summaryrefslogtreecommitdiff
path: root/src/mesh/assimp-master/code/AssetLib/glTF/glTFExporter.cpp
blob: afcfb12230441618b83bfb608ecf179ba1d5144b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
/*
Open Asset Import Library (assimp)
----------------------------------------------------------------------

Copyright (c) 2006-2022, assimp team


All rights reserved.

Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the
following conditions are met:

* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.

* Neither the name of the assimp team, nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission of the assimp team.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

----------------------------------------------------------------------
*/
#ifndef ASSIMP_BUILD_NO_EXPORT
#ifndef ASSIMP_BUILD_NO_GLTF_EXPORTER

#include "AssetLib/glTF/glTFExporter.h"
#include "AssetLib/glTF/glTFAssetWriter.h"
#include "PostProcessing/SplitLargeMeshes.h"

#include <assimp/commonMetaData.h>
#include <assimp/Exceptional.h>
#include <assimp/StringComparison.h>
#include <assimp/ByteSwapper.h>
#include <assimp/SceneCombiner.h>
#include <assimp/version.h>
#include <assimp/IOSystem.hpp>
#include <assimp/Exporter.hpp>
#include <assimp/material.h>
#include <assimp/scene.h>

// Header files, standard library.
#include <memory>
#include <limits>
#include <inttypes.h>

#ifdef ASSIMP_IMPORTER_GLTF_USE_OPEN3DGC
	// Header files, Open3DGC.
#	include <Open3DGC/o3dgcSC3DMCEncoder.h>
#endif

using namespace rapidjson;

using namespace Assimp;
using namespace glTF;

namespace Assimp {

    // ------------------------------------------------------------------------------------------------
    // Worker function for exporting a scene to GLTF. Prototyped and registered in Exporter.cpp
    void ExportSceneGLTF(const char* pFile, IOSystem* pIOSystem, const aiScene* pScene, const ExportProperties* pProperties)
    {
        // invoke the exporter
        glTFExporter exporter(pFile, pIOSystem, pScene, pProperties, false);
    }

    // ------------------------------------------------------------------------------------------------
    // Worker function for exporting a scene to GLB. Prototyped and registered in Exporter.cpp
    void ExportSceneGLB(const char* pFile, IOSystem* pIOSystem, const aiScene* pScene, const ExportProperties* pProperties)
    {
        // invoke the exporter
        glTFExporter exporter(pFile, pIOSystem, pScene, pProperties, true);
    }

} // end of namespace Assimp

glTFExporter::glTFExporter(const char* filename, IOSystem* pIOSystem, const aiScene* pScene,
                           const ExportProperties* pProperties, bool isBinary)
    : mFilename(filename)
    , mIOSystem(pIOSystem)
    , mProperties(pProperties)
{
    aiScene* sceneCopy_tmp;
    SceneCombiner::CopyScene(&sceneCopy_tmp, pScene);

    SplitLargeMeshesProcess_Triangle tri_splitter;
    tri_splitter.SetLimit(0xffff);
    tri_splitter.Execute(sceneCopy_tmp);

    SplitLargeMeshesProcess_Vertex vert_splitter;
    vert_splitter.SetLimit(0xffff);
    vert_splitter.Execute(sceneCopy_tmp);

    mScene.reset(sceneCopy_tmp);

    mAsset.reset( new glTF::Asset( pIOSystem ) );

    if (isBinary) {
        mAsset->SetAsBinary();
    }

    ExportMetadata();

    //for (unsigned int i = 0; i < pScene->mNumCameras; ++i) {}

    //for (unsigned int i = 0; i < pScene->mNumLights; ++i) {}

    ExportMaterials();

    if (mScene->mRootNode) {
        ExportNodeHierarchy(mScene->mRootNode);
    }

    ExportMeshes();

    //for (unsigned int i = 0; i < pScene->mNumTextures; ++i) {}

    ExportScene();

    ExportAnimations();

    glTF::AssetWriter writer(*mAsset);

    if (isBinary) {
        writer.WriteGLBFile(filename);
    } else {
        writer.WriteFile(filename);
    }
}

/*
 * Copy a 4x4 matrix from struct aiMatrix to typedef mat4.
 * Also converts from row-major to column-major storage.
 */
static void CopyValue(const aiMatrix4x4& v, glTF::mat4& o)
{
    o[ 0] = v.a1; o[ 1] = v.b1; o[ 2] = v.c1; o[ 3] = v.d1;
    o[ 4] = v.a2; o[ 5] = v.b2; o[ 6] = v.c2; o[ 7] = v.d2;
    o[ 8] = v.a3; o[ 9] = v.b3; o[10] = v.c3; o[11] = v.d3;
    o[12] = v.a4; o[13] = v.b4; o[14] = v.c4; o[15] = v.d4;
}

static void CopyValue(const aiMatrix4x4& v, aiMatrix4x4& o)
{
    memcpy(&o, &v, sizeof(aiMatrix4x4));
}

static void IdentityMatrix4(glTF::mat4& o)
{
    o[ 0] = 1; o[ 1] = 0; o[ 2] = 0; o[ 3] = 0;
    o[ 4] = 0; o[ 5] = 1; o[ 6] = 0; o[ 7] = 0;
    o[ 8] = 0; o[ 9] = 0; o[10] = 1; o[11] = 0;
    o[12] = 0; o[13] = 0; o[14] = 0; o[15] = 1;
}

template<typename T>
void SetAccessorRange(Ref<Accessor> acc, void* data, unsigned int count,
	unsigned int numCompsIn, unsigned int numCompsOut)
{
	ai_assert(numCompsOut <= numCompsIn);

	// Allocate and initialize with large values.
	for (unsigned int i = 0 ; i < numCompsOut ; i++) {
		acc->min.push_back( std::numeric_limits<double>::max());
		acc->max.push_back(-std::numeric_limits<double>::max());
	}

	size_t totalComps = count * numCompsIn;
	T* buffer_ptr = static_cast<T*>(data);
	T* buffer_end = buffer_ptr + totalComps;

	// Search and set extreme values.
	for (; buffer_ptr < buffer_end ; buffer_ptr += numCompsIn) {
		for (unsigned int j = 0 ; j < numCompsOut ; j++) {
			double valueTmp = buffer_ptr[j];

			if (valueTmp < acc->min[j]) {
				acc->min[j] = valueTmp;
			}
			if (valueTmp > acc->max[j]) {
				acc->max[j] = valueTmp;
			}
		}
	}
}

inline void SetAccessorRange(ComponentType compType, Ref<Accessor> acc, void* data,
		unsigned int count, unsigned int numCompsIn, unsigned int numCompsOut)
{
	switch (compType) {
		case ComponentType_SHORT:
			SetAccessorRange<short>(acc, data, count, numCompsIn, numCompsOut);
			return;
		case ComponentType_UNSIGNED_SHORT:
			SetAccessorRange<unsigned short>(acc, data, count, numCompsIn, numCompsOut);
			return;
		case ComponentType_UNSIGNED_INT:
			SetAccessorRange<unsigned int>(acc, data, count, numCompsIn, numCompsOut);
			return;
		case ComponentType_FLOAT:
			SetAccessorRange<float>(acc, data, count, numCompsIn, numCompsOut);
			return;
		case ComponentType_BYTE:
			SetAccessorRange<int8_t>(acc, data, count, numCompsIn, numCompsOut);
			return;
		case ComponentType_UNSIGNED_BYTE:
			SetAccessorRange<uint8_t>(acc, data, count, numCompsIn, numCompsOut);
			return;
	}
}

inline Ref<Accessor> ExportData(Asset &a, std::string &meshName, Ref<Buffer> &buffer,
        unsigned int count, void *data, AttribType::Value typeIn, AttribType::Value typeOut, ComponentType compType, BufferViewTarget target = BufferViewTarget_NONE) {
    if (!count || !data) return Ref<Accessor>();

    unsigned int numCompsIn = AttribType::GetNumComponents(typeIn);
    unsigned int numCompsOut = AttribType::GetNumComponents(typeOut);
    unsigned int bytesPerComp = ComponentTypeSize(compType);

    size_t offset = buffer->byteLength;
    // make sure offset is correctly byte-aligned, as required by spec
    size_t padding = offset % bytesPerComp;
    offset += padding;
    size_t length = count * numCompsOut * bytesPerComp;
    buffer->Grow(length + padding);

    // bufferView
    Ref<BufferView> bv = a.bufferViews.Create(a.FindUniqueID(meshName, "view"));
    bv->buffer = buffer;
    bv->byteOffset = unsigned(offset);
    bv->byteLength = length; //! The target that the WebGL buffer should be bound to.
    bv->target = target;

    // accessor
    Ref<Accessor> acc = a.accessors.Create(a.FindUniqueID(meshName, "accessor"));
    acc->bufferView = bv;
    acc->byteOffset = 0;
    acc->byteStride = 0;
    acc->componentType = compType;
    acc->count = count;
    acc->type = typeOut;

    // calculate min and max values
	SetAccessorRange(compType, acc, data, count, numCompsIn, numCompsOut);

    // copy the data
    acc->WriteData(count, data, numCompsIn*bytesPerComp);

    return acc;
}

namespace {
    void GetMatScalar(const aiMaterial* mat, float& val, const char* propName, int type, int idx) {
        ai_assert( nullptr != mat );
        if ( nullptr != mat ) {
            mat->Get(propName, type, idx, val);
        }
    }
}

void glTFExporter::GetTexSampler(const aiMaterial* mat, glTF::TexProperty& prop)
{
    std::string samplerId = mAsset->FindUniqueID("", "sampler");
    prop.texture->sampler = mAsset->samplers.Create(samplerId);

    aiTextureMapMode mapU, mapV;
    aiGetMaterialInteger(mat,AI_MATKEY_MAPPINGMODE_U_DIFFUSE(0),(int*)&mapU);
    aiGetMaterialInteger(mat,AI_MATKEY_MAPPINGMODE_V_DIFFUSE(0),(int*)&mapV);

    switch (mapU) {
        case aiTextureMapMode_Wrap:
            prop.texture->sampler->wrapS = SamplerWrap_Repeat;
            break;
        case aiTextureMapMode_Clamp:
            prop.texture->sampler->wrapS = SamplerWrap_Clamp_To_Edge;
            break;
        case aiTextureMapMode_Mirror:
            prop.texture->sampler->wrapS = SamplerWrap_Mirrored_Repeat;
            break;
        case aiTextureMapMode_Decal:
        default:
            prop.texture->sampler->wrapS = SamplerWrap_Repeat;
            break;
    };

    switch (mapV) {
        case aiTextureMapMode_Wrap:
            prop.texture->sampler->wrapT = SamplerWrap_Repeat;
            break;
        case aiTextureMapMode_Clamp:
            prop.texture->sampler->wrapT = SamplerWrap_Clamp_To_Edge;
            break;
        case aiTextureMapMode_Mirror:
            prop.texture->sampler->wrapT = SamplerWrap_Mirrored_Repeat;
            break;
        case aiTextureMapMode_Decal:
        default:
            prop.texture->sampler->wrapT = SamplerWrap_Repeat;
            break;
    };

    // Hard coded Texture filtering options because I do not know where to find them in the aiMaterial.
    prop.texture->sampler->magFilter = SamplerMagFilter_Linear;
    prop.texture->sampler->minFilter = SamplerMinFilter_Linear;
}

void glTFExporter::GetMatColorOrTex(const aiMaterial* mat, glTF::TexProperty& prop, 
        const char* propName, int type, int idx, aiTextureType tt) {
    aiString tex;
    aiColor4D col;
    if (mat->GetTextureCount(tt) > 0) {
        if (mat->Get(AI_MATKEY_TEXTURE(tt, 0), tex) == AI_SUCCESS) {
            std::string path = tex.C_Str();

            if (path.size() > 0) {
                if (path[0] != '*') {
                    std::map<std::string, unsigned int>::iterator it = mTexturesByPath.find(path);
                    if (it != mTexturesByPath.end()) {
                        prop.texture = mAsset->textures.Get(it->second);
                    }
                }

                if (!prop.texture) {
                    std::string texId = mAsset->FindUniqueID("", "texture");
                    prop.texture = mAsset->textures.Create(texId);
                    mTexturesByPath[path] = prop.texture.GetIndex();

                    std::string imgId = mAsset->FindUniqueID("", "image");
                    prop.texture->source = mAsset->images.Create(imgId);

                    if (path[0] == '*') { // embedded
                        aiTexture* curTex = mScene->mTextures[atoi(&path[1])];

                        prop.texture->source->name = curTex->mFilename.C_Str();

                        uint8_t *data = reinterpret_cast<uint8_t *>(curTex->pcData);
                        prop.texture->source->SetData(data, curTex->mWidth, *mAsset);

                        if (curTex->achFormatHint[0]) {
                            std::string mimeType = "image/";
                            mimeType += (memcmp(curTex->achFormatHint, "jpg", 3) == 0) ? "jpeg" : curTex->achFormatHint;
                            prop.texture->source->mimeType = mimeType;
                        }
                    } else {
                        prop.texture->source->uri = path;
                    }

                    GetTexSampler(mat, prop);
                }
            }
        }
    }

    if (mat->Get(propName, type, idx, col) == AI_SUCCESS) {
        prop.color[0] = col.r; 
        prop.color[1] = col.g;
        prop.color[2] = col.b; 
        prop.color[3] = col.a;
    }
}


void glTFExporter::ExportMaterials()
{
    aiString aiName;
    for (unsigned int i = 0; i < mScene->mNumMaterials; ++i) {
        const aiMaterial* mat = mScene->mMaterials[i];


        std::string name;
        if (mat->Get(AI_MATKEY_NAME, aiName) == AI_SUCCESS) {
            name = aiName.C_Str();
        }
        name = mAsset->FindUniqueID(name, "material");

        Ref<Material> m = mAsset->materials.Create(name);

        GetMatColorOrTex(mat, m->ambient, AI_MATKEY_COLOR_AMBIENT, aiTextureType_AMBIENT);
        GetMatColorOrTex(mat, m->diffuse, AI_MATKEY_COLOR_DIFFUSE, aiTextureType_DIFFUSE);
        GetMatColorOrTex(mat, m->specular, AI_MATKEY_COLOR_SPECULAR, aiTextureType_SPECULAR);
        GetMatColorOrTex(mat, m->emission, AI_MATKEY_COLOR_EMISSIVE, aiTextureType_EMISSIVE);

        m->transparent = mat->Get(AI_MATKEY_OPACITY, m->transparency) == aiReturn_SUCCESS && m->transparency != 1.0;

        GetMatScalar(mat, m->shininess, AI_MATKEY_SHININESS);
    }
}

/*
 * Search through node hierarchy and find the node containing the given meshID.
 * Returns true on success, and false otherwise.
 */
bool FindMeshNode(Ref<Node> &nodeIn, Ref<Node> &meshNode, const std::string &meshID) {
    for (unsigned int i = 0; i < nodeIn->meshes.size(); ++i) {
        if (meshID.compare(nodeIn->meshes[i]->id) == 0) {
          meshNode = nodeIn;
          return true;
        }
    }

    for (unsigned int i = 0; i < nodeIn->children.size(); ++i) {
        if(FindMeshNode(nodeIn->children[i], meshNode, meshID)) {
          return true;
        }
    }

    return false;
}

/*
 * Find the root joint of the skeleton.
 * Starts will any joint node and traces up the tree,
 * until a parent is found that does not have a jointName.
 * Returns the first parent Ref<Node> found that does not have a jointName.
 */
Ref<Node> FindSkeletonRootJoint(Ref<Skin>& skinRef)
{
    Ref<Node> startNodeRef;
    Ref<Node> parentNodeRef;

    // Arbitrarily use the first joint to start the search.
    startNodeRef = skinRef->jointNames[0];
    parentNodeRef = skinRef->jointNames[0];

    do {
        startNodeRef = parentNodeRef;
        parentNodeRef = startNodeRef->parent;
    } while (!parentNodeRef->jointName.empty());

    return parentNodeRef;
}

void ExportSkin(Asset& mAsset, const aiMesh* aimesh, Ref<Mesh>& meshRef, Ref<Buffer>& bufferRef, Ref<Skin>& skinRef, std::vector<aiMatrix4x4>& inverseBindMatricesData)
{
    if (aimesh->mNumBones < 1) {
        return;
    }

    // Store the vertex joint and weight data.
    const size_t NumVerts( aimesh->mNumVertices );
    vec4* vertexJointData = new vec4[ NumVerts ];
    vec4* vertexWeightData = new vec4[ NumVerts ];
    int* jointsPerVertex = new int[ NumVerts ];
    for (size_t i = 0; i < NumVerts; ++i) {
        jointsPerVertex[i] = 0;
        for (size_t j = 0; j < 4; ++j) {
            vertexJointData[i][j] = 0;
            vertexWeightData[i][j] = 0;
        }
    }

    for (unsigned int idx_bone = 0; idx_bone < aimesh->mNumBones; ++idx_bone) {
        const aiBone* aib = aimesh->mBones[idx_bone];

        // aib->mName   =====>  skinRef->jointNames
        // Find the node with id = mName.
        Ref<Node> nodeRef = mAsset.nodes.Get(aib->mName.C_Str());
        nodeRef->jointName = nodeRef->id;

        unsigned int jointNamesIndex = 0;
        bool addJointToJointNames = true;
        for ( unsigned int idx_joint = 0; idx_joint < skinRef->jointNames.size(); ++idx_joint) {
            if (skinRef->jointNames[idx_joint]->jointName.compare(nodeRef->jointName) == 0) {
                addJointToJointNames = false;
                jointNamesIndex = idx_joint;
            }
        }

        if (addJointToJointNames) {
            skinRef->jointNames.push_back(nodeRef);

            // aib->mOffsetMatrix   =====>  skinRef->inverseBindMatrices
            aiMatrix4x4 tmpMatrix4;
            CopyValue(aib->mOffsetMatrix, tmpMatrix4);
            inverseBindMatricesData.push_back(tmpMatrix4);
            jointNamesIndex = static_cast<unsigned int>(inverseBindMatricesData.size() - 1);
        }

        // aib->mWeights   =====>  vertexWeightData
        for (unsigned int idx_weights = 0; idx_weights < aib->mNumWeights; ++idx_weights) {
            unsigned int vertexId = aib->mWeights[idx_weights].mVertexId;
            float vertWeight      = aib->mWeights[idx_weights].mWeight;

            // A vertex can only have at most four joint weights. Ignore all others.
            if (jointsPerVertex[vertexId] > 3) {
                continue;
            }

            vertexJointData[vertexId][jointsPerVertex[vertexId]] = static_cast<float>(jointNamesIndex);
            vertexWeightData[vertexId][jointsPerVertex[vertexId]] = vertWeight;

            jointsPerVertex[vertexId] += 1;
        }

    } // End: for-loop mNumMeshes

    Mesh::Primitive& p = meshRef->primitives.back();
    Ref<Accessor> vertexJointAccessor = ExportData(mAsset, skinRef->id, bufferRef, aimesh->mNumVertices, vertexJointData, AttribType::VEC4, AttribType::VEC4, ComponentType_FLOAT);
    if ( vertexJointAccessor ) {
        p.attributes.joint.push_back( vertexJointAccessor );
    }

    Ref<Accessor> vertexWeightAccessor = ExportData(mAsset, skinRef->id, bufferRef, aimesh->mNumVertices, vertexWeightData, AttribType::VEC4, AttribType::VEC4, ComponentType_FLOAT);
    if ( vertexWeightAccessor ) {
        p.attributes.weight.push_back( vertexWeightAccessor );
    }
    delete[] jointsPerVertex;
    delete[] vertexWeightData;
    delete[] vertexJointData;
}

#if defined(__has_warning)
#if __has_warning("-Wunused-but-set-variable")
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-but-set-variable"
#endif
#endif

void glTFExporter::ExportMeshes()
{
    // Not for
    //     using IndicesType = decltype(aiFace::mNumIndices);
    // But yes for
    //     using IndicesType = unsigned short;
    // because "ComponentType_UNSIGNED_SHORT" used for indices. And it's a maximal type according to glTF specification.
    typedef unsigned short IndicesType;

    // Variables needed for compression. BEGIN.
    // Indices, not pointers - because pointer to buffer is changing while writing to it.
#ifdef ASSIMP_IMPORTER_GLTF_USE_OPEN3DGC
    size_t idx_srcdata_begin = 0; // Index of buffer before writing mesh data. Also, index of begin of coordinates array in buffer.
    size_t idx_srcdata_normal = SIZE_MAX;// Index of begin of normals array in buffer. SIZE_MAX - mean that mesh has no normals.
    size_t idx_srcdata_ind;// Index of begin of coordinates indices array in buffer.
#endif
    std::vector<size_t> idx_srcdata_tc;// Array of indices. Every index point to begin of texture coordinates array in buffer.
    bool comp_allow;// Point that data of current mesh can be compressed.
    // Variables needed for compression. END.

    std::string fname = std::string(mFilename);
    std::string bufferIdPrefix = fname.substr(0, fname.rfind(".gltf"));
    std::string bufferId = mAsset->FindUniqueID("", bufferIdPrefix.c_str());

    Ref<Buffer> b = mAsset->GetBodyBuffer();
    if (!b) {
       b = mAsset->buffers.Create(bufferId);
    }

    //----------------------------------------
    // Initialize variables for the skin
    bool createSkin = false;
    for (unsigned int idx_mesh = 0; idx_mesh < mScene->mNumMeshes; ++idx_mesh) {
        const aiMesh* aim = mScene->mMeshes[idx_mesh];
        if(aim->HasBones()) {
            createSkin = true;
            break;
        }
    }

    Ref<Skin> skinRef;
    std::string skinName = mAsset->FindUniqueID("skin", "skin");
    std::vector<aiMatrix4x4> inverseBindMatricesData;
    if(createSkin) {
        skinRef = mAsset->skins.Create(skinName);
        skinRef->name = skinName;
    }
    //----------------------------------------

	for (unsigned int idx_mesh = 0; idx_mesh < mScene->mNumMeshes; ++idx_mesh) {
		const aiMesh* aim = mScene->mMeshes[idx_mesh];

		// Check if compressing requested and mesh can be encoded.
#ifdef ASSIMP_IMPORTER_GLTF_USE_OPEN3DGC
		comp_allow = mProperties->GetPropertyBool("extensions.Open3DGC.use", false);
#else
		comp_allow = false;
#endif

		if(comp_allow && (aim->mPrimitiveTypes == aiPrimitiveType_TRIANGLE) && (aim->mNumVertices > 0) && (aim->mNumFaces > 0))
		{
			idx_srcdata_tc.clear();
			idx_srcdata_tc.reserve(AI_MAX_NUMBER_OF_TEXTURECOORDS);
		}
		else
		{
			std::string msg;

			if(aim->mPrimitiveTypes != aiPrimitiveType_TRIANGLE)
				msg = "all primitives of the mesh must be a triangles.";
			else
				msg = "mesh must has vertices and faces.";

            ASSIMP_LOG_WARN("GLTF: can not use Open3DGC-compression: ", msg);
            comp_allow = false;
		}

        std::string meshId = mAsset->FindUniqueID(aim->mName.C_Str(), "mesh");
        Ref<Mesh> m = mAsset->meshes.Create(meshId);
        m->primitives.resize(1);
        Mesh::Primitive& p = m->primitives.back();

        p.material = mAsset->materials.Get(aim->mMaterialIndex);

		/******************* Vertices ********************/
		// If compression is used then you need parameters of uncompressed region: begin and size. At this step "begin" is stored.
#ifdef ASSIMP_IMPORTER_GLTF_USE_OPEN3DGC
		if(comp_allow) idx_srcdata_begin = b->byteLength;
#endif

        Ref<Accessor> v = ExportData(*mAsset, meshId, b, aim->mNumVertices, aim->mVertices, AttribType::VEC3, AttribType::VEC3, ComponentType_FLOAT, BufferViewTarget_ARRAY_BUFFER);
		if (v) p.attributes.position.push_back(v);

		/******************** Normals ********************/
#ifdef ASSIMP_IMPORTER_GLTF_USE_OPEN3DGC
		if(comp_allow && (aim->mNormals != 0)) idx_srcdata_normal = b->byteLength;// Store index of normals array.
#endif

		Ref<Accessor> n = ExportData(*mAsset, meshId, b, aim->mNumVertices, aim->mNormals, AttribType::VEC3, AttribType::VEC3, ComponentType_FLOAT, BufferViewTarget_ARRAY_BUFFER);
		if (n) p.attributes.normal.push_back(n);

		/************** Texture coordinates **************/
        for (int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i) {
            // Flip UV y coords
            if (aim -> mNumUVComponents[i] > 1) {
                for (unsigned int j = 0; j < aim->mNumVertices; ++j) {
                    aim->mTextureCoords[i][j].y = 1 - aim->mTextureCoords[i][j].y;
                }
            }

            if (aim->mNumUVComponents[i] > 0) {
                AttribType::Value type = (aim->mNumUVComponents[i] == 2) ? AttribType::VEC2 : AttribType::VEC3;

				if(comp_allow) idx_srcdata_tc.push_back(b->byteLength);// Store index of texture coordinates array.

				Ref<Accessor> tc = ExportData(*mAsset, meshId, b, aim->mNumVertices, aim->mTextureCoords[i], AttribType::VEC3, type, ComponentType_FLOAT, BufferViewTarget_ARRAY_BUFFER);
				if (tc) p.attributes.texcoord.push_back(tc);
			}
		}

		/*************** Vertices indices ****************/
#ifdef ASSIMP_IMPORTER_GLTF_USE_OPEN3DGC
		idx_srcdata_ind = b->byteLength;// Store index of indices array.
#endif

		if (aim->mNumFaces > 0) {
			std::vector<IndicesType> indices;
			unsigned int nIndicesPerFace = aim->mFaces[0].mNumIndices;
            indices.resize(aim->mNumFaces * nIndicesPerFace);
            for (size_t i = 0; i < aim->mNumFaces; ++i) {
                for (size_t j = 0; j < nIndicesPerFace; ++j) {
                    indices[i*nIndicesPerFace + j] = uint16_t(aim->mFaces[i].mIndices[j]);
                }
            }

			p.indices = ExportData(*mAsset, meshId, b, unsigned(indices.size()), &indices[0], AttribType::SCALAR, AttribType::SCALAR, ComponentType_UNSIGNED_SHORT, BufferViewTarget_ELEMENT_ARRAY_BUFFER);
		}

        switch (aim->mPrimitiveTypes) {
            case aiPrimitiveType_POLYGON:
                p.mode = PrimitiveMode_TRIANGLES; break; // TODO implement this
            case aiPrimitiveType_LINE:
                p.mode = PrimitiveMode_LINES; break;
            case aiPrimitiveType_POINT:
                p.mode = PrimitiveMode_POINTS; break;
            default: // aiPrimitiveType_TRIANGLE
                p.mode = PrimitiveMode_TRIANGLES;
        }

    /*************** Skins ****************/
    if(aim->HasBones()) {
        ExportSkin(*mAsset, aim, m, b, skinRef, inverseBindMatricesData);
    }

		/****************** Compression ******************/
		///TODO: animation: weights, joints.
		if(comp_allow)
		{
#ifdef ASSIMP_IMPORTER_GLTF_USE_OPEN3DGC
			// Only one type of compression supported at now - Open3DGC.
		//
			o3dgc::BinaryStream bs;
			o3dgc::SC3DMCEncoder<IndicesType> encoder;
			o3dgc::IndexedFaceSet<IndicesType> comp_o3dgc_ifs;
			o3dgc::SC3DMCEncodeParams comp_o3dgc_params;

			//
			// Fill data for encoder.
			//
			// Quantization
			unsigned quant_coord = mProperties->GetPropertyInteger("extensions.Open3DGC.quantization.POSITION", 12);
			unsigned quant_normal = mProperties->GetPropertyInteger("extensions.Open3DGC.quantization.NORMAL", 10);
			unsigned quant_texcoord = mProperties->GetPropertyInteger("extensions.Open3DGC.quantization.TEXCOORD", 10);

			// Prediction
			o3dgc::O3DGCSC3DMCPredictionMode prediction_position = o3dgc::O3DGC_SC3DMC_PARALLELOGRAM_PREDICTION;
			o3dgc::O3DGCSC3DMCPredictionMode prediction_normal =  o3dgc::O3DGC_SC3DMC_SURF_NORMALS_PREDICTION;
			o3dgc::O3DGCSC3DMCPredictionMode prediction_texcoord = o3dgc::O3DGC_SC3DMC_PARALLELOGRAM_PREDICTION;

			// IndexedFacesSet: "Crease angle", "solid", "convex" are set to default.
			comp_o3dgc_ifs.SetCCW(true);
			comp_o3dgc_ifs.SetIsTriangularMesh(true);
			comp_o3dgc_ifs.SetNumFloatAttributes(0);
			// Coordinates
			comp_o3dgc_params.SetCoordQuantBits(quant_coord);
			comp_o3dgc_params.SetCoordPredMode(prediction_position);
			comp_o3dgc_ifs.SetNCoord(aim->mNumVertices);
			comp_o3dgc_ifs.SetCoord((o3dgc::Real* const)&b->GetPointer()[idx_srcdata_begin]);
			// Normals
			if(idx_srcdata_normal != SIZE_MAX)
			{
				comp_o3dgc_params.SetNormalQuantBits(quant_normal);
				comp_o3dgc_params.SetNormalPredMode(prediction_normal);
				comp_o3dgc_ifs.SetNNormal(aim->mNumVertices);
				comp_o3dgc_ifs.SetNormal((o3dgc::Real* const)&b->GetPointer()[idx_srcdata_normal]);
			}

			// Texture coordinates
			for(size_t num_tc = 0; num_tc < idx_srcdata_tc.size(); num_tc++)
			{
				size_t num = comp_o3dgc_ifs.GetNumFloatAttributes();

				comp_o3dgc_params.SetFloatAttributeQuantBits(static_cast<unsigned long>(num), quant_texcoord);
				comp_o3dgc_params.SetFloatAttributePredMode(static_cast<unsigned long>(num), prediction_texcoord);
				comp_o3dgc_ifs.SetNFloatAttribute(static_cast<unsigned long>(num), aim->mNumVertices);// number of elements.
				comp_o3dgc_ifs.SetFloatAttributeDim(static_cast<unsigned long>(num), aim->mNumUVComponents[num_tc]);// components per element: aiVector3D => x * float
				comp_o3dgc_ifs.SetFloatAttributeType(static_cast<unsigned long>(num), o3dgc::O3DGC_IFS_FLOAT_ATTRIBUTE_TYPE_TEXCOORD);
				comp_o3dgc_ifs.SetFloatAttribute(static_cast<unsigned long>(num), (o3dgc::Real* const)&b->GetPointer()[idx_srcdata_tc[num_tc]]);
				comp_o3dgc_ifs.SetNumFloatAttributes(static_cast<unsigned long>(num + 1));
			}

			// Coordinates indices
			comp_o3dgc_ifs.SetNCoordIndex(aim->mNumFaces);
			comp_o3dgc_ifs.SetCoordIndex((IndicesType* const)&b->GetPointer()[idx_srcdata_ind]);
			// Prepare to encoding
			comp_o3dgc_params.SetNumFloatAttributes(comp_o3dgc_ifs.GetNumFloatAttributes());
			if(mProperties->GetPropertyBool("extensions.Open3DGC.binary", true))
				comp_o3dgc_params.SetStreamType(o3dgc::O3DGC_STREAM_TYPE_BINARY);
			else
				comp_o3dgc_params.SetStreamType(o3dgc::O3DGC_STREAM_TYPE_ASCII);

			comp_o3dgc_ifs.ComputeMinMax(o3dgc::O3DGC_SC3DMC_MAX_ALL_DIMS);
			//
			// Encoding
			//
			encoder.Encode(comp_o3dgc_params, comp_o3dgc_ifs, bs);
			// Replace data in buffer.
			b->ReplaceData(idx_srcdata_begin, b->byteLength - idx_srcdata_begin, bs.GetBuffer(), bs.GetSize());
			//
			// Add information about extension to mesh.
			//
			// Create extension structure.
			Mesh::SCompression_Open3DGC* ext = new Mesh::SCompression_Open3DGC;

			// Fill it.
			ext->Buffer = b->id;
			ext->Offset = idx_srcdata_begin;
			ext->Count = b->byteLength - idx_srcdata_begin;
			ext->Binary = mProperties->GetPropertyBool("extensions.Open3DGC.binary");
			ext->IndicesCount = comp_o3dgc_ifs.GetNCoordIndex() * 3;
			ext->VerticesCount = comp_o3dgc_ifs.GetNCoord();
			// And assign to mesh.
			m->Extension.push_back(ext);
#endif
		}// if(comp_allow)
	}// for (unsigned int i = 0; i < mScene->mNumMeshes; ++i)

    //----------------------------------------
    // Finish the skin
    // Create the Accessor for skinRef->inverseBindMatrices
    if (createSkin) {
        mat4* invBindMatrixData = new mat4[inverseBindMatricesData.size()];
        for ( unsigned int idx_joint = 0; idx_joint < inverseBindMatricesData.size(); ++idx_joint) {
            CopyValue(inverseBindMatricesData[idx_joint], invBindMatrixData[idx_joint]);
        }

        Ref<Accessor> invBindMatrixAccessor = ExportData(*mAsset, skinName, b, static_cast<unsigned int>(inverseBindMatricesData.size()), invBindMatrixData, AttribType::MAT4, AttribType::MAT4, ComponentType_FLOAT);
        if (invBindMatrixAccessor) skinRef->inverseBindMatrices = invBindMatrixAccessor;

        // Identity Matrix   =====>  skinRef->bindShapeMatrix
        // Temporary. Hard-coded identity matrix here
        skinRef->bindShapeMatrix.isPresent = true;
        IdentityMatrix4(skinRef->bindShapeMatrix.value);

        // Find node that contains this mesh and add "skeletons" and "skin" attributes to that node.
        Ref<Node> rootNode = mAsset->nodes.Get(unsigned(0));
        Ref<Node> meshNode;
        std::string meshID = mAsset->meshes.Get(unsigned(0))->id;
        FindMeshNode(rootNode, meshNode, meshID);

        Ref<Node> rootJoint = FindSkeletonRootJoint(skinRef);
        meshNode->skeletons.push_back(rootJoint);
        meshNode->skin = skinRef;
    }
}

#if defined(__has_warning)
#if __has_warning("-Wunused-but-set-variable")
#pragma GCC diagnostic pop
#endif
#endif

/*
 * Export the root node of the node hierarchy.
 * Calls ExportNode for all children.
 */
unsigned int glTFExporter::ExportNodeHierarchy(const aiNode* n)
{
    Ref<Node> node = mAsset->nodes.Create(mAsset->FindUniqueID(n->mName.C_Str(), "node"));

    if (!n->mTransformation.IsIdentity()) {
        node->matrix.isPresent = true;
        CopyValue(n->mTransformation, node->matrix.value);
    }

    for (unsigned int i = 0; i < n->mNumMeshes; ++i) {
        node->meshes.push_back(mAsset->meshes.Get(n->mMeshes[i]));
    }

    for (unsigned int i = 0; i < n->mNumChildren; ++i) {
        unsigned int idx = ExportNode(n->mChildren[i], node);
        node->children.push_back(mAsset->nodes.Get(idx));
    }

    return node.GetIndex();
}

/*
 * Export node and recursively calls ExportNode for all children.
 * Since these nodes are not the root node, we also export the parent Ref<Node>
 */
unsigned int glTFExporter::ExportNode(const aiNode* n, Ref<Node>& parent)
{
    Ref<Node> node = mAsset->nodes.Create(mAsset->FindUniqueID(n->mName.C_Str(), "node"));

    node->parent = parent;

    if (!n->mTransformation.IsIdentity()) {
        node->matrix.isPresent = true;
        CopyValue(n->mTransformation, node->matrix.value);
    }

    for (unsigned int i = 0; i < n->mNumMeshes; ++i) {
        node->meshes.push_back(mAsset->meshes.Get(n->mMeshes[i]));
    }

    for (unsigned int i = 0; i < n->mNumChildren; ++i) {
        unsigned int idx = ExportNode(n->mChildren[i], node);
        node->children.push_back(mAsset->nodes.Get(idx));
    }

    return node.GetIndex();
}


void glTFExporter::ExportScene()
{
    const char* sceneName = "defaultScene";
    Ref<Scene> scene = mAsset->scenes.Create(sceneName);

    // root node will be the first one exported (idx 0)
    if (mAsset->nodes.Size() > 0) {
        scene->nodes.push_back(mAsset->nodes.Get(0u));
    }

    // set as the default scene
    mAsset->scene = scene;
}

void glTFExporter::ExportMetadata()
{
    glTF::AssetMetadata& asset = mAsset->asset;
    asset.version = "1.0";

    char buffer[256];
    ai_snprintf(buffer, 256, "Open Asset Import Library (assimp v%d.%d.%x)",
        aiGetVersionMajor(), aiGetVersionMinor(), aiGetVersionRevision());

    asset.generator = buffer;

	// Copyright
	aiString copyright_str;
	if (mScene->mMetaData != nullptr && mScene->mMetaData->Get(AI_METADATA_SOURCE_COPYRIGHT, copyright_str)) {
		asset.copyright = copyright_str.C_Str();
	}
}

inline void ExtractAnimationData(Asset& mAsset, std::string& animId, Ref<Animation>& animRef, Ref<Buffer>& buffer, const aiNodeAnim* nodeChannel, float ticksPerSecond)
{
    // Loop over the data and check to see if it exactly matches an existing buffer.
    //    If yes, then reference the existing corresponding accessor.
    //    Otherwise, add to the buffer and create a new accessor.

    size_t counts[3] = {
        nodeChannel->mNumPositionKeys,
        nodeChannel->mNumScalingKeys,
        nodeChannel->mNumRotationKeys,
    };
    size_t numKeyframes = 1;
    for (int i = 0; i < 3; ++i) {
        if (counts[i] > numKeyframes) {
            numKeyframes = counts[i];
        }
    }

    //-------------------------------------------------------
    // Extract TIME parameter data.
    // Check if the timeStamps are the same for mPositionKeys, mRotationKeys, and mScalingKeys.
    if(nodeChannel->mNumPositionKeys > 0) {
        typedef float TimeType;
        std::vector<TimeType> timeData;
        timeData.resize(numKeyframes);
        for (size_t i = 0; i < numKeyframes; ++i) {
            size_t frameIndex = i * nodeChannel->mNumPositionKeys / numKeyframes;
            // mTime is measured in ticks, but GLTF time is measured in seconds, so convert.
            // Check if we have to cast type here. e.g. uint16_t()
            timeData[i] = static_cast<float>(nodeChannel->mPositionKeys[frameIndex].mTime / ticksPerSecond);
        }

        Ref<Accessor> timeAccessor = ExportData(mAsset, animId, buffer, static_cast<unsigned int>(numKeyframes), &timeData[0], AttribType::SCALAR, AttribType::SCALAR, ComponentType_FLOAT);
        if (timeAccessor) animRef->Parameters.TIME = timeAccessor;
    }

    //-------------------------------------------------------
    // Extract translation parameter data
    if(nodeChannel->mNumPositionKeys > 0) {
        C_STRUCT aiVector3D* translationData = new aiVector3D[numKeyframes];
        for (size_t i = 0; i < numKeyframes; ++i) {
            size_t frameIndex = i * nodeChannel->mNumPositionKeys / numKeyframes;
            translationData[i] = nodeChannel->mPositionKeys[frameIndex].mValue;
        }

        Ref<Accessor> tranAccessor = ExportData(mAsset, animId, buffer, static_cast<unsigned int>(numKeyframes), translationData, AttribType::VEC3, AttribType::VEC3, ComponentType_FLOAT);
        if ( tranAccessor ) {
            animRef->Parameters.translation = tranAccessor;
        }
        delete[] translationData;
    }

    //-------------------------------------------------------
    // Extract scale parameter data
    if(nodeChannel->mNumScalingKeys > 0) {
        C_STRUCT aiVector3D* scaleData = new aiVector3D[numKeyframes];
        for (size_t i = 0; i < numKeyframes; ++i) {
            size_t frameIndex = i * nodeChannel->mNumScalingKeys / numKeyframes;
            scaleData[i] = nodeChannel->mScalingKeys[frameIndex].mValue;
        }

        Ref<Accessor> scaleAccessor = ExportData(mAsset, animId, buffer, static_cast<unsigned int>(numKeyframes), scaleData, AttribType::VEC3, AttribType::VEC3, ComponentType_FLOAT);
        if ( scaleAccessor ) {
            animRef->Parameters.scale = scaleAccessor;
        }
        delete[] scaleData;
    }

    //-------------------------------------------------------
    // Extract rotation parameter data
    if(nodeChannel->mNumRotationKeys > 0) {
        vec4* rotationData = new vec4[numKeyframes];
        for (size_t i = 0; i < numKeyframes; ++i) {
            size_t frameIndex = i * nodeChannel->mNumRotationKeys / numKeyframes;
            rotationData[i][0] = nodeChannel->mRotationKeys[frameIndex].mValue.x;
            rotationData[i][1] = nodeChannel->mRotationKeys[frameIndex].mValue.y;
            rotationData[i][2] = nodeChannel->mRotationKeys[frameIndex].mValue.z;
            rotationData[i][3] = nodeChannel->mRotationKeys[frameIndex].mValue.w;
        }

        Ref<Accessor> rotAccessor = ExportData(mAsset, animId, buffer, static_cast<unsigned int>(numKeyframes), rotationData, AttribType::VEC4, AttribType::VEC4, ComponentType_FLOAT);
        if ( rotAccessor ) {
            animRef->Parameters.rotation = rotAccessor;
        }
        delete[] rotationData;
    }
}

void glTFExporter::ExportAnimations()
{
    Ref<Buffer> bufferRef = mAsset->buffers.Get(unsigned (0));

    for (unsigned int i = 0; i < mScene->mNumAnimations; ++i) {
        const aiAnimation* anim = mScene->mAnimations[i];

        std::string nameAnim = "anim";
        if (anim->mName.length > 0) {
            nameAnim = anim->mName.C_Str();
        }

        for (unsigned int channelIndex = 0; channelIndex < anim->mNumChannels; ++channelIndex) {
            const aiNodeAnim* nodeChannel = anim->mChannels[channelIndex];

            // It appears that assimp stores this type of animation as multiple animations.
            // where each aiNodeAnim in mChannels animates a specific node.
            std::string name = nameAnim + "_" + ai_to_string(channelIndex);
            name = mAsset->FindUniqueID(name, "animation");
            Ref<Animation> animRef = mAsset->animations.Create(name);

            /******************* Parameters ********************/
            ExtractAnimationData(*mAsset, name, animRef, bufferRef, nodeChannel, static_cast<float>(anim->mTicksPerSecond));

            for (unsigned int j = 0; j < 3; ++j) {
                std::string channelType;
                int channelSize=0;
                switch (j) {
                    case 0:
                        channelType = "rotation";
                        channelSize = nodeChannel->mNumRotationKeys;
                        break;
                    case 1:
                        channelType = "scale";
                        channelSize = nodeChannel->mNumScalingKeys;
                        break;
                    case 2:
                        channelType = "translation";
                        channelSize = nodeChannel->mNumPositionKeys;
                        break;
                }

                if (channelSize < 1) { continue; }

                Animation::AnimChannel tmpAnimChannel;
                Animation::AnimSampler tmpAnimSampler;

                tmpAnimChannel.sampler = name + "_" + channelType;
                tmpAnimChannel.target.path = channelType;
                tmpAnimSampler.output = channelType;
                tmpAnimSampler.id = name + "_" + channelType;

                tmpAnimChannel.target.id = mAsset->nodes.Get(nodeChannel->mNodeName.C_Str());

                tmpAnimSampler.input = "TIME";
                tmpAnimSampler.interpolation = "LINEAR";

                animRef->Channels.push_back(tmpAnimChannel);
                animRef->Samplers.push_back(tmpAnimSampler);
            }

        }

        // Assimp documentation staes this is not used (not implemented)
        // for (unsigned int channelIndex = 0; channelIndex < anim->mNumMeshChannels; ++channelIndex) {
        //     const aiMeshAnim* meshChannel = anim->mMeshChannels[channelIndex];
        // }

    } // End: for-loop mNumAnimations
}


#endif // ASSIMP_BUILD_NO_GLTF_EXPORTER
#endif // ASSIMP_BUILD_NO_EXPORT