summaryrefslogtreecommitdiff
path: root/src/mesh/assimp-master/code/Common/Subdivision.cpp
blob: 705ea3fb364ec6f51e806cc7693a8bb1434c2a71 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
/*
Open Asset Import Library (assimp)
----------------------------------------------------------------------

Copyright (c) 2006-2022, assimp team


All rights reserved.

Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the
following conditions are met:

* Redistributions of source code must retain the above
  copyright notice, this list of conditions and the
  following disclaimer.

* Redistributions in binary form must reproduce the above
  copyright notice, this list of conditions and the
  following disclaimer in the documentation and/or other
  materials provided with the distribution.

* Neither the name of the assimp team, nor the names of its
  contributors may be used to endorse or promote products
  derived from this software without specific prior
  written permission of the assimp team.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

----------------------------------------------------------------------
*/

#include <assimp/Subdivision.h>
#include <assimp/SceneCombiner.h>
#include <assimp/SpatialSort.h>
#include <assimp/Vertex.h>
#include <assimp/ai_assert.h>

#include "PostProcessing/ProcessHelper.h"

#include <stdio.h>

using namespace Assimp;
void mydummy() {}

#ifdef _MSC_VER
#pragma warning(disable : 4709)
#endif // _MSC_VER
// ------------------------------------------------------------------------------------------------
/** Subdivider stub class to implement the Catmull-Clarke subdivision algorithm. The
 *  implementation is basing on recursive refinement. Directly evaluating the result is also
 *  possible and much quicker, but it depends on lengthy matrix lookup tables. */
// ------------------------------------------------------------------------------------------------
class CatmullClarkSubdivider : public Subdivider {
public:
    void Subdivide(aiMesh *mesh, aiMesh *&out, unsigned int num, bool discard_input);
    void Subdivide(aiMesh **smesh, size_t nmesh,
            aiMesh **out, unsigned int num, bool discard_input);

    // ---------------------------------------------------------------------------
    /** Intermediate description of an edge between two corners of a polygon*/
    // ---------------------------------------------------------------------------
    struct Edge {
        Edge() :
                ref(0) {}
        Vertex edge_point, midpoint;
        unsigned int ref;
    };

    typedef std::vector<unsigned int> UIntVector;
    typedef std::map<uint64_t, Edge> EdgeMap;

    // ---------------------------------------------------------------------------
    // Hashing function to derive an index into an #EdgeMap from two given
    // 'unsigned int' vertex coordinates (!!distinct coordinates - same
    // vertex position == same index!!).
    // NOTE - this leads to rare hash collisions if a) sizeof(unsigned int)>4
    // and (id[0]>2^32-1 or id[0]>2^32-1).
    // MAKE_EDGE_HASH() uses temporaries, so INIT_EDGE_HASH() needs to be put
    // at the head of every function which is about to use MAKE_EDGE_HASH().
    // Reason is that the hash is that hash construction needs to hold the
    // invariant id0<id1 to identify an edge - else two hashes would refer
    // to the same edge.
    // ---------------------------------------------------------------------------
#define MAKE_EDGE_HASH(id0, id1) (eh_tmp0__ = id0, eh_tmp1__ = id1, \
        (eh_tmp0__ < eh_tmp1__ ? std::swap(eh_tmp0__, eh_tmp1__) : mydummy()), (uint64_t)eh_tmp0__ ^ ((uint64_t)eh_tmp1__ << 32u))

#define INIT_EDGE_HASH_TEMPORARIES() \
    unsigned int eh_tmp0__, eh_tmp1__;

private:
    void InternSubdivide(const aiMesh *const *smesh,
            size_t nmesh, aiMesh **out, unsigned int num);
};

// ------------------------------------------------------------------------------------------------
// Construct a subdivider of a specific type
Subdivider *Subdivider::Create(Algorithm algo) {
    switch (algo) {
    case CATMULL_CLARKE:
        return new CatmullClarkSubdivider();
    };

    ai_assert(false);

    return nullptr; // shouldn't happen
}

// ------------------------------------------------------------------------------------------------
// Call the Catmull Clark subdivision algorithm for one mesh
void CatmullClarkSubdivider::Subdivide(
        aiMesh *mesh,
        aiMesh *&out,
        unsigned int num,
        bool discard_input) {
    ai_assert(mesh != out);

    Subdivide(&mesh, 1, &out, num, discard_input);
}

// ------------------------------------------------------------------------------------------------
// Call the Catmull Clark subdivision algorithm for multiple meshes
void CatmullClarkSubdivider::Subdivide(
        aiMesh **smesh,
        size_t nmesh,
        aiMesh **out,
        unsigned int num,
        bool discard_input) {
    ai_assert(nullptr != smesh);
    ai_assert(nullptr != out);

    // course, both regions may not overlap
    ai_assert(smesh < out || smesh + nmesh > out + nmesh);
    if (!num) {
        // No subdivision at all. Need to copy all the meshes .. argh.
        if (discard_input) {
            for (size_t s = 0; s < nmesh; ++s) {
                out[s] = smesh[s];
                smesh[s] = nullptr;
            }
        } else {
            for (size_t s = 0; s < nmesh; ++s) {
                SceneCombiner::Copy(out + s, smesh[s]);
            }
        }
        return;
    }

    std::vector<aiMesh *> inmeshes;
    std::vector<aiMesh *> outmeshes;
    std::vector<unsigned int> maptbl;

    inmeshes.reserve(nmesh);
    outmeshes.reserve(nmesh);
    maptbl.reserve(nmesh);

    // Remove pure line and point meshes from the working set to reduce the
    // number of edge cases the subdivider is forced to deal with. Line and
    // point meshes are simply passed through.
    for (size_t s = 0; s < nmesh; ++s) {
        aiMesh *i = smesh[s];
        // FIX - mPrimitiveTypes might not yet be initialized
        if (i->mPrimitiveTypes && (i->mPrimitiveTypes & (aiPrimitiveType_LINE | aiPrimitiveType_POINT)) == i->mPrimitiveTypes) {
            ASSIMP_LOG_VERBOSE_DEBUG("Catmull-Clark Subdivider: Skipping pure line/point mesh");

            if (discard_input) {
                out[s] = i;
                smesh[s] = nullptr;
            } else {
                SceneCombiner::Copy(out + s, i);
            }
            continue;
        }

        outmeshes.push_back(nullptr);
        inmeshes.push_back(i);
        maptbl.push_back(static_cast<unsigned int>(s));
    }

    // Do the actual subdivision on the preallocated storage. InternSubdivide
    // *always* assumes that enough storage is available, it does not bother
    // checking any ranges.
    ai_assert(inmeshes.size() == outmeshes.size());
    ai_assert(inmeshes.size() == maptbl.size());
    if (inmeshes.empty()) {
        ASSIMP_LOG_WARN("Catmull-Clark Subdivider: Pure point/line scene, I can't do anything");
        return;
    }
    InternSubdivide(&inmeshes.front(), inmeshes.size(), &outmeshes.front(), num);
    for (unsigned int i = 0; i < maptbl.size(); ++i) {
        ai_assert(nullptr != outmeshes[i]);
        out[maptbl[i]] = outmeshes[i];
    }

    if (discard_input) {
        for (size_t s = 0; s < nmesh; ++s) {
            delete smesh[s];
        }
    }
}

// ------------------------------------------------------------------------------------------------
// Note - this is an implementation of the standard (recursive) Cm-Cl algorithm without further
// optimizations (except we're using some nice LUTs). A description of the algorithm can be found
// here: http://en.wikipedia.org/wiki/Catmull-Clark_subdivision_surface
//
// The code is mostly O(n), however parts are O(nlogn) which is therefore the algorithm's
// expected total runtime complexity. The implementation is able to work in-place on the same
// mesh arrays. Calling #InternSubdivide() directly is not encouraged. The code can operate
// in-place unless 'smesh' and 'out' are equal (no strange overlaps or reorderings).
// Previous data is replaced/deleted then.
// ------------------------------------------------------------------------------------------------
void CatmullClarkSubdivider::InternSubdivide(
        const aiMesh *const *smesh,
        size_t nmesh,
        aiMesh **out,
        unsigned int num) {
    ai_assert(nullptr != smesh);
    ai_assert(nullptr != out);

    INIT_EDGE_HASH_TEMPORARIES();

    // no subdivision requested or end of recursive refinement
    if (!num) {
        return;
    }

    UIntVector maptbl;
    SpatialSort spatial;

    // ---------------------------------------------------------------------
    // 0. Offset table to index all meshes continuously, generate a spatially
    // sorted representation of all vertices in all meshes.
    // ---------------------------------------------------------------------
    typedef std::pair<unsigned int, unsigned int> IntPair;
    std::vector<IntPair> moffsets(nmesh);
    unsigned int totfaces = 0, totvert = 0;
    for (size_t t = 0; t < nmesh; ++t) {
        const aiMesh *mesh = smesh[t];

        spatial.Append(mesh->mVertices, mesh->mNumVertices, sizeof(aiVector3D), false);
        moffsets[t] = IntPair(totfaces, totvert);

        totfaces += mesh->mNumFaces;
        totvert += mesh->mNumVertices;
    }

    spatial.Finalize();
    const unsigned int num_unique = spatial.GenerateMappingTable(maptbl, ComputePositionEpsilon(smesh, nmesh));

#define FLATTEN_VERTEX_IDX(mesh_idx, vert_idx) (moffsets[mesh_idx].second + vert_idx)
#define FLATTEN_FACE_IDX(mesh_idx, face_idx) (moffsets[mesh_idx].first + face_idx)

    // ---------------------------------------------------------------------
    // 1. Compute the centroid point for all faces
    // ---------------------------------------------------------------------
    std::vector<Vertex> centroids(totfaces);
    unsigned int nfacesout = 0;
    for (size_t t = 0, n = 0; t < nmesh; ++t) {
        const aiMesh *mesh = smesh[t];
        for (unsigned int i = 0; i < mesh->mNumFaces; ++i, ++n) {
            const aiFace &face = mesh->mFaces[i];
            Vertex &c = centroids[n];

            for (unsigned int a = 0; a < face.mNumIndices; ++a) {
                c += Vertex(mesh, face.mIndices[a]);
            }

            c /= static_cast<float>(face.mNumIndices);
            nfacesout += face.mNumIndices;
        }
    }

    {
        // we want edges to go away before the recursive calls so begin a new scope
        EdgeMap edges;

        // ---------------------------------------------------------------------
        // 2. Set each edge point to be the average of all neighbouring
        // face points and original points. Every edge exists twice
        // if there is a neighboring face.
        // ---------------------------------------------------------------------
        for (size_t t = 0; t < nmesh; ++t) {
            const aiMesh *mesh = smesh[t];

            for (unsigned int i = 0; i < mesh->mNumFaces; ++i) {
                const aiFace &face = mesh->mFaces[i];

                for (unsigned int p = 0; p < face.mNumIndices; ++p) {
                    const unsigned int id[] = {
                        face.mIndices[p],
                        face.mIndices[p == face.mNumIndices - 1 ? 0 : p + 1]
                    };
                    const unsigned int mp[] = {
                        maptbl[FLATTEN_VERTEX_IDX(t, id[0])],
                        maptbl[FLATTEN_VERTEX_IDX(t, id[1])]
                    };

                    Edge &e = edges[MAKE_EDGE_HASH(mp[0], mp[1])];
                    e.ref++;
                    if (e.ref <= 2) {
                        if (e.ref == 1) { // original points (end points) - add only once
                            e.edge_point = e.midpoint = Vertex(mesh, id[0]) + Vertex(mesh, id[1]);
                            e.midpoint *= 0.5f;
                        }
                        e.edge_point += centroids[FLATTEN_FACE_IDX(t, i)];
                    }
                }
            }
        }

        // ---------------------------------------------------------------------
        // 3. Normalize edge points
        // ---------------------------------------------------------------------
        {
            unsigned int bad_cnt = 0;
            for (EdgeMap::iterator it = edges.begin(); it != edges.end(); ++it) {
                if ((*it).second.ref < 2) {
                    ai_assert((*it).second.ref);
                    ++bad_cnt;
                }
                (*it).second.edge_point *= 1.f / ((*it).second.ref + 2.f);
            }

            if (bad_cnt) {
                // Report the number of bad edges. bad edges are referenced by less than two
                // faces in the mesh. They occur at outer model boundaries in non-closed
                // shapes.
                ASSIMP_LOG_VERBOSE_DEBUG("Catmull-Clark Subdivider: got ", bad_cnt, " bad edges touching only one face (totally ",
                        static_cast<unsigned int>(edges.size()), " edges). ");
            }
        }

        // ---------------------------------------------------------------------
        // 4. Compute a vertex-face adjacency table. We can't reuse the code
        // from VertexTriangleAdjacency because we need the table for multiple
        // meshes and out vertex indices need to be mapped to distinct values
        // first.
        // ---------------------------------------------------------------------
        UIntVector faceadjac(nfacesout), cntadjfac(maptbl.size(), 0), ofsadjvec(maptbl.size() + 1, 0);
        {
            for (size_t t = 0; t < nmesh; ++t) {
                const aiMesh *const minp = smesh[t];
                for (unsigned int i = 0; i < minp->mNumFaces; ++i) {

                    const aiFace &f = minp->mFaces[i];
                    for (unsigned int n = 0; n < f.mNumIndices; ++n) {
                        ++cntadjfac[maptbl[FLATTEN_VERTEX_IDX(t, f.mIndices[n])]];
                    }
                }
            }
            unsigned int cur = 0;
            for (size_t i = 0; i < cntadjfac.size(); ++i) {
                ofsadjvec[i + 1] = cur;
                cur += cntadjfac[i];
            }
            for (size_t t = 0; t < nmesh; ++t) {
                const aiMesh *const minp = smesh[t];
                for (unsigned int i = 0; i < minp->mNumFaces; ++i) {

                    const aiFace &f = minp->mFaces[i];
                    for (unsigned int n = 0; n < f.mNumIndices; ++n) {
                        faceadjac[ofsadjvec[1 + maptbl[FLATTEN_VERTEX_IDX(t, f.mIndices[n])]]++] = FLATTEN_FACE_IDX(t, i);
                    }
                }
            }

            // check the other way round for consistency
#ifdef ASSIMP_BUILD_DEBUG

            for (size_t t = 0; t < ofsadjvec.size() - 1; ++t) {
                for (unsigned int m = 0; m < cntadjfac[t]; ++m) {
                    const unsigned int fidx = faceadjac[ofsadjvec[t] + m];
                    ai_assert(fidx < totfaces);
                    for (size_t n = 1; n < nmesh; ++n) {

                        if (moffsets[n].first > fidx) {
                            const aiMesh *msh = smesh[--n];
                            const aiFace &f = msh->mFaces[fidx - moffsets[n].first];

                            bool haveit = false;
                            for (unsigned int i = 0; i < f.mNumIndices; ++i) {
                                if (maptbl[FLATTEN_VERTEX_IDX(n, f.mIndices[i])] == (unsigned int)t) {
                                    haveit = true;
                                    break;
                                }
                            }
                            ai_assert(haveit);
                            if (!haveit) {
                                ASSIMP_LOG_VERBOSE_DEBUG("Catmull-Clark Subdivider: Index not used");
                            }
                            break;
                        }
                    }
                }
            }

#endif
        }

#define GET_ADJACENT_FACES_AND_CNT(vidx, fstartout, numout) \
    fstartout = &faceadjac[ofsadjvec[vidx]], numout = cntadjfac[vidx]

        typedef std::pair<bool, Vertex> TouchedOVertex;
        std::vector<TouchedOVertex> new_points(num_unique, TouchedOVertex(false, Vertex()));
        // ---------------------------------------------------------------------
        // 5. Spawn a quad from each face point to the corresponding edge points
        // the original points being the fourth quad points.
        // ---------------------------------------------------------------------
        for (size_t t = 0; t < nmesh; ++t) {
            const aiMesh *const minp = smesh[t];
            aiMesh *const mout = out[t] = new aiMesh();

            for (unsigned int a = 0; a < minp->mNumFaces; ++a) {
                mout->mNumFaces += minp->mFaces[a].mNumIndices;
            }

            // We need random access to the old face buffer, so reuse is not possible.
            mout->mFaces = new aiFace[mout->mNumFaces];

            mout->mNumVertices = mout->mNumFaces * 4;
            mout->mVertices = new aiVector3D[mout->mNumVertices];

            // quads only, keep material index
            mout->mPrimitiveTypes = aiPrimitiveType_POLYGON;
            mout->mMaterialIndex = minp->mMaterialIndex;

            if (minp->HasNormals()) {
                mout->mNormals = new aiVector3D[mout->mNumVertices];
            }

            if (minp->HasTangentsAndBitangents()) {
                mout->mTangents = new aiVector3D[mout->mNumVertices];
                mout->mBitangents = new aiVector3D[mout->mNumVertices];
            }

            for (unsigned int i = 0; minp->HasTextureCoords(i); ++i) {
                mout->mTextureCoords[i] = new aiVector3D[mout->mNumVertices];
                mout->mNumUVComponents[i] = minp->mNumUVComponents[i];
            }

            for (unsigned int i = 0; minp->HasVertexColors(i); ++i) {
                mout->mColors[i] = new aiColor4D[mout->mNumVertices];
            }

            mout->mNumVertices = mout->mNumFaces << 2u;
            for (unsigned int i = 0, v = 0, n = 0; i < minp->mNumFaces; ++i) {

                const aiFace &face = minp->mFaces[i];
                for (unsigned int a = 0; a < face.mNumIndices; ++a) {

                    // Get a clean new face.
                    aiFace &faceOut = mout->mFaces[n++];
                    faceOut.mIndices = new unsigned int[faceOut.mNumIndices = 4];

                    // Spawn a new quadrilateral (ccw winding) for this original point between:
                    // a) face centroid
                    centroids[FLATTEN_FACE_IDX(t, i)].SortBack(mout, faceOut.mIndices[0] = v++);

                    // b) adjacent edge on the left, seen from the centroid
                    const Edge &e0 = edges[MAKE_EDGE_HASH(maptbl[FLATTEN_VERTEX_IDX(t, face.mIndices[a])],
                            maptbl[FLATTEN_VERTEX_IDX(t, face.mIndices[a == face.mNumIndices - 1 ? 0 : a + 1])])]; // fixme: replace with mod face.mNumIndices?

                    // c) adjacent edge on the right, seen from the centroid
                    const Edge &e1 = edges[MAKE_EDGE_HASH(maptbl[FLATTEN_VERTEX_IDX(t, face.mIndices[a])],
                            maptbl[FLATTEN_VERTEX_IDX(t, face.mIndices[!a ? face.mNumIndices - 1 : a - 1])])]; // fixme: replace with mod face.mNumIndices?

                    e0.edge_point.SortBack(mout, faceOut.mIndices[3] = v++);
                    e1.edge_point.SortBack(mout, faceOut.mIndices[1] = v++);

                    // d= original point P with distinct index i
                    // F := 0
                    // R := 0
                    // n := 0
                    // for each face f containing i
                    //    F := F+ centroid of f
                    //    R := R+ midpoint of edge of f from i to i+1
                    //    n := n+1
                    //
                    // (F+2R+(n-3)P)/n
                    const unsigned int org = maptbl[FLATTEN_VERTEX_IDX(t, face.mIndices[a])];
                    TouchedOVertex &ov = new_points[org];

                    if (!ov.first) {
                        ov.first = true;

                        const unsigned int *adj;
                        unsigned int cnt;
                        GET_ADJACENT_FACES_AND_CNT(org, adj, cnt);

                        if (cnt < 3) {
                            ov.second = Vertex(minp, face.mIndices[a]);
                        } else {

                            Vertex F, R;
                            for (unsigned int o = 0; o < cnt; ++o) {
                                ai_assert(adj[o] < totfaces);
                                F += centroids[adj[o]];

                                // adj[0] is a global face index - search the face in the mesh list
                                const aiMesh *mp = nullptr;
                                size_t nidx;

                                if (adj[o] < moffsets[0].first) {
                                    mp = smesh[nidx = 0];
                                } else {
                                    for (nidx = 1; nidx <= nmesh; ++nidx) {
                                        if (nidx == nmesh || moffsets[nidx].first > adj[o]) {
                                            mp = smesh[--nidx];
                                            break;
                                        }
                                    }
                                }

                                ai_assert(adj[o] - moffsets[nidx].first < mp->mNumFaces);
                                const aiFace &f = mp->mFaces[adj[o] - moffsets[nidx].first];
                                bool haveit = false;

                                // find our original point in the face
                                for (unsigned int m = 0; m < f.mNumIndices; ++m) {
                                    if (maptbl[FLATTEN_VERTEX_IDX(nidx, f.mIndices[m])] == org) {

                                        // add *both* edges. this way, we can be sure that we add
                                        // *all* adjacent edges to R. In a closed shape, every
                                        // edge is added twice - so we simply leave out the
                                        // factor 2.f in the amove formula and get the right
                                        // result.

                                        const Edge &c0 = edges[MAKE_EDGE_HASH(org, maptbl[FLATTEN_VERTEX_IDX(
                                                                                           nidx, f.mIndices[!m ? f.mNumIndices - 1 : m - 1])])];
                                        // fixme: replace with mod face.mNumIndices?

                                        const Edge &c1 = edges[MAKE_EDGE_HASH(org, maptbl[FLATTEN_VERTEX_IDX(
                                                                                           nidx, f.mIndices[m == f.mNumIndices - 1 ? 0 : m + 1])])];
                                        // fixme: replace with mod face.mNumIndices?
                                        R += c0.midpoint + c1.midpoint;

                                        haveit = true;
                                        break;
                                    }
                                }

                                // this invariant *must* hold if the vertex-to-face adjacency table is valid
                                ai_assert(haveit);
                                if (!haveit) {
                                    ASSIMP_LOG_WARN("OBJ: no name for material library specified.");
                                }
                            }

                            const float div = static_cast<float>(cnt), divsq = 1.f / (div * div);
                            ov.second = Vertex(minp, face.mIndices[a]) * ((div - 3.f) / div) + R * divsq + F * divsq;
                        }
                    }
                    ov.second.SortBack(mout, faceOut.mIndices[2] = v++);
                }
            }
        }
    } // end of scope for edges, freeing its memory

    // ---------------------------------------------------------------------
    // 7. Apply the next subdivision step.
    // ---------------------------------------------------------------------
    if (num != 1) {
        std::vector<aiMesh *> tmp(nmesh);
        InternSubdivide(out, nmesh, &tmp.front(), num - 1);
        for (size_t i = 0; i < nmesh; ++i) {
            delete out[i];
            out[i] = tmp[i];
        }
    }
}