF
// radius="1"   SFloat [initializeOnly]
// solid="true" SFBool [initializeOnly]
// />
void X3DImporter::readSphere(XmlNode &node) {
    std::string use, def;
    ai_real radius = 1;
    bool solid = true;
    X3DNodeElementBase *ne(nullptr);

    MACRO_ATTRREAD_CHECKUSEDEF_RET(node, def, use);
    XmlParser::getRealAttribute(node, "radius", radius);
    XmlParser::getBoolAttribute(node, "solid", solid);

    // if "USE" defined then find already defined element.
    if (!use.empty()) {
        ne = MACRO_USE_CHECKANDAPPLY(node, def, use, ENET_Sphere, ne);
    } else {
        const unsigned int tess = 3; ///TODO: IME tessellation factor through ai_property

        std::vector<aiVector3D> tlist;

        // create and if needed - define new geometry object.
        ne = new X3DNodeElementGeometry3D(X3DElemType::ENET_Sphere, mNodeElementCur);
        if (!def.empty()) ne->ID = def;

        StandardShapes::MakeSphere(tess, tlist);
        // copy data from temp array and apply scale
        for (std::vector<aiVector3D>::iterator it = tlist.begin(); it != tlist.end(); ++it) {
            aiVector3D v = *it;
            ((X3DNodeElementGeometry3D *)ne)->Vertices.emplace_back(v * radius);
        }

        ((X3DNodeElementGeometry3D *)ne)->Solid = solid;
        ((X3DNodeElementGeometry3D *)ne)->NumIndices = 3;
        // check for X3DMetadataObject childs.
        if (!isNodeEmpty(node))
            childrenReadMetadata(node, ne, "Sphere");
        else
            mNodeElementCur->Children.push_back(ne); // add made object as child to current element

        NodeElement_List.push_back(ne); // add element to node element list because its a new object in graph
    } // if(!use.empty()) else
}

} // namespace Assimp

#endif // !ASSIMP_BUILD_NO_X3D_IMPORTER