summaryrefslogtreecommitdiff
path: root/portaudio/qa/loopback/src/audio_analyzer.c
blob: fbdd6318205ff1d98c5d7979257b3f178a8f8489 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706

/*
 * PortAudio Portable Real-Time Audio Library
 * Latest Version at: http://www.portaudio.com
 *
 * Copyright (c) 1999-2010 Phil Burk and Ross Bencina
 *
 * Permission is hereby granted, free of charge, to any person obtaining
 * a copy of this software and associated documentation files
 * (the "Software"), to deal in the Software without restriction,
 * including without limitation the rights to use, copy, modify, merge,
 * publish, distribute, sublicense, and/or sell copies of the Software,
 * and to permit persons to whom the Software is furnished to do so,
 * subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be
 * included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
 * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR
 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
 * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
 * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 */

/*
 * The text above constitutes the entire PortAudio license; however,
 * the PortAudio community also makes the following non-binding requests:
 *
 * Any person wishing to distribute modifications to the Software is
 * requested to send the modifications to the original developer so that
 * they can be incorporated into the canonical version. It is also
 * requested that these non-binding requests be included along with the
 * license above.
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <math.h>
#include "qa_tools.h"
#include "audio_analyzer.h"
#include "write_wav.h"

#define PAQA_POP_THRESHOLD  (0.04)

/*==========================================================================================*/
double PaQa_GetNthFrequency( double baseFrequency, int index )
{
    // Use 13 tone equal tempered scale because it does not generate harmonic ratios.
    return baseFrequency * pow( 2.0, index / 13.0 );
}

/*==========================================================================================*/
void PaQa_EraseBuffer( float *buffer, int numFrames, int samplesPerFrame )
{
    int i;
    int numSamples = numFrames * samplesPerFrame;
    for( i=0; i<numSamples; i++ )
    {
        *buffer++ = 0.0;
    }
}

/*==========================================================================================*/
void PaQa_SetupSineGenerator( PaQaSineGenerator *generator, double frequency, double amplitude, double frameRate )
{
    generator->phase = 0.0;
    generator->amplitude = amplitude;
    generator->frequency = frequency;
    generator->phaseIncrement = 2.0 * frequency * MATH_PI / frameRate;
}

/*==========================================================================================*/
void PaQa_MixSine( PaQaSineGenerator *generator, float *buffer, int numSamples, int stride )
{
    int i;
    for( i=0; i<numSamples; i++ )
    {
        float value = sinf( (float) generator->phase ) * generator->amplitude;
        *buffer += value; // Mix with existing value.
        buffer += stride;
        // Advance phase and wrap around.
        generator->phase += generator->phaseIncrement;
        if (generator->phase > MATH_TWO_PI)
        {
            generator->phase -= MATH_TWO_PI;
        }
    }
}

/*==========================================================================================*/
void PaQa_GenerateCrackDISABLED( float *buffer, int numSamples, int stride )
{
    int i;
    int offset = numSamples/2;
    for( i=0; i<numSamples; i++ )
    {
        float phase = (MATH_TWO_PI * 0.5 * (i - offset)) / numSamples;
        float cosp = cosf( phase );
        float cos2 = cosp * cosp;
        // invert second half of signal
        float value = (i < offset) ? cos2 : (0-cos2);
        *buffer = value;
        buffer += stride;
    }
}


/*==========================================================================================*/
int PaQa_InitializeRecording( PaQaRecording *recording, int maxFrames, int frameRate )
{
    int numBytes = maxFrames * sizeof(float);
    recording->buffer = (float*)malloc(numBytes);
    QA_ASSERT_TRUE( "Allocate recording buffer.", (recording->buffer != NULL) );
    recording->maxFrames = maxFrames;    recording->sampleRate = frameRate;
    recording->numFrames = 0;
    return 0;
error:
    return 1;
}

/*==========================================================================================*/
void PaQa_TerminateRecording( PaQaRecording *recording )
{
    if (recording->buffer != NULL)
    {
        free( recording->buffer );
        recording->buffer = NULL;
    }
    recording->maxFrames = 0;
}

/*==========================================================================================*/
int PaQa_WriteRecording( PaQaRecording *recording, float *buffer, int numFrames, int stride )
{
    int i;
    int framesToWrite;
    float *data = &recording->buffer[recording->numFrames];

    framesToWrite = numFrames;
    if ((framesToWrite + recording->numFrames) > recording->maxFrames)
    {
        framesToWrite = recording->maxFrames - recording->numFrames;
    }

    for( i=0; i<framesToWrite; i++ )
    {
        *data++ = *buffer;
        buffer += stride;
    }
    recording->numFrames += framesToWrite;
    return (recording->numFrames >= recording->maxFrames);
}

/*==========================================================================================*/
int PaQa_WriteSilence( PaQaRecording *recording, int numFrames )
{
    int i;
    int framesToRecord;
    float *data = &recording->buffer[recording->numFrames];

    framesToRecord = numFrames;
    if ((framesToRecord + recording->numFrames) > recording->maxFrames)
    {
        framesToRecord = recording->maxFrames - recording->numFrames;
    }

    for( i=0; i<framesToRecord; i++ )
    {
        *data++ = 0.0f;
    }
    recording->numFrames += framesToRecord;
    return (recording->numFrames >= recording->maxFrames);
}

/*==========================================================================================*/
int PaQa_RecordFreeze( PaQaRecording *recording, int numFrames )
{
    int i;
    int framesToRecord;
    float *data = &recording->buffer[recording->numFrames];

    framesToRecord = numFrames;
    if ((framesToRecord + recording->numFrames) > recording->maxFrames)
    {
        framesToRecord = recording->maxFrames - recording->numFrames;
    }

    for( i=0; i<framesToRecord; i++ )
    {
        // Copy old value forward as if the signal had frozen.
        data[i] = data[i-1];
    }
    recording->numFrames += framesToRecord;
    return (recording->numFrames >= recording->maxFrames);
}

/*==========================================================================================*/
/**
 * Write recording to WAV file.
 */
int PaQa_SaveRecordingToWaveFile( PaQaRecording *recording, const char *filename )
{
    WAV_Writer writer;
    int result = 0;
#define NUM_SAMPLES  (200)
    short data[NUM_SAMPLES];
    const int samplesPerFrame = 1;
    int numLeft = recording->numFrames;
    float *buffer = &recording->buffer[0];

    result =  Audio_WAV_OpenWriter( &writer, filename, recording->sampleRate, samplesPerFrame );
    if( result < 0 ) goto error;

    while( numLeft > 0 )
    {
        int i;
        int numToSave = (numLeft > NUM_SAMPLES) ? NUM_SAMPLES : numLeft;
        // Convert double samples to shorts.
        for( i=0; i<numToSave; i++ )
        {
            double fval = *buffer++;
            // Convert float to int and clip to short range.
            int ival = fval * 32768.0;
            if( ival > 32767 ) ival = 32767;
            else if( ival < -32768 ) ival = -32768;
            data[i] = ival;
        }
        result =  Audio_WAV_WriteShorts( &writer, data, numToSave );
        if( result < 0 ) goto error;
        numLeft -= numToSave;
    }

    result =  Audio_WAV_CloseWriter( &writer );
    if( result < 0 ) goto error;

    return 0;

error:
    printf("ERROR: result = %d\n", result );
    return result;
#undef NUM_SAMPLES
}

/*==========================================================================================*/

double PaQa_MeasureCrossingSlope( float *buffer, int numFrames )
{
    int i;
    double slopeTotal = 0.0;
    int slopeCount = 0;
    float previous;
    double averageSlope = 0.0;

    previous = buffer[0];
    for( i=1; i<numFrames; i++ )
    {
        float current = buffer[i];
        if( (current > 0.0) && (previous < 0.0) )
        {
            double delta = current - previous;
            slopeTotal += delta;
            slopeCount += 1;
        }
        previous = current;
    }
    if( slopeCount > 0 )
    {
        averageSlope = slopeTotal / slopeCount;
    }
    return averageSlope;
}

/*==========================================================================================*/
/*
 * We can't just measure the peaks cuz they may be clipped.
 * But the zero crossing should be intact.
 * The measured slope of a sine wave at zero should be:
 *
 *   slope = sin( 2PI * frequency / sampleRate )
 *
 */
double PaQa_MeasureSineAmplitudeBySlope( PaQaRecording *recording,
                                         double frequency, double frameRate,
                                         int startFrame, int numFrames )
{
    float *buffer = &recording->buffer[startFrame];
    double measuredSlope = PaQa_MeasureCrossingSlope( buffer, numFrames );
    double unitySlope = sin( MATH_TWO_PI * frequency / frameRate );
    double estimatedAmplitude = measuredSlope / unitySlope;
    return estimatedAmplitude;
}

/*==========================================================================================*/
double PaQa_CorrelateSine( PaQaRecording *recording, double frequency, double frameRate,
                           int startFrame, int numFrames, double *phasePtr )
{
    double magnitude = 0.0;
    int numLeft = numFrames;
    double phase = 0.0;
    double phaseIncrement = 2.0 * MATH_PI * frequency / frameRate;
    double sinAccumulator = 0.0;
    double cosAccumulator = 0.0;
    float *data = &recording->buffer[startFrame];

    QA_ASSERT_TRUE( "startFrame out of bounds", (startFrame < recording->numFrames) );
    QA_ASSERT_TRUE( "numFrames out of bounds", ((startFrame+numFrames) <= recording->numFrames) );

    while( numLeft > 0 )
    {
        double sample = (double) *data++;
        sinAccumulator += sample * sin( phase );
        cosAccumulator += sample * cos( phase );
        phase += phaseIncrement;
        if (phase > MATH_TWO_PI)
        {
            phase -= MATH_TWO_PI;
        }
        numLeft -= 1;
    }
    sinAccumulator = sinAccumulator / numFrames;
    cosAccumulator = cosAccumulator / numFrames;
    // TODO Why do I have to multiply by 2.0? Need it to make result come out right.
    magnitude = 2.0 * sqrt( (sinAccumulator * sinAccumulator) + (cosAccumulator * cosAccumulator ));
    if( phasePtr != NULL )
    {
        double phase = atan2( cosAccumulator, sinAccumulator );
        *phasePtr = phase;
    }
    return magnitude;
error:
    return -1.0;
}

/*==========================================================================================*/
void PaQa_FilterRecording( PaQaRecording *input, PaQaRecording *output, BiquadFilter *filter )
{
    int numToFilter = (input->numFrames > output->maxFrames) ? output->maxFrames : input->numFrames;
    BiquadFilter_Filter( filter, &input->buffer[0], &output->buffer[0], numToFilter );
    output->numFrames = numToFilter;
}

/*==========================================================================================*/
/** Scan until we get a correlation of a single that goes over the tolerance level,
 * peaks then drops to half the peak.
 * Look for inverse correlation as well.
 */
double PaQa_FindFirstMatch( PaQaRecording *recording, float *buffer, int numFrames, double threshold  )
{
    int ic,is;
    // How many buffers will fit in the recording?
    int maxCorrelations = recording->numFrames - numFrames;
    double maxSum = 0.0;
    int peakIndex = -1;
    double inverseMaxSum = 0.0;
    int inversePeakIndex = -1;
    double location = -1.0;

    QA_ASSERT_TRUE( "numFrames out of bounds", (numFrames < recording->numFrames) );

    for( ic=0; ic<maxCorrelations; ic++ )
    {
        int pastPeak;
        int inversePastPeak;

        double sum = 0.0;
        // Correlate buffer against the recording.
        float *recorded = &recording->buffer[ ic ];
        for( is=0; is<numFrames; is++ )
        {
            float s1 = buffer[is];
            float s2 = *recorded++;
            sum += s1 * s2;
        }
        if( (sum > maxSum) )
        {
            maxSum = sum;
            peakIndex = ic;
        }
        if( ((-sum) > inverseMaxSum) )
        {
            inverseMaxSum = -sum;
            inversePeakIndex = ic;
        }
        pastPeak = (maxSum > threshold) && (sum < 0.5*maxSum);
        inversePastPeak = (inverseMaxSum > threshold) && ((-sum) < 0.5*inverseMaxSum);
        //printf("PaQa_FindFirstMatch: ic = %4d, sum = %8f, maxSum = %8f, inverseMaxSum = %8f\n", ic, sum, maxSum, inverseMaxSum );
        if( pastPeak && inversePastPeak )
        {
            if( maxSum > inverseMaxSum )
            {
                location = peakIndex;
            }
            else
            {
                location = inversePeakIndex;
            }
            break;
        }

    }
    //printf("PaQa_FindFirstMatch: location = %4d\n", (int)location );
    return location;
error:
    return -1.0;
}

/*==========================================================================================*/
// Measure the area under the curve by summing absolute value of each value.
double PaQa_MeasureArea( float *buffer, int numFrames, int stride  )
{
    int is;
    double area = 0.0;
    for( is=0; is<numFrames; is++ )
    {
        area += fabs( *buffer );
        buffer += stride;
    }
    return area;
}

/*==========================================================================================*/
// Measure the area under the curve by summing absolute value of each value.
double PaQa_MeasureRootMeanSquare( float *buffer, int numFrames )
{
    int is;
    double area = 0.0;
    double root;
    for( is=0; is<numFrames; is++ )
    {
        float value = *buffer++;
        area += value * value;
    }
    root = sqrt( area );
    return root / numFrames;
}


/*==========================================================================================*/
// Compare the amplitudes of these two signals.
// Return ratio of recorded signal over buffer signal.

double PaQa_CompareAmplitudes( PaQaRecording *recording, int startAt, float *buffer, int numFrames )
{
    QA_ASSERT_TRUE( "startAt+numFrames out of bounds", ((startAt+numFrames) < recording->numFrames) );

    {
        double recordedArea = PaQa_MeasureArea( &recording->buffer[startAt], numFrames, 1 );
        double bufferArea = PaQa_MeasureArea( buffer, numFrames, 1 );
        if( bufferArea == 0.0 ) return 100000000.0;
        return recordedArea / bufferArea;
    }
error:
    return -1.0;
}


/*==========================================================================================*/
double PaQa_ComputePhaseDifference( double phase1, double phase2 )
{
    double delta = phase1 - phase2;
    while( delta > MATH_PI )
    {
        delta -= MATH_TWO_PI;
    }
    while( delta < -MATH_PI )
    {
        delta += MATH_TWO_PI;
    }
    return delta;
}

/*==========================================================================================*/
int PaQa_MeasureLatency( PaQaRecording *recording, PaQaTestTone *testTone, PaQaAnalysisResult *analysisResult )
{
    double threshold;
    PaQaSineGenerator generator;
#define MAX_BUFFER_SIZE 2048
    float buffer[MAX_BUFFER_SIZE];
    double period = testTone->sampleRate / testTone->frequency;
    int cycleSize = (int) (period + 0.5);
    //printf("PaQa_AnalyseRecording: frequency = %8f, frameRate = %8f, period = %8f, cycleSize = %8d\n",
    //       testTone->frequency, testTone->sampleRate, period, cycleSize );
    analysisResult->latency = -1;
    analysisResult->valid = (0);

    // Set up generator to find matching first cycle.
    QA_ASSERT_TRUE( "cycleSize out of bounds", (cycleSize < MAX_BUFFER_SIZE) );
    PaQa_SetupSineGenerator( &generator, testTone->frequency, testTone->amplitude, testTone->sampleRate );
    PaQa_EraseBuffer( buffer, cycleSize, testTone->samplesPerFrame );
    PaQa_MixSine( &generator, buffer, cycleSize, testTone->samplesPerFrame );

    threshold = cycleSize * 0.02;
    analysisResult->latency = PaQa_FindFirstMatch( recording, buffer, cycleSize, threshold );
    QA_ASSERT_TRUE( "Could not find the start of the signal.", (analysisResult->latency >= 0) );
    analysisResult->amplitudeRatio = PaQa_CompareAmplitudes( recording, analysisResult->latency, buffer, cycleSize );
    return 0;
error:
    return -1;
}

/*==========================================================================================*/
// Apply cosine squared window.
void PaQa_FadeInRecording( PaQaRecording *recording, int startFrame, int count )
{
    int is;
    double phase = 0.5 * MATH_PI;
    // Advance a quarter wave
    double phaseIncrement = 0.25 * 2.0 * MATH_PI / count;

    assert( startFrame >= 0 );
    assert( count > 0 );

    /* Zero out initial part of the recording. */
    for( is=0; is<startFrame; is++ )
    {
        recording->buffer[ is ] = 0.0f;
    }
    /* Fade in where signal begins. */
    for( is=0; is<count; is++ )
    {
        double c = cos( phase );
        double w = c * c;
        float x = recording->buffer[ is + startFrame ];
        float y = x * w;
        //printf("FADE %d : w=%f, x=%f, y=%f\n", is, w, x, y );
        recording->buffer[ is + startFrame ] = y;

        phase += phaseIncrement;
    }
}


/*==========================================================================================*/
/** Apply notch filter and high pass filter then detect remaining energy.
 */
int PaQa_DetectPop( PaQaRecording *recording, PaQaTestTone *testTone, PaQaAnalysisResult *analysisResult )
{
    int result = 0;
    int i;
    double maxAmplitude;
    int maxPosition;

    PaQaRecording     notchOutput = { 0 };
    BiquadFilter      notchFilter;

    PaQaRecording     hipassOutput = { 0 };
    BiquadFilter      hipassFilter;

    int frameRate = (int) recording->sampleRate;

    analysisResult->popPosition = -1;
    analysisResult->popAmplitude = 0.0;

    result = PaQa_InitializeRecording( &notchOutput, recording->numFrames, frameRate );
    QA_ASSERT_EQUALS( "PaQa_InitializeRecording failed", 0, result );

    result = PaQa_InitializeRecording( &hipassOutput, recording->numFrames, frameRate );
    QA_ASSERT_EQUALS( "PaQa_InitializeRecording failed", 0, result );

    // Use notch filter to remove test tone.
    BiquadFilter_SetupNotch( &notchFilter, testTone->frequency / frameRate, 0.5 );
    PaQa_FilterRecording( recording, &notchOutput, &notchFilter );
    //result = PaQa_SaveRecordingToWaveFile( &notchOutput, "notch_output.wav" );
    //QA_ASSERT_EQUALS( "PaQa_SaveRecordingToWaveFile failed", 0, result );

    // Apply fade-in window.
    PaQa_FadeInRecording( &notchOutput, (int) analysisResult->latency, 500 );

    // Use high pass to accentuate the edges of a pop. At higher frequency!
    BiquadFilter_SetupHighPass( &hipassFilter, 2.0 * testTone->frequency / frameRate, 0.5 );
    PaQa_FilterRecording( &notchOutput, &hipassOutput, &hipassFilter );
    //result = PaQa_SaveRecordingToWaveFile( &hipassOutput, "hipass_output.wav" );
    //QA_ASSERT_EQUALS( "PaQa_SaveRecordingToWaveFile failed", 0, result );

    // Scan remaining signal looking for peak.
    maxAmplitude = 0.0;
    maxPosition = -1;
    for( i=(int) analysisResult->latency; i<hipassOutput.numFrames; i++ )
    {
        float x = hipassOutput.buffer[i];
        float mag = fabs( x );
        if( mag > maxAmplitude )
        {
            maxAmplitude = mag;
            maxPosition = i;
        }
    }

    if( maxAmplitude > PAQA_POP_THRESHOLD )
    {
        analysisResult->popPosition = maxPosition;
        analysisResult->popAmplitude = maxAmplitude;
    }

    PaQa_TerminateRecording( &notchOutput );
    PaQa_TerminateRecording( &hipassOutput );
    return 0;

error:
    PaQa_TerminateRecording( &notchOutput );
    PaQa_TerminateRecording( &hipassOutput );
    return -1;
}

/*==========================================================================================*/
int PaQa_DetectPhaseError( PaQaRecording *recording, PaQaTestTone *testTone, PaQaAnalysisResult *analysisResult )
{
    int i;
    double period = testTone->sampleRate / testTone->frequency;
    int cycleSize = (int) (period + 0.5);

    double maxAddedFrames = 0.0;
    double maxDroppedFrames = 0.0;

    double previousPhase = 0.0;
    double previousFrameError = 0;
    int loopCount = 0;
    int skip = cycleSize;
    int windowSize = cycleSize;

    // Scan recording starting with first cycle, looking for phase errors.
    analysisResult->numDroppedFrames = 0.0;
    analysisResult->numAddedFrames = 0.0;
    analysisResult->droppedFramesPosition = -1.0;
    analysisResult->addedFramesPosition = -1.0;

    for( i=analysisResult->latency; i<(recording->numFrames - windowSize); i += skip )
    {
        double expectedPhase = previousPhase + (skip * MATH_TWO_PI / period);
        double expectedPhaseIncrement = PaQa_ComputePhaseDifference( expectedPhase, previousPhase );

        double phase = 666.0;
        double mag = PaQa_CorrelateSine( recording, testTone->frequency, testTone->sampleRate, i, windowSize, &phase );
        if( (loopCount > 1) && (mag > 0.0) )
        {
            double phaseDelta = PaQa_ComputePhaseDifference( phase, previousPhase );
            double phaseError = PaQa_ComputePhaseDifference( phaseDelta, expectedPhaseIncrement );
            // Convert phaseError to equivalent number of frames.
            double frameError = period * phaseError / MATH_TWO_PI;
            double consecutiveFrameError = frameError + previousFrameError;
//            if( fabs(frameError) > 0.01 )
//            {
//                printf("FFFFFFFFFFFFF frameError = %f, at %d\n", frameError, i );
//            }
            if( consecutiveFrameError > 0.8 )
            {
                double droppedFrames = consecutiveFrameError;
                if (droppedFrames > (maxDroppedFrames * 1.001))
                {
                    analysisResult->numDroppedFrames = droppedFrames;
                    analysisResult->droppedFramesPosition = i + (windowSize/2);
                    maxDroppedFrames = droppedFrames;
                }
            }
            else if( consecutiveFrameError < -0.8 )
            {
                double addedFrames = 0 - consecutiveFrameError;
                if (addedFrames > (maxAddedFrames * 1.001))
                {
                    analysisResult->numAddedFrames = addedFrames;
                    analysisResult->addedFramesPosition = i + (windowSize/2);
                    maxAddedFrames = addedFrames;
                }
            }
            previousFrameError = frameError;


            //if( i<8000 )
            //{
            //    printf("%d: phase = %8f, expected = %8f, delta = %8f, frameError = %8f\n", i, phase, expectedPhaseIncrement, phaseDelta, frameError );
            //}
        }
        previousPhase = phase;
        loopCount += 1;
    }
    return 0;
}

/*==========================================================================================*/
int PaQa_AnalyseRecording( PaQaRecording *recording, PaQaTestTone *testTone, PaQaAnalysisResult *analysisResult )
{
    int result = 0;

    memset( analysisResult, 0, sizeof(PaQaAnalysisResult) );
    result = PaQa_MeasureLatency( recording, testTone, analysisResult );
    QA_ASSERT_EQUALS( "latency measurement", 0, result );

    if( (analysisResult->latency >= 0) && (analysisResult->amplitudeRatio > 0.1) )
    {
        analysisResult->valid = (1);

        result = PaQa_DetectPop( recording, testTone, analysisResult );
        QA_ASSERT_EQUALS( "detect pop", 0, result );

        result = PaQa_DetectPhaseError( recording, testTone, analysisResult );
        QA_ASSERT_EQUALS( "detect phase error", 0, result );
    }
    return 0;
error:
    return -1;
}