summaryrefslogtreecommitdiff
path: root/src/mesh/assimp-master/code/Pbrt/PbrtExporter.cpp
blob: 25061f517c7f2a00f550e033124789dae4f06e90 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
/*
Open Asset Import Library (assimp)
----------------------------------------------------------------------

Copyright (c) 2006-2022, assimp team

All rights reserved.

Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the
following conditions are met:

* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.

* Neither the name of the assimp team, nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission of the assimp team.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

----------------------------------------------------------------------
*/

/* TODO:

Material improvements:
- don't export embedded textures that we're not going to use
- diffuse roughness
- what is with the uv mapping, uv transform not coming through??
- metal? glass? mirror?  detect these better?
  - eta/k from RGB?
- emissive textures: warn at least

Other:
- use aiProcess_GenUVCoords if needed to handle spherical/planar uv mapping?
- don't build up a big string in memory but write directly to a file
- aiProcess_Triangulate meshes to get triangles only?
- animation (allow specifying a time)

 */

#ifndef ASSIMP_BUILD_NO_EXPORT
#ifndef ASSIMP_BUILD_NO_PBRT_EXPORTER

#include "PbrtExporter.h"

#include <assimp/version.h>
#include <assimp/DefaultIOSystem.h>
#include <assimp/IOSystem.hpp>
#include <assimp/Exporter.hpp>
#include <assimp/DefaultLogger.hpp>
#include <assimp/StreamWriter.h>
#include <assimp/Exceptional.h>
#include <assimp/material.h>
#include <assimp/scene.h>
#include <assimp/mesh.h>

#include <algorithm>
#include <cctype>
#include <cmath>
#include <fstream>
#include <functional>
#include <iostream>
#include <memory>
#include <sstream>
#include <string>

#include "stb/stb_image.h"

using namespace Assimp;

namespace Assimp {

void ExportScenePbrt (
    const char* pFile,
    IOSystem* pIOSystem,
    const aiScene* pScene,
    const ExportProperties* /*pProperties*/
){
    std::string path = DefaultIOSystem::absolutePath(std::string(pFile));
    std::string file = DefaultIOSystem::completeBaseName(std::string(pFile));

    // initialize the exporter
    PbrtExporter exporter(pScene, pIOSystem, path, file);
}

} // end of namespace Assimp

// Constructor
PbrtExporter::PbrtExporter(
        const aiScene *pScene, IOSystem *pIOSystem,
        const std::string &path, const std::string &file) :
        mScene(pScene),
        mIOSystem(pIOSystem),
        mPath(path),
        mFile(file) {
    // Export embedded textures.
    if (mScene->mNumTextures > 0)
        if (!mIOSystem->CreateDirectory("textures"))
            throw DeadlyExportError("Could not create textures/ directory.");
    for (unsigned int i = 0; i < mScene->mNumTextures; ++i) {
        aiTexture* tex = mScene->mTextures[i];
        std::string fn = CleanTextureFilename(tex->mFilename, false);
        std::cerr << "Writing embedded texture: " << tex->mFilename.C_Str() << " -> "
                  << fn << "\n";

        std::unique_ptr<IOStream> outfile(mIOSystem->Open(fn, "wb"));
        if (!outfile) {
            throw DeadlyExportError("could not open output texture file: " + fn);
        }
        if (tex->mHeight == 0) {
            // It's binary data
            outfile->Write(tex->pcData, tex->mWidth, 1);
        } else {
            std::cerr << fn << ": TODO handle uncompressed embedded textures.\n";
        }
    }

#if 0
    // Debugging: print the full node hierarchy
    std::function<void(aiNode*, int)> visitNode;
    visitNode = [&](aiNode* node, int depth) {
        for (int i = 0; i < depth; ++i) std::cerr << "    ";
        std::cerr << node->mName.C_Str() << "\n";
        for (int i = 0; i < node->mNumChildren; ++i)
            visitNode(node->mChildren[i], depth + 1);
    };
    visitNode(mScene->mRootNode, 0);
#endif

    mOutput.precision(ASSIMP_AI_REAL_TEXT_PRECISION);

    // Write everything out
    WriteMetaData();
    WriteCameras();
    WriteWorldDefinition();

    // And write the file to disk...
    std::unique_ptr<IOStream> outfile(mIOSystem->Open(mPath,"wt"));
    if (!outfile) {
        throw DeadlyExportError("could not open output .pbrt file: " + std::string(mFile));
    }
    outfile->Write(mOutput.str().c_str(), mOutput.str().length(), 1);
}

// Destructor
PbrtExporter::~PbrtExporter() {
    // Empty
}

void PbrtExporter::WriteMetaData() {
    mOutput << "#############################\n";
    mOutput << "# Scene metadata:\n";

    aiMetadata* pMetaData = mScene->mMetaData;
    for (unsigned int i = 0; i < pMetaData->mNumProperties; i++) {
        mOutput << "# - ";
        mOutput << pMetaData->mKeys[i].C_Str() << " :";
        switch(pMetaData->mValues[i].mType) {
            case AI_BOOL : {
                mOutput << " ";
                if (*static_cast<bool*>(pMetaData->mValues[i].mData))
                    mOutput << "TRUE\n";
                else
                    mOutput << "FALSE\n";
                break;
            }
            case AI_INT32 : {
                mOutput << " " <<
                    *static_cast<int32_t*>(pMetaData->mValues[i].mData) <<
                    std::endl;
                break;
            }
            case AI_UINT64 :
                mOutput << " " <<
                    *static_cast<uint64_t*>(pMetaData->mValues[i].mData) <<
                    std::endl;
                break;
            case AI_FLOAT :
                mOutput << " " <<
                    *static_cast<float*>(pMetaData->mValues[i].mData) <<
                    std::endl;
                break;
            case AI_DOUBLE :
                mOutput << " " <<
                    *static_cast<double*>(pMetaData->mValues[i].mData) <<
                    std::endl;
                break;
            case AI_AISTRING : {
                aiString* value =
                    static_cast<aiString*>(pMetaData->mValues[i].mData);
                std::string svalue = value->C_Str();
                std::size_t found = svalue.find_first_of('\n');
                mOutput << "\n";
                while (found != std::string::npos) {
                    mOutput << "#     " << svalue.substr(0, found) << "\n";
                    svalue = svalue.substr(found + 1);
                    found = svalue.find_first_of('\n');
                }
                mOutput << "#     " << svalue << "\n";
                break;
            }
            case AI_AIVECTOR3D :
                // TODO
                mOutput << " Vector3D (unable to print)\n";
                break;
            default:
                // AI_META_MAX and FORCE_32BIT
                mOutput << " META_MAX or FORCE_32Bit (unable to print)\n";
                break;
        }
    }
}

void PbrtExporter::WriteCameras() {
    mOutput << "\n";
    mOutput << "###############################\n";
    mOutput << "# Cameras (" << mScene->mNumCameras << ") total\n\n";

    if (mScene->mNumCameras == 0) {
        std::cerr << "Warning: No cameras found in scene file.\n";
        return;
    }

    if (mScene->mNumCameras > 1) {
        std::cerr << "Multiple cameras found in scene file; defaulting to first one specified.\n";
    }

    for (unsigned int i = 0; i < mScene->mNumCameras; i++) {
        WriteCamera(i);
    }
}

aiMatrix4x4 PbrtExporter::GetNodeTransform(const aiString &name) const {
    aiMatrix4x4 m;
    auto node = mScene->mRootNode->FindNode(name);
    if (!node) {
        std::cerr << '"' << name.C_Str() << "\": node not found in scene tree.\n";
        throw DeadlyExportError("Could not find node");
    }
    else {
        while (node) {
            m = node->mTransformation * m;
            node = node->mParent;
        }
    }
    return m;
}

std::string PbrtExporter::TransformAsString(const aiMatrix4x4 &m) {
    // Transpose on the way out to match pbrt's expected layout (sanity
    // check: the translation component should be the last 3 entries
    // before a '1' as the final entry in the matrix, assuming it's
    // non-projective.)
    std::stringstream s;
    s << m.a1 << " " << m.b1 << " " << m.c1 << " " << m.d1 << " "
      << m.a2 << " " << m.b2 << " " << m.c2 << " " << m.d2 << " "
      << m.a3 << " " << m.b3 << " " << m.c3 << " " << m.d3 << " "
      << m.a4 << " " << m.b4 << " " << m.c4 << " " << m.d4;
    return s.str();
}

void PbrtExporter::WriteCamera(int i) {
    auto camera = mScene->mCameras[i];
    bool cameraActive = i == 0;

    mOutput << "# - Camera " << i+1 <<  ": "
        << camera->mName.C_Str() << "\n";

    // Get camera aspect ratio
    float aspect = camera->mAspect;
    if (aspect == 0) {
        aspect = 4.f/3.f;
        mOutput << "#   - Aspect ratio : 1.33333 (no aspect found, defaulting to 4/3)\n";
    } else {
        mOutput << "#   - Aspect ratio : " << aspect << "\n";
    }

    // Get Film xres and yres
    int xres = 1920;
    int yres = (int)round(xres/aspect);

    // Print Film for this camera
    if (!cameraActive)
        mOutput << "# ";
    mOutput << "Film \"rgb\" \"string filename\" \"" << mFile << ".exr\"\n";
    if (!cameraActive)
        mOutput << "# ";
    mOutput << "    \"integer xresolution\" [" << xres << "]\n";
    if (!cameraActive)
        mOutput << "# ";
    mOutput << "    \"integer yresolution\" [" << yres << "]\n";

    // Get camera fov
    float hfov = AI_RAD_TO_DEG(camera->mHorizontalFOV);
    float fov = (aspect >= 1.0) ? hfov : (hfov * aspect);
    if (fov < 5) {
        std::cerr << fov << ": suspiciously low field of view specified by camera. Setting to 45 degrees.\n";
        fov = 45;
    }

    // Get camera transform
    aiMatrix4x4 worldFromCamera = GetNodeTransform(camera->mName);

    // Print Camera LookAt
    auto position = worldFromCamera * camera->mPosition;
    auto lookAt = worldFromCamera * (camera->mPosition + camera->mLookAt);
    aiMatrix3x3 worldFromCamera3(worldFromCamera);
    auto up = worldFromCamera3 * camera->mUp;
    up.Normalize();

    if (!cameraActive)
        mOutput << "# ";
    mOutput << "Scale -1 1 1\n";  // right handed -> left handed
    if (!cameraActive)
        mOutput << "# ";
    mOutput << "LookAt "
        << position.x << " " << position.y << " " << position.z << "\n";
    if (!cameraActive)
        mOutput << "# ";
    mOutput << "       "
        << lookAt.x << " " << lookAt.y << " " << lookAt.z << "\n";
    if (!cameraActive)
        mOutput << "# ";
    mOutput << "       "
        << up.x << " " << up.y << " " << up.z << "\n";

    // Print camera descriptor
    if (!cameraActive)
        mOutput << "# ";
    mOutput << "Camera \"perspective\" \"float fov\" " << "[" << fov << "]\n\n";
}

void PbrtExporter::WriteWorldDefinition() {
    // Figure out which meshes are referenced multiple times; those will be
    // emitted as object instances and the rest will be emitted directly.
    std::map<int, int> meshUses;
    std::function<void(aiNode*)> visitNode;
    visitNode = [&](aiNode* node) {
        for (unsigned int i = 0; i < node->mNumMeshes; ++i)
            ++meshUses[node->mMeshes[i]];
        for (unsigned int i = 0; i < node->mNumChildren; ++i)
            visitNode(node->mChildren[i]);
    };
    visitNode(mScene->mRootNode);
    int nInstanced = 0, nUnused = 0;
    for (const auto &u : meshUses) {
        if (u.second == 0) ++nUnused;
        else if (u.second > 1) ++nInstanced;
    }
    std::cerr << nInstanced << " / " << mScene->mNumMeshes << " meshes instanced.\n";
    if (nUnused)
        std::cerr << nUnused << " meshes defined but not used in scene.\n";

    mOutput << "WorldBegin\n";

    WriteLights();
    WriteTextures();
    WriteMaterials();

    // Object instance definitions
    mOutput << "# Object instance definitions\n\n";
    for (const auto &mu : meshUses) {
        if (mu.second > 1) {
            WriteInstanceDefinition(mu.first);
        }
    }

    mOutput << "# Geometry\n\n";
    aiMatrix4x4 worldFromObject;
    WriteGeometricObjects(mScene->mRootNode, worldFromObject, meshUses);
}

void PbrtExporter::WriteTextures() {
    mOutput << "###################\n";
    mOutput << "# Textures\n\n";

    C_STRUCT aiString path;
    aiTextureMapping mapping;
    unsigned int uvIndex;
    ai_real blend;
    aiTextureOp op;
    aiTextureMapMode mapMode[3];

    // For every material in the scene,
    for (unsigned int m = 0 ; m < mScene->mNumMaterials; m++) {
        auto material = mScene->mMaterials[m];
        // Parse through all texture types,
        for (int tt = 1; tt <= aiTextureType_UNKNOWN; tt++) {
            int ttCount = material->GetTextureCount(aiTextureType(tt));
            // ... and get every texture
            for (int t = 0; t < ttCount; t++) {
                // TODO write out texture specifics
                // TODO UV transforms may be material specific
                //        so those may need to be baked into unique tex name
                if (material->GetTexture(aiTextureType(tt), t, &path, &mapping,
                                         &uvIndex, &blend, &op, mapMode) != AI_SUCCESS) {
                    std::cerr << "Error getting texture! " << m << " " << tt << " " << t << "\n";
                    continue;
                }

                std::string filename = CleanTextureFilename(path);

                if (uvIndex != 0)
                    std::cerr << "Warning: texture \"" << filename << "\" uses uv set #" <<
                        uvIndex << " but the pbrt converter only exports uv set 0.\n";
#if 0
                if (op != aiTextureOp_Multiply)
                    std::cerr << "Warning: unexpected texture op " << (int)op <<
                        " encountered for texture \"" <<
                        filename << "\". The resulting scene may have issues...\n";
                if (blend != 1)
                    std::cerr << "Blend value of " << blend << " found for texture \"" << filename
                              << "\" but not handled in converter.\n";
#endif

                std::string mappingString;
#if 0
                if (mapMode[0] != mapMode[1])
                    std::cerr << "Different texture boundary mode for u and v for texture \"" <<
                        filename << "\". Using u for both.\n";
                switch (mapMode[0]) {
                case aiTextureMapMode_Wrap:
                    // pbrt's default
                    break;
                case aiTextureMapMode_Clamp:
                    mappingString = "\"string wrap\" \"clamp\"";
                    break;
                case aiTextureMapMode_Decal:
                    std::cerr << "Decal texture boundary mode not supported by pbrt for texture \"" <<
                        filename << "\"\n";
                    break;
                case aiTextureMapMode_Mirror:
                    std::cerr << "Mirror texture boundary mode not supported by pbrt for texture \"" <<
                        filename << "\"\n";
                    break;
                default:
                    std::cerr << "Unexpected map mode " << (int)mapMode[0] << " for texture \"" <<
                        filename << "\"\n";
                    //throw DeadlyExportError("Unexpected aiTextureMapMode");
                }
#endif

#if 0
                aiUVTransform uvTransform;
                if (material->Get(AI_MATKEY_TEXTURE(tt, t), uvTransform) == AI_SUCCESS) {
                    mOutput << "# UV transform " << uvTransform.mTranslation.x << " "
                            << uvTransform.mTranslation.y << " " << uvTransform.mScaling.x << " "
                            << uvTransform.mScaling.y << " " << uvTransform.mRotation << "\n";
                }
#endif

                std::string texName, texType, texOptions;
                if (aiTextureType(tt) == aiTextureType_SHININESS ||
                    aiTextureType(tt) == aiTextureType_OPACITY ||
                    aiTextureType(tt) == aiTextureType_HEIGHT ||
                    aiTextureType(tt) == aiTextureType_DISPLACEMENT ||
                    aiTextureType(tt) == aiTextureType_METALNESS ||
                    aiTextureType(tt) == aiTextureType_DIFFUSE_ROUGHNESS) {
                    texType = "float";
                    texName = std::string("float:") + RemoveSuffix(filename);

                    if (aiTextureType(tt) == aiTextureType_SHININESS) {
                        texOptions = "    \"bool invert\" true\n";
                        texName += "_Roughness";
                    }
                } else if (aiTextureType(tt) == aiTextureType_DIFFUSE ||
                           aiTextureType(tt) == aiTextureType_BASE_COLOR) {
                    texType = "spectrum";
                    texName = std::string("rgb:") + RemoveSuffix(filename);
                }

                // Don't export textures we're not actually going to use...
                if (texName.empty())
                    continue;

                if (mTextureSet.find(texName) == mTextureSet.end()) {
                    mOutput << "Texture \"" << texName << "\" \"" << texType << "\" \"imagemap\"\n"
                            << texOptions
                            << "    \"string filename\" \"" << filename << "\" " << mappingString << '\n';
                    mTextureSet.insert(texName);
                }

                // Also emit a float version for use with alpha testing...
                if ((aiTextureType(tt) == aiTextureType_DIFFUSE ||
                     aiTextureType(tt) == aiTextureType_BASE_COLOR) &&
                    TextureHasAlphaMask(filename)) {
                    texType = "float";
                    texName = std::string("alpha:") + filename;
                    if (mTextureSet.find(texName) == mTextureSet.end()) {
                        mOutput << "Texture \"" << texName << "\" \"" << texType << "\" \"imagemap\"\n"
                                << "    \"string filename\" \"" << filename << "\" " << mappingString << '\n';
                        mTextureSet.insert(texName);
                    }
                }
            }
        }
    }
}

bool PbrtExporter::TextureHasAlphaMask(const std::string &filename) {
    // TODO: STBIDEF int      stbi_info               (char const *filename,     int *x, int *y, int *comp);
    // quick return if it's 3

    int xSize, ySize, nComponents;
    unsigned char *data = stbi_load(filename.c_str(), &xSize, &ySize, &nComponents, 0);
    if (!data) {
        std::cerr << filename << ": unable to load texture and check for alpha mask in texture. "
        "Geometry will not be alpha masked with this texture.\n";
        return false;
    }

    bool hasMask = false;
    switch (nComponents) {
    case 1:
        for (int i = 0; i < xSize * ySize; ++i)
            if (data[i] != 255) {
                hasMask = true;
                break;
            }
        break;
    case 2:
          for (int y = 0; y < ySize; ++y)
              for (int x = 0; x < xSize; ++x)
                  if (data[2 * (x + y * xSize) + 1] != 255) {
                      hasMask = true;
                      break;
                  }
        break;
    case 3:
        break;
    case 4:
          for (int y = 0; y < ySize; ++y)
              for (int x = 0; x < xSize; ++x)
                  if (data[4 * (x + y * xSize) + 3] != 255) {
                      hasMask = true;
                      break;
                  }
          break;
    default:
        std::cerr << filename << ": unexpected number of image channels, " <<
            nComponents << ".\n";
    }

    stbi_image_free(data);
    return hasMask;
}

void PbrtExporter::WriteMaterials() {
    mOutput << "\n";
    mOutput << "####################\n";
    mOutput << "# Materials (" << mScene->mNumMaterials << ") total\n\n";

    for (unsigned int i = 0; i < mScene->mNumMaterials; i++) {
        WriteMaterial(i);
    }
    mOutput << "\n\n";
}

void PbrtExporter::WriteMaterial(int m) {
    aiMaterial* material = mScene->mMaterials[m];

    // get material name
    auto materialName = material->GetName();
    mOutput << std::endl << "# - Material " << m+1 <<  ": " << materialName.C_Str() << "\n";

    // Print out number of properties
    mOutput << "#   - Number of Material Properties: " << material->mNumProperties << "\n";

    // Print out texture type counts
    mOutput << "#   - Non-Zero Texture Type Counts: ";
    for (int i = 1; i <= aiTextureType_UNKNOWN; i++) {
        int count = material->GetTextureCount(aiTextureType(i));
        if (count > 0)
            mOutput << TextureTypeToString(aiTextureType(i)) << ": " <<  count << " ";
    }
    mOutput << "\n";

    auto White = [](const aiColor3D &c) { return c.r == 1 && c.g == 1 && c.b == 1; };
    auto Black = [](const aiColor3D &c) { return c.r == 0 && c.g == 0 && c.b == 0; };

    aiColor3D diffuse, specular, transparency;
    bool constantDiffuse = (material->Get(AI_MATKEY_COLOR_DIFFUSE, diffuse) == AI_SUCCESS &&
                            !White(diffuse));
    bool constantSpecular = (material->Get(AI_MATKEY_COLOR_SPECULAR, specular) == AI_SUCCESS &&
                             !White(specular));
    bool constantTransparency = (material->Get(AI_MATKEY_COLOR_TRANSPARENT, transparency) == AI_SUCCESS &&
                                 !Black(transparency));

    float opacity, shininess, shininessStrength, eta;
    bool constantOpacity = (material->Get(AI_MATKEY_OPACITY, opacity) == AI_SUCCESS &&
                            opacity != 0);
    bool constantShininess = material->Get(AI_MATKEY_SHININESS, shininess) == AI_SUCCESS;
    bool constantShininessStrength = material->Get(AI_MATKEY_SHININESS_STRENGTH, shininessStrength) == AI_SUCCESS;
    bool constantEta = (material->Get(AI_MATKEY_REFRACTI, eta) == AI_SUCCESS &&
                        eta != 1);

    mOutput << "#    - Constants: diffuse " << constantDiffuse << " specular " << constantSpecular <<
        " transparency " << constantTransparency << " opacity " << constantOpacity <<
        " shininess " << constantShininess << " shininess strength " << constantShininessStrength <<
        " eta " << constantEta << "\n";

    aiString roughnessMap;
    if (material->Get(AI_MATKEY_TEXTURE_SHININESS(0), roughnessMap) == AI_SUCCESS) {
        std::string roughnessTexture = std::string("float:") +
            RemoveSuffix(CleanTextureFilename(roughnessMap)) + "_Roughness";
        mOutput << "MakeNamedMaterial \"" << materialName.C_Str() << "\""
                << " \"string type\" \"coateddiffuse\"\n"
                << "    \"texture roughness\" \"" << roughnessTexture << "\"\n";
    } else if (constantShininess) {
        // Assume plastic for now at least
        float roughness = std::max(0.f, 1.f - shininess);
        mOutput << "MakeNamedMaterial \"" << materialName.C_Str() << "\""
                << " \"string type\" \"coateddiffuse\"\n"
                << "    \"float roughness\" " << roughness << "\n";
    } else
        // Diffuse
        mOutput << "MakeNamedMaterial \"" << materialName.C_Str() << "\""
                << " \"string type\" \"diffuse\"\n";

    aiString diffuseTexture;
    if (material->Get(AI_MATKEY_TEXTURE_DIFFUSE(0), diffuseTexture) == AI_SUCCESS)
        mOutput << "    \"texture reflectance\" \"rgb:" << RemoveSuffix(CleanTextureFilename(diffuseTexture)) << "\"\n";
    else
        mOutput << "    \"rgb reflectance\" [ " << diffuse.r << " " << diffuse.g <<
            " " << diffuse.b << " ]\n";

    aiString displacementTexture, normalMap;
    if (material->Get(AI_MATKEY_TEXTURE_NORMALS(0), displacementTexture) == AI_SUCCESS)
        mOutput << "    \"string normalmap\" \"" << CleanTextureFilename(displacementTexture) << "\"\n";
    else if (material->Get(AI_MATKEY_TEXTURE_HEIGHT(0), displacementTexture) == AI_SUCCESS)
        mOutput << "    \"texture displacement\" \"float:" <<
            RemoveSuffix(CleanTextureFilename(displacementTexture)) << "\"\n";
    else if (material->Get(AI_MATKEY_TEXTURE_DISPLACEMENT(0), displacementTexture) == AI_SUCCESS)
        mOutput << "    \"texture displacement\" \"float:" <<
            RemoveSuffix(CleanTextureFilename(displacementTexture)) << "\"\n";
}

std::string PbrtExporter::CleanTextureFilename(const aiString &f, bool rewriteExtension) const {
    std::string fn = f.C_Str();
    // Remove directory name
    size_t offset = fn.find_last_of("/\\");
    if (offset != std::string::npos) {
        fn.erase(0, offset + 1);
    }

    // Expect all textures in textures
    fn = std::string("textures") + mIOSystem->getOsSeparator() + fn;

    // Rewrite extension for unsupported file formats.
    if (rewriteExtension) {
        offset = fn.rfind('.');
        if (offset != std::string::npos) {
            std::string extension = fn;
            extension.erase(0, offset + 1);
            std::transform(extension.begin(), extension.end(), extension.begin(),
                           [](unsigned char c) { return (char)std::tolower(c); });

            if (extension != "tga" && extension != "exr" && extension != "png" &&
                extension != "pfm" && extension != "hdr") {
                std::string orig = fn;
                fn.erase(offset + 1);
                fn += "png";

                // Does it already exist? Warn if not.
                std::ifstream filestream(fn);
                if (!filestream.good())
                    std::cerr << orig << ": must convert this texture to PNG.\n";
            }
        }
    }

    return fn;
}

std::string PbrtExporter::RemoveSuffix(std::string filename) {
    size_t offset = filename.rfind('.');
    if (offset != std::string::npos)
        filename.erase(offset);
    return filename;
}

void PbrtExporter::WriteLights() {
    mOutput << "\n";
    mOutput << "#################\n";
    mOutput << "# Lights\n\n";
    if (mScene->mNumLights == 0) {
        // Skip the default light if no cameras and this is flat up geometry
        if (mScene->mNumCameras > 0) {
            std::cerr << "No lights specified. Using default infinite light.\n";

            mOutput << "AttributeBegin\n";
            mOutput << "    # default light\n";
            mOutput << "    LightSource \"infinite\" \"blackbody L\" [6000 1]\n";

            mOutput << "AttributeEnd\n\n";
        }
    } else {
        for (unsigned int i = 0; i < mScene->mNumLights; ++i) {
            const aiLight *light = mScene->mLights[i];

            mOutput << "# Light " << light->mName.C_Str() << "\n";
            mOutput << "AttributeBegin\n";

            aiMatrix4x4 worldFromLight = GetNodeTransform(light->mName);
            mOutput << "    Transform [ " << TransformAsString(worldFromLight) << " ]\n";

            aiColor3D color = light->mColorDiffuse + light->mColorSpecular;
            if (light->mAttenuationConstant != 0)
                color = color * (ai_real)(1. / light->mAttenuationConstant);

            switch (light->mType) {
            case aiLightSource_DIRECTIONAL: {
                mOutput << "    LightSource \"distant\"\n";
                mOutput << "        \"point3 from\" [ " << light->mPosition.x << " " <<
                    light->mPosition.y << " " << light->mPosition.z << " ]\n";
                aiVector3D to = light->mPosition + light->mDirection;
                mOutput << "        \"point3 to\" [ " << to.x << " " << to.y << " " << to.z << " ]\n";
                mOutput << "        \"rgb L\" [ " << color.r << " " << color.g << " " << color.b << " ]\n";
                break;
            } case aiLightSource_POINT:
                mOutput << "    LightSource \"distant\"\n";
                mOutput << "        \"point3 from\" [ " << light->mPosition.x << " " <<
                    light->mPosition.y << " " << light->mPosition.z << " ]\n";
                mOutput << "        \"rgb L\" [ " << color.r << " " << color.g << " " << color.b << " ]\n";
                break;
            case aiLightSource_SPOT: {
                mOutput << "    LightSource \"spot\"\n";
                mOutput << "        \"point3 from\" [ " << light->mPosition.x << " " <<
                    light->mPosition.y << " " << light->mPosition.z << " ]\n";
                aiVector3D to = light->mPosition + light->mDirection;
                mOutput << "        \"point3 to\" [ " << to.x << " " << to.y << " " << to.z << " ]\n";
                mOutput << "        \"rgb L\" [ " << color.r << " " << color.g << " " << color.b << " ]\n";
                mOutput << "        \"float coneangle\" [ " << AI_RAD_TO_DEG(light->mAngleOuterCone) << " ]\n";
                mOutput << "        \"float conedeltaangle\" [ " << AI_RAD_TO_DEG(light->mAngleOuterCone -
                                                                                  light->mAngleInnerCone) << " ]\n";
                break;
            } case aiLightSource_AMBIENT:
                mOutput << "# ignored ambient light source\n";
                break;
            case aiLightSource_AREA: {
                aiVector3D left = light->mDirection ^ light->mUp;
                // rectangle. center at position, direction is normal vector
                ai_real dLeft = light->mSize.x / 2, dUp = light->mSize.y / 2;
                aiVector3D vertices[4] = {
                     light->mPosition - dLeft * left - dUp * light->mUp,
                     light->mPosition + dLeft * left - dUp * light->mUp,
                     light->mPosition - dLeft * left + dUp * light->mUp,
                     light->mPosition + dLeft * left + dUp * light->mUp };
                mOutput << "    AreaLightSource \"diffuse\"\n";
                mOutput << "        \"rgb L\" [ " << color.r << " " << color.g << " " << color.b << " ]\n";
                mOutput << "    Shape \"bilinearmesh\"\n";
                mOutput << "        \"point3 p\" [ ";
                for (int j = 0; j < 4; ++j)
                    mOutput << vertices[j].x << " " << vertices[j].y << " " << vertices[j].z;
                mOutput << " ]\n";
                mOutput << "        \"integer indices\" [ 0 1 2 3 ]\n";
                break;
            } default:
                mOutput << "# ignored undefined light source type\n";
                break;
            }
            mOutput << "AttributeEnd\n\n";
        }
    }
}

void PbrtExporter::WriteMesh(aiMesh* mesh) {
    mOutput << "# - Mesh: ";
    if (mesh->mName == aiString(""))
        mOutput << "<No Name>\n";
    else
        mOutput << mesh->mName.C_Str() << "\n";

    mOutput << "AttributeBegin\n";
    aiMaterial* material = mScene->mMaterials[mesh->mMaterialIndex];
    mOutput << "    NamedMaterial \"" << material->GetName().C_Str() << "\"\n";

    // Handle area lights
    aiColor3D emission;
    if (material->Get(AI_MATKEY_COLOR_EMISSIVE, emission) == AI_SUCCESS &&
        (emission.r > 0 || emission.g > 0 || emission.b > 0))
        mOutput << "    AreaLightSource \"diffuse\" \"rgb L\" [ " << emission.r <<
            " " << emission.g << " " << emission.b << " ]\n";

    // Check if any types other than tri
    if (   (mesh->mPrimitiveTypes & aiPrimitiveType_POINT)
        || (mesh->mPrimitiveTypes & aiPrimitiveType_LINE)
        || (mesh->mPrimitiveTypes & aiPrimitiveType_POLYGON)) {
        std::cerr << "Error: ignoring point / line / polygon mesh " << mesh->mName.C_Str() << ".\n";
        return;
    }

    // Alpha mask
    std::string alpha;
    aiString opacityTexture;
    if (material->Get(AI_MATKEY_TEXTURE_OPACITY(0), opacityTexture) == AI_SUCCESS ||
        material->Get(AI_MATKEY_TEXTURE_DIFFUSE(0), opacityTexture) == AI_SUCCESS) {
        // material->Get(AI_MATKEY_TEXTURE_BASE_COLOR(0), opacityTexture) == AI_SUCCESS)
        std::string texName = std::string("alpha:") + CleanTextureFilename(opacityTexture);
        if (mTextureSet.find(texName) != mTextureSet.end())
            alpha = std::string("    \"texture alpha\" \"") + texName + "\"\n";
    } else {
        float opacity = 1;
        if (material->Get(AI_MATKEY_OPACITY, opacity) == AI_SUCCESS && opacity < 1)
            alpha = std::string("    \"float alpha\" [ ") + std::to_string(opacity) + " ]\n";
    }

    // Output the shape specification
    mOutput << "Shape \"trianglemesh\"\n" <<
        alpha <<
        "    \"integer indices\" [";

    // Start with faces (which hold indices)
    for (unsigned int i = 0; i < mesh->mNumFaces; i++) {
        auto face = mesh->mFaces[i];
        if (face.mNumIndices != 3) throw DeadlyExportError("oh no not a tri!");

        for (unsigned int j = 0; j < face.mNumIndices; j++) {
            mOutput << face.mIndices[j] << " ";
        }
        if ((i % 7) == 6) mOutput << "\n    ";
    }
    mOutput << "]\n";

    // Then go to vertices
    mOutput << "    \"point3 P\" [";
    for (unsigned int i = 0; i < mesh->mNumVertices; i++) {
        auto vector = mesh->mVertices[i];
        mOutput << vector.x << " " << vector.y << " " << vector.z << "  ";
        if ((i % 4) == 3) mOutput << "\n    ";
    }
    mOutput << "]\n";

    // Normals (if present)
    if (mesh->mNormals) {
        mOutput << "    \"normal N\" [";
        for (unsigned int i = 0; i < mesh->mNumVertices; i++) {
            auto normal = mesh->mNormals[i];
            mOutput << normal.x << " " << normal.y << " " << normal.z << "  ";
            if ((i % 4) == 3) mOutput << "\n    ";
        }
        mOutput << "]\n";
    }

    // Tangents (if present)
    if (mesh->mTangents) {
        mOutput << "    \"vector3 S\" [";
        for (unsigned int i = 0; i < mesh->mNumVertices; i++) {
            auto tangent = mesh->mTangents[i];
            mOutput << tangent.x << " " << tangent.y << " " << tangent.z << "  ";
            if ((i % 4) == 3) mOutput << "\n    ";
        }
        mOutput << "]\n";
    }

    // Texture Coords (if present)
    // Find the first set of 2D texture coordinates..
    for (int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i) {
        if (mesh->mNumUVComponents[i] == 2) {
            // assert(mesh->mTextureCoords[i] != nullptr);
            aiVector3D* uv = mesh->mTextureCoords[i];
            mOutput << "    \"point2 uv\" [";
            for (unsigned int j = 0; j < mesh->mNumVertices; ++j) {
                mOutput << uv[j].x << " " << uv[j].y << " ";
                if ((j % 6) == 5) mOutput << "\n    ";
            }
            mOutput << "]\n";
            break;
        }
    }
    // TODO: issue warning if there are additional UV sets?

    mOutput << "AttributeEnd\n";
}

void PbrtExporter::WriteInstanceDefinition(int i) {
    aiMesh* mesh = mScene->mMeshes[i];

    mOutput << "ObjectBegin \"";
    if (mesh->mName == aiString(""))
        mOutput << "mesh_" << i+1 << "\"\n";
    else
        mOutput << mesh->mName.C_Str() << "_" << i+1 << "\"\n";

    WriteMesh(mesh);

    mOutput << "ObjectEnd\n";
}

void PbrtExporter::WriteGeometricObjects(aiNode* node, aiMatrix4x4 worldFromObject,
                                         std::map<int, int> &meshUses) {
    // Sometimes interior nodes have degenerate matrices??
    if (node->mTransformation.Determinant() != 0)
        worldFromObject = worldFromObject * node->mTransformation;

    if (node->mNumMeshes > 0) {
        mOutput << "AttributeBegin\n";

        mOutput << "  Transform [ " << TransformAsString(worldFromObject) << "]\n";

        for (unsigned int i = 0; i < node->mNumMeshes; i++) {
            aiMesh* mesh = mScene->mMeshes[node->mMeshes[i]];
            if (meshUses[node->mMeshes[i]] == 1) {
                // If it's only used once in the scene, emit it directly as
                // a triangle mesh.
                mOutput << "  # " << mesh->mName.C_Str();
                WriteMesh(mesh);
            } else {
                // If it's used multiple times, there will be an object
                // instance for it, so emit a reference to that.
                mOutput << "  ObjectInstance \"";
                if (mesh->mName == aiString(""))
                    mOutput << "mesh_" << node->mMeshes[i] + 1 << "\"\n";
                else
                    mOutput << mesh->mName.C_Str() << "_" << node->mMeshes[i] + 1 << "\"\n";
            }
        }
        mOutput << "AttributeEnd\n\n";
    }

    // Recurse through children
    for (unsigned int i = 0; i < node->mNumChildren; i++) {
        WriteGeometricObjects(node->mChildren[i], worldFromObject, meshUses);
    }
}

#endif // ASSIMP_BUILD_NO_PBRT_EXPORTER
#endif // ASSIMP_BUILD_NO_EXPORT