summaryrefslogtreecommitdiff
path: root/src/mesh/assimp-master/code/AssetLib/glTF2/glTF2Importer.cpp
diff options
context:
space:
mode:
authorsanine <sanine.not@pm.me>2022-03-04 10:47:15 -0600
committersanine <sanine.not@pm.me>2022-03-04 10:47:15 -0600
commit058f98a63658dc1a2579826ba167fd61bed1e21f (patch)
treebcba07a1615a14d943f3af3f815a42f3be86b2f3 /src/mesh/assimp-master/code/AssetLib/glTF2/glTF2Importer.cpp
parent2f8028ac9e0812cb6f3cbb08f0f419e4e717bd22 (diff)
add assimp submodule
Diffstat (limited to 'src/mesh/assimp-master/code/AssetLib/glTF2/glTF2Importer.cpp')
-rw-r--r--src/mesh/assimp-master/code/AssetLib/glTF2/glTF2Importer.cpp1637
1 files changed, 1637 insertions, 0 deletions
diff --git a/src/mesh/assimp-master/code/AssetLib/glTF2/glTF2Importer.cpp b/src/mesh/assimp-master/code/AssetLib/glTF2/glTF2Importer.cpp
new file mode 100644
index 0000000..1f4cafd
--- /dev/null
+++ b/src/mesh/assimp-master/code/AssetLib/glTF2/glTF2Importer.cpp
@@ -0,0 +1,1637 @@
+/*
+Open Asset Import Library (assimp)
+----------------------------------------------------------------------
+
+Copyright (c) 2006-2022, assimp team
+
+All rights reserved.
+
+Redistribution and use of this software in source and binary forms,
+with or without modification, are permitted provided that the
+following conditions are met:
+
+* Redistributions of source code must retain the above
+copyright notice, this list of conditions and the
+following disclaimer.
+
+* Redistributions in binary form must reproduce the above
+copyright notice, this list of conditions and the
+following disclaimer in the documentation and/or other
+materials provided with the distribution.
+
+* Neither the name of the assimp team, nor the names of its
+contributors may be used to endorse or promote products
+derived from this software without specific prior
+written permission of the assimp team.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+----------------------------------------------------------------------
+*/
+
+#if !defined(ASSIMP_BUILD_NO_GLTF_IMPORTER) && !defined(ASSIMP_BUILD_NO_GLTF2_IMPORTER)
+
+#include "AssetLib/glTF2/glTF2Importer.h"
+#include "PostProcessing/MakeVerboseFormat.h"
+#include "AssetLib/glTF2/glTF2Asset.h"
+
+#if !defined(ASSIMP_BUILD_NO_EXPORT)
+#include "AssetLib/glTF2/glTF2AssetWriter.h"
+#endif
+
+#include <assimp/CreateAnimMesh.h>
+#include <assimp/StringComparison.h>
+#include <assimp/StringUtils.h>
+#include <assimp/ai_assert.h>
+#include <assimp/importerdesc.h>
+#include <assimp/scene.h>
+#include <assimp/DefaultLogger.hpp>
+#include <assimp/Importer.hpp>
+#include <assimp/commonMetaData.h>
+#include <assimp/DefaultIOSystem.h>
+
+#include <memory>
+#include <unordered_map>
+
+#include <rapidjson/document.h>
+#include <rapidjson/rapidjson.h>
+
+using namespace Assimp;
+using namespace glTF2;
+using namespace glTFCommon;
+
+namespace {
+// generate bi-tangents from normals and tangents according to spec
+struct Tangent {
+ aiVector3D xyz;
+ ai_real w;
+};
+} // namespace
+
+//
+// glTF2Importer
+//
+
+static const aiImporterDesc desc = {
+ "glTF2 Importer",
+ "",
+ "",
+ "",
+ aiImporterFlags_SupportTextFlavour | aiImporterFlags_SupportBinaryFlavour | aiImporterFlags_LimitedSupport | aiImporterFlags_Experimental,
+ 0,
+ 0,
+ 0,
+ 0,
+ "gltf glb"
+};
+
+glTF2Importer::glTF2Importer() :
+ BaseImporter(),
+ meshOffsets(),
+ mEmbeddedTexIdxs(),
+ mScene(nullptr) {
+ // empty
+}
+
+glTF2Importer::~glTF2Importer() {
+ // empty
+}
+
+const aiImporterDesc *glTF2Importer::GetInfo() const {
+ return &desc;
+}
+
+bool glTF2Importer::CanRead(const std::string &filename, IOSystem *pIOHandler, bool checkSig ) const {
+ const std::string extension = GetExtension(filename);
+ if (!checkSig && (extension != "gltf") && (extension != "glb")) {
+ return false;
+ }
+
+ if (pIOHandler) {
+ glTF2::Asset asset(pIOHandler);
+ return asset.CanRead(filename, extension == "glb");
+ }
+
+ return false;
+}
+
+static inline aiTextureMapMode ConvertWrappingMode(SamplerWrap gltfWrapMode) {
+ switch (gltfWrapMode) {
+ case SamplerWrap::Mirrored_Repeat:
+ return aiTextureMapMode_Mirror;
+
+ case SamplerWrap::Clamp_To_Edge:
+ return aiTextureMapMode_Clamp;
+
+ case SamplerWrap::UNSET:
+ case SamplerWrap::Repeat:
+ default:
+ return aiTextureMapMode_Wrap;
+ }
+}
+
+static inline void SetMaterialColorProperty(Asset & /*r*/, vec4 &prop, aiMaterial *mat,
+ const char *pKey, unsigned int type, unsigned int idx) {
+ aiColor4D col;
+ CopyValue(prop, col);
+ mat->AddProperty(&col, 1, pKey, type, idx);
+}
+
+static inline void SetMaterialColorProperty(Asset & /*r*/, vec3 &prop, aiMaterial *mat,
+ const char *pKey, unsigned int type, unsigned int idx) {
+ aiColor4D col;
+ glTFCommon::CopyValue(prop, col);
+ mat->AddProperty(&col, 1, pKey, type, idx);
+}
+
+static void SetMaterialTextureProperty(std::vector<int> &embeddedTexIdxs, Asset & /*r*/,
+ glTF2::TextureInfo prop, aiMaterial *mat, aiTextureType texType,
+ unsigned int texSlot = 0) {
+ if (prop.texture && prop.texture->source) {
+ aiString uri(prop.texture->source->uri);
+
+ int texIdx = embeddedTexIdxs[prop.texture->source.GetIndex()];
+ if (texIdx != -1) { // embedded
+ // setup texture reference string (copied from ColladaLoader::FindFilenameForEffectTexture)
+ uri.data[0] = '*';
+ uri.length = 1 + ASSIMP_itoa10(uri.data + 1, MAXLEN - 1, texIdx);
+ }
+
+ mat->AddProperty(&uri, AI_MATKEY_TEXTURE(texType, texSlot));
+ const int uvIndex = static_cast<int>(prop.texCoord);
+ mat->AddProperty(&uvIndex, 1, AI_MATKEY_UVWSRC(texType, texSlot));
+
+ if (prop.textureTransformSupported) {
+ aiUVTransform transform;
+ transform.mScaling.x = prop.TextureTransformExt_t.scale[0];
+ transform.mScaling.y = prop.TextureTransformExt_t.scale[1];
+ transform.mRotation = -prop.TextureTransformExt_t.rotation; // must be negated
+
+ // A change of coordinates is required to map glTF UV transformations into the space used by
+ // Assimp. In glTF all UV origins are at 0,1 (top left of texture) in Assimp space. In Assimp
+ // rotation occurs around the image center (0.5,0.5) where as in glTF rotation is around the
+ // texture origin. All three can be corrected for solely by a change of the translation since
+ // the transformations available are shape preserving. Note the importer already flips the V
+ // coordinate of the actual meshes during import.
+ const ai_real rcos(cos(-transform.mRotation));
+ const ai_real rsin(sin(-transform.mRotation));
+ transform.mTranslation.x = (static_cast<ai_real>( 0.5 ) * transform.mScaling.x) * (-rcos + rsin + 1) + prop.TextureTransformExt_t.offset[0];
+ transform.mTranslation.y = ((static_cast<ai_real>( 0.5 ) * transform.mScaling.y) * (rsin + rcos - 1)) + 1 - transform.mScaling.y - prop.TextureTransformExt_t.offset[1];;
+
+ mat->AddProperty(&transform, 1, _AI_MATKEY_UVTRANSFORM_BASE, texType, texSlot);
+ }
+
+ if (prop.texture->sampler) {
+ Ref<Sampler> sampler = prop.texture->sampler;
+
+ aiString name(sampler->name);
+ aiString id(sampler->id);
+
+ mat->AddProperty(&name, AI_MATKEY_GLTF_MAPPINGNAME(texType, texSlot));
+ mat->AddProperty(&id, AI_MATKEY_GLTF_MAPPINGID(texType, texSlot));
+
+ aiTextureMapMode wrapS = ConvertWrappingMode(sampler->wrapS);
+ aiTextureMapMode wrapT = ConvertWrappingMode(sampler->wrapT);
+ mat->AddProperty(&wrapS, 1, AI_MATKEY_MAPPINGMODE_U(texType, texSlot));
+ mat->AddProperty(&wrapT, 1, AI_MATKEY_MAPPINGMODE_V(texType, texSlot));
+
+ if (sampler->magFilter != SamplerMagFilter::UNSET) {
+ mat->AddProperty(&sampler->magFilter, 1, AI_MATKEY_GLTF_MAPPINGFILTER_MAG(texType, texSlot));
+ }
+
+ if (sampler->minFilter != SamplerMinFilter::UNSET) {
+ mat->AddProperty(&sampler->minFilter, 1, AI_MATKEY_GLTF_MAPPINGFILTER_MIN(texType, texSlot));
+ }
+ } else {
+ // Use glTFv2 default sampler
+ const aiTextureMapMode default_wrap = aiTextureMapMode_Wrap;
+ mat->AddProperty(&default_wrap, 1, AI_MATKEY_MAPPINGMODE_U(texType, texSlot));
+ mat->AddProperty(&default_wrap, 1, AI_MATKEY_MAPPINGMODE_V(texType, texSlot));
+ }
+ }
+}
+
+inline void SetMaterialTextureProperty(std::vector<int> &embeddedTexIdxs, Asset &r,
+ NormalTextureInfo &prop, aiMaterial *mat, aiTextureType texType,
+ unsigned int texSlot = 0) {
+ SetMaterialTextureProperty(embeddedTexIdxs, r, (glTF2::TextureInfo)prop, mat, texType, texSlot);
+
+ if (prop.texture && prop.texture->source) {
+ mat->AddProperty(&prop.scale, 1, AI_MATKEY_GLTF_TEXTURE_SCALE(texType, texSlot));
+ }
+}
+
+inline void SetMaterialTextureProperty(std::vector<int> &embeddedTexIdxs, Asset &r,
+ OcclusionTextureInfo &prop, aiMaterial *mat, aiTextureType texType,
+ unsigned int texSlot = 0) {
+ SetMaterialTextureProperty(embeddedTexIdxs, r, (glTF2::TextureInfo)prop, mat, texType, texSlot);
+
+ if (prop.texture && prop.texture->source) {
+ mat->AddProperty(&prop.strength, 1, AI_MATKEY_GLTF_TEXTURE_STRENGTH(texType, texSlot));
+ }
+}
+
+static aiMaterial *ImportMaterial(std::vector<int> &embeddedTexIdxs, Asset &r, Material &mat) {
+ aiMaterial *aimat = new aiMaterial();
+
+ try {
+ if (!mat.name.empty()) {
+ aiString str(mat.name);
+
+ aimat->AddProperty(&str, AI_MATKEY_NAME);
+ }
+
+ // Set Assimp DIFFUSE and BASE COLOR to the pbrMetallicRoughness base color and texture for backwards compatibility
+ // Technically should not load any pbrMetallicRoughness if extensionsRequired contains KHR_materials_pbrSpecularGlossiness
+ SetMaterialColorProperty(r, mat.pbrMetallicRoughness.baseColorFactor, aimat, AI_MATKEY_COLOR_DIFFUSE);
+ SetMaterialColorProperty(r, mat.pbrMetallicRoughness.baseColorFactor, aimat, AI_MATKEY_BASE_COLOR);
+
+ SetMaterialTextureProperty(embeddedTexIdxs, r, mat.pbrMetallicRoughness.baseColorTexture, aimat, aiTextureType_DIFFUSE);
+ SetMaterialTextureProperty(embeddedTexIdxs, r, mat.pbrMetallicRoughness.baseColorTexture, aimat, aiTextureType_BASE_COLOR);
+
+ SetMaterialTextureProperty(embeddedTexIdxs, r, mat.pbrMetallicRoughness.metallicRoughnessTexture, aimat, AI_MATKEY_GLTF_PBRMETALLICROUGHNESS_METALLICROUGHNESS_TEXTURE);
+
+ aimat->AddProperty(&mat.pbrMetallicRoughness.metallicFactor, 1, AI_MATKEY_METALLIC_FACTOR);
+ aimat->AddProperty(&mat.pbrMetallicRoughness.roughnessFactor, 1, AI_MATKEY_ROUGHNESS_FACTOR);
+
+ float roughnessAsShininess = 1 - mat.pbrMetallicRoughness.roughnessFactor;
+ roughnessAsShininess *= roughnessAsShininess * 1000;
+ aimat->AddProperty(&roughnessAsShininess, 1, AI_MATKEY_SHININESS);
+
+ SetMaterialTextureProperty(embeddedTexIdxs, r, mat.normalTexture, aimat, aiTextureType_NORMALS);
+ SetMaterialTextureProperty(embeddedTexIdxs, r, mat.occlusionTexture, aimat, aiTextureType_LIGHTMAP);
+ SetMaterialTextureProperty(embeddedTexIdxs, r, mat.emissiveTexture, aimat, aiTextureType_EMISSIVE);
+ SetMaterialColorProperty(r, mat.emissiveFactor, aimat, AI_MATKEY_COLOR_EMISSIVE);
+
+ aimat->AddProperty(&mat.doubleSided, 1, AI_MATKEY_TWOSIDED);
+ aimat->AddProperty(&mat.pbrMetallicRoughness.baseColorFactor[3], 1, AI_MATKEY_OPACITY);
+
+ aiString alphaMode(mat.alphaMode);
+ aimat->AddProperty(&alphaMode, AI_MATKEY_GLTF_ALPHAMODE);
+ aimat->AddProperty(&mat.alphaCutoff, 1, AI_MATKEY_GLTF_ALPHACUTOFF);
+
+ //pbrSpecularGlossiness
+ if (mat.pbrSpecularGlossiness.isPresent) {
+ PbrSpecularGlossiness &pbrSG = mat.pbrSpecularGlossiness.value;
+
+ SetMaterialColorProperty(r, pbrSG.diffuseFactor, aimat, AI_MATKEY_COLOR_DIFFUSE);
+ SetMaterialColorProperty(r, pbrSG.specularFactor, aimat, AI_MATKEY_COLOR_SPECULAR);
+
+ float glossinessAsShininess = pbrSG.glossinessFactor * 1000.0f;
+ aimat->AddProperty(&glossinessAsShininess, 1, AI_MATKEY_SHININESS);
+ aimat->AddProperty(&pbrSG.glossinessFactor, 1, AI_MATKEY_GLOSSINESS_FACTOR);
+
+ SetMaterialTextureProperty(embeddedTexIdxs, r, pbrSG.diffuseTexture, aimat, aiTextureType_DIFFUSE);
+
+ SetMaterialTextureProperty(embeddedTexIdxs, r, pbrSG.specularGlossinessTexture, aimat, aiTextureType_SPECULAR);
+ }
+
+ // glTFv2 is either PBR or Unlit
+ aiShadingMode shadingMode = aiShadingMode_PBR_BRDF;
+ if (mat.unlit) {
+ aimat->AddProperty(&mat.unlit, 1, "$mat.gltf.unlit", 0, 0); // TODO: Remove this property, it is kept for backwards compatibility with assimp 5.0.1
+ shadingMode = aiShadingMode_Unlit;
+ }
+
+ aimat->AddProperty(&shadingMode, 1, AI_MATKEY_SHADING_MODEL);
+
+
+ // KHR_materials_sheen
+ if (mat.materialSheen.isPresent) {
+ MaterialSheen &sheen = mat.materialSheen.value;
+ // Default value {0,0,0} disables Sheen
+ if (std::memcmp(sheen.sheenColorFactor, defaultSheenFactor, sizeof(glTFCommon::vec3)) != 0) {
+ SetMaterialColorProperty(r, sheen.sheenColorFactor, aimat, AI_MATKEY_SHEEN_COLOR_FACTOR);
+ aimat->AddProperty(&sheen.sheenRoughnessFactor, 1, AI_MATKEY_SHEEN_ROUGHNESS_FACTOR);
+ SetMaterialTextureProperty(embeddedTexIdxs, r, sheen.sheenColorTexture, aimat, AI_MATKEY_SHEEN_COLOR_TEXTURE);
+ SetMaterialTextureProperty(embeddedTexIdxs, r, sheen.sheenRoughnessTexture, aimat, AI_MATKEY_SHEEN_ROUGHNESS_TEXTURE);
+ }
+ }
+
+ // KHR_materials_clearcoat
+ if (mat.materialClearcoat.isPresent) {
+ MaterialClearcoat &clearcoat = mat.materialClearcoat.value;
+ // Default value 0.0 disables clearcoat
+ if (clearcoat.clearcoatFactor != 0.0f) {
+ aimat->AddProperty(&clearcoat.clearcoatFactor, 1, AI_MATKEY_CLEARCOAT_FACTOR);
+ aimat->AddProperty(&clearcoat.clearcoatRoughnessFactor, 1, AI_MATKEY_CLEARCOAT_ROUGHNESS_FACTOR);
+ SetMaterialTextureProperty(embeddedTexIdxs, r, clearcoat.clearcoatTexture, aimat, AI_MATKEY_CLEARCOAT_TEXTURE);
+ SetMaterialTextureProperty(embeddedTexIdxs, r, clearcoat.clearcoatRoughnessTexture, aimat, AI_MATKEY_CLEARCOAT_ROUGHNESS_TEXTURE);
+ SetMaterialTextureProperty(embeddedTexIdxs, r, clearcoat.clearcoatNormalTexture, aimat, AI_MATKEY_CLEARCOAT_NORMAL_TEXTURE);
+ }
+ }
+
+ // KHR_materials_transmission
+ if (mat.materialTransmission.isPresent) {
+ MaterialTransmission &transmission = mat.materialTransmission.value;
+
+ aimat->AddProperty(&transmission.transmissionFactor, 1, AI_MATKEY_TRANSMISSION_FACTOR);
+ SetMaterialTextureProperty(embeddedTexIdxs, r, transmission.transmissionTexture, aimat, AI_MATKEY_TRANSMISSION_TEXTURE);
+ }
+
+ // KHR_materials_volume
+ if (mat.materialVolume.isPresent) {
+ MaterialVolume &volume = mat.materialVolume.value;
+
+ aimat->AddProperty(&volume.thicknessFactor, 1, AI_MATKEY_VOLUME_THICKNESS_FACTOR);
+ SetMaterialTextureProperty(embeddedTexIdxs, r, volume.thicknessTexture, aimat, AI_MATKEY_VOLUME_THICKNESS_TEXTURE);
+ aimat->AddProperty(&volume.attenuationDistance, 1, AI_MATKEY_VOLUME_ATTENUATION_DISTANCE);
+ SetMaterialColorProperty(r, volume.attenuationColor, aimat, AI_MATKEY_VOLUME_ATTENUATION_COLOR);
+ }
+
+ // KHR_materials_ior
+ if (mat.materialIOR.isPresent) {
+ MaterialIOR &ior = mat.materialIOR.value;
+
+ aimat->AddProperty(&ior.ior, 1, AI_MATKEY_REFRACTI);
+ }
+
+ return aimat;
+ } catch (...) {
+ delete aimat;
+ throw;
+ }
+}
+
+void glTF2Importer::ImportMaterials(Asset &r) {
+ const unsigned int numImportedMaterials = unsigned(r.materials.Size());
+ ASSIMP_LOG_DEBUG("Importing ", numImportedMaterials, " materials");
+ Material defaultMaterial;
+
+ mScene->mNumMaterials = numImportedMaterials + 1;
+ mScene->mMaterials = new aiMaterial *[mScene->mNumMaterials];
+ std::fill(mScene->mMaterials, mScene->mMaterials + mScene->mNumMaterials, nullptr);
+ mScene->mMaterials[numImportedMaterials] = ImportMaterial(mEmbeddedTexIdxs, r, defaultMaterial);
+
+ for (unsigned int i = 0; i < numImportedMaterials; ++i) {
+ mScene->mMaterials[i] = ImportMaterial(mEmbeddedTexIdxs, r, r.materials[i]);
+ }
+}
+
+static inline void SetFaceAndAdvance1(aiFace*& face, unsigned int numVertices, unsigned int a) {
+ if (a >= numVertices) {
+ return;
+ }
+ face->mNumIndices = 1;
+ face->mIndices = new unsigned int[1];
+ face->mIndices[0] = a;
+ ++face;
+}
+
+static inline void SetFaceAndAdvance2(aiFace*& face, unsigned int numVertices,
+ unsigned int a, unsigned int b) {
+ if ((a >= numVertices) || (b >= numVertices)) {
+ return;
+ }
+ face->mNumIndices = 2;
+ face->mIndices = new unsigned int[2];
+ face->mIndices[0] = a;
+ face->mIndices[1] = b;
+ ++face;
+}
+
+static inline void SetFaceAndAdvance3(aiFace*& face, unsigned int numVertices, unsigned int a,
+ unsigned int b, unsigned int c) {
+ if ((a >= numVertices) || (b >= numVertices) || (c >= numVertices)) {
+ return;
+ }
+ face->mNumIndices = 3;
+ face->mIndices = new unsigned int[3];
+ face->mIndices[0] = a;
+ face->mIndices[1] = b;
+ face->mIndices[2] = c;
+ ++face;
+}
+
+#ifdef ASSIMP_BUILD_DEBUG
+static inline bool CheckValidFacesIndices(aiFace *faces, unsigned nFaces, unsigned nVerts) {
+ for (unsigned i = 0; i < nFaces; ++i) {
+ for (unsigned j = 0; j < faces[i].mNumIndices; ++j) {
+ unsigned idx = faces[i].mIndices[j];
+ if (idx >= nVerts) {
+ return false;
+ }
+ }
+ }
+ return true;
+}
+#endif // ASSIMP_BUILD_DEBUG
+
+template<typename T>
+aiColor4D* GetVertexColorsForType(Ref<Accessor> input) {
+ constexpr float max = std::numeric_limits<T>::max();
+ aiColor4t<T>* colors;
+ input->ExtractData(colors);
+ auto output = new aiColor4D[input->count];
+ for (size_t i = 0; i < input->count; i++) {
+ output[i] = aiColor4D(
+ colors[i].r / max, colors[i].g / max,
+ colors[i].b / max, colors[i].a / max
+ );
+ }
+ delete[] colors;
+ return output;
+}
+
+void glTF2Importer::ImportMeshes(glTF2::Asset &r) {
+ ASSIMP_LOG_DEBUG("Importing ", r.meshes.Size(), " meshes");
+ std::vector<std::unique_ptr<aiMesh>> meshes;
+
+ unsigned int k = 0;
+ meshOffsets.clear();
+
+ for (unsigned int m = 0; m < r.meshes.Size(); ++m) {
+ Mesh &mesh = r.meshes[m];
+
+ meshOffsets.push_back(k);
+ k += unsigned(mesh.primitives.size());
+
+ for (unsigned int p = 0; p < mesh.primitives.size(); ++p) {
+ Mesh::Primitive &prim = mesh.primitives[p];
+
+ aiMesh *aim = new aiMesh();
+ meshes.push_back(std::unique_ptr<aiMesh>(aim));
+
+ aim->mName = mesh.name.empty() ? mesh.id : mesh.name;
+
+ if (mesh.primitives.size() > 1) {
+ ai_uint32 &len = aim->mName.length;
+ aim->mName.data[len] = '-';
+ len += 1 + ASSIMP_itoa10(aim->mName.data + len + 1, unsigned(MAXLEN - len - 1), p);
+ }
+
+ switch (prim.mode) {
+ case PrimitiveMode_POINTS:
+ aim->mPrimitiveTypes |= aiPrimitiveType_POINT;
+ break;
+
+ case PrimitiveMode_LINES:
+ case PrimitiveMode_LINE_LOOP:
+ case PrimitiveMode_LINE_STRIP:
+ aim->mPrimitiveTypes |= aiPrimitiveType_LINE;
+ break;
+
+ case PrimitiveMode_TRIANGLES:
+ case PrimitiveMode_TRIANGLE_STRIP:
+ case PrimitiveMode_TRIANGLE_FAN:
+ aim->mPrimitiveTypes |= aiPrimitiveType_TRIANGLE;
+ break;
+ }
+
+ Mesh::Primitive::Attributes &attr = prim.attributes;
+
+ if (!attr.position.empty() && attr.position[0]) {
+ aim->mNumVertices = static_cast<unsigned int>(attr.position[0]->count);
+ attr.position[0]->ExtractData(aim->mVertices);
+ }
+
+ if (!attr.normal.empty() && attr.normal[0]) {
+ if (attr.normal[0]->count != aim->mNumVertices) {
+ DefaultLogger::get()->warn("Normal count in mesh \"", mesh.name, "\" does not match the vertex count, normals ignored.");
+ } else {
+ attr.normal[0]->ExtractData(aim->mNormals);
+
+ // only extract tangents if normals are present
+ if (!attr.tangent.empty() && attr.tangent[0]) {
+ if (attr.tangent[0]->count != aim->mNumVertices) {
+ DefaultLogger::get()->warn("Tangent count in mesh \"", mesh.name, "\" does not match the vertex count, tangents ignored.");
+ } else {
+ // generate bitangents from normals and tangents according to spec
+ Tangent *tangents = nullptr;
+
+ attr.tangent[0]->ExtractData(tangents);
+
+ aim->mTangents = new aiVector3D[aim->mNumVertices];
+ aim->mBitangents = new aiVector3D[aim->mNumVertices];
+
+ for (unsigned int i = 0; i < aim->mNumVertices; ++i) {
+ aim->mTangents[i] = tangents[i].xyz;
+ aim->mBitangents[i] = (aim->mNormals[i] ^ tangents[i].xyz) * tangents[i].w;
+ }
+
+ delete[] tangents;
+ }
+ }
+ }
+ }
+
+ for (size_t c = 0; c < attr.color.size() && c < AI_MAX_NUMBER_OF_COLOR_SETS; ++c) {
+ if (attr.color[c]->count != aim->mNumVertices) {
+ DefaultLogger::get()->warn("Color stream size in mesh \"", mesh.name,
+ "\" does not match the vertex count");
+ continue;
+ }
+
+ auto componentType = attr.color[c]->componentType;
+ if (componentType == glTF2::ComponentType_FLOAT) {
+ attr.color[c]->ExtractData(aim->mColors[c]);
+ } else {
+ if (componentType == glTF2::ComponentType_UNSIGNED_BYTE) {
+ aim->mColors[c] = GetVertexColorsForType<unsigned char>(attr.color[c]);
+ } else if (componentType == glTF2::ComponentType_UNSIGNED_SHORT) {
+ aim->mColors[c] = GetVertexColorsForType<unsigned short>(attr.color[c]);
+ }
+ }
+ }
+ for (size_t tc = 0; tc < attr.texcoord.size() && tc < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++tc) {
+ if (!attr.texcoord[tc]) {
+ DefaultLogger::get()->warn("Texture coordinate accessor not found or non-contiguous texture coordinate sets.");
+ continue;
+ }
+
+ if (attr.texcoord[tc]->count != aim->mNumVertices) {
+ DefaultLogger::get()->warn("Texcoord stream size in mesh \"", mesh.name,
+ "\" does not match the vertex count");
+ continue;
+ }
+
+ attr.texcoord[tc]->ExtractData(aim->mTextureCoords[tc]);
+ aim->mNumUVComponents[tc] = attr.texcoord[tc]->GetNumComponents();
+
+ aiVector3D *values = aim->mTextureCoords[tc];
+ for (unsigned int i = 0; i < aim->mNumVertices; ++i) {
+ values[i].y = 1 - values[i].y; // Flip Y coords
+ }
+ }
+
+ std::vector<Mesh::Primitive::Target> &targets = prim.targets;
+ if (!targets.empty()) {
+ aim->mNumAnimMeshes = (unsigned int)targets.size();
+ aim->mAnimMeshes = new aiAnimMesh *[aim->mNumAnimMeshes];
+ std::fill(aim->mAnimMeshes, aim->mAnimMeshes + aim->mNumAnimMeshes, nullptr);
+ for (size_t i = 0; i < targets.size(); i++) {
+ bool needPositions = targets[i].position.size() > 0;
+ bool needNormals = (targets[i].normal.size() > 0) && aim->HasNormals();
+ bool needTangents = (targets[i].tangent.size() > 0) && aim->HasTangentsAndBitangents();
+ // GLTF morph does not support colors and texCoords
+ aim->mAnimMeshes[i] = aiCreateAnimMesh(aim,
+ needPositions, needNormals, needTangents, false, false);
+ aiAnimMesh &aiAnimMesh = *(aim->mAnimMeshes[i]);
+ Mesh::Primitive::Target &target = targets[i];
+
+ if (needPositions) {
+ if (target.position[0]->count != aim->mNumVertices) {
+ ASSIMP_LOG_WARN("Positions of target ", i, " in mesh \"", mesh.name, "\" does not match the vertex count");
+ } else {
+ aiVector3D *positionDiff = nullptr;
+ target.position[0]->ExtractData(positionDiff);
+ for (unsigned int vertexId = 0; vertexId < aim->mNumVertices; vertexId++) {
+ aiAnimMesh.mVertices[vertexId] += positionDiff[vertexId];
+ }
+ delete[] positionDiff;
+ }
+ }
+ if (needNormals) {
+ if (target.normal[0]->count != aim->mNumVertices) {
+ ASSIMP_LOG_WARN("Normals of target ", i, " in mesh \"", mesh.name, "\" does not match the vertex count");
+ } else {
+ aiVector3D *normalDiff = nullptr;
+ target.normal[0]->ExtractData(normalDiff);
+ for (unsigned int vertexId = 0; vertexId < aim->mNumVertices; vertexId++) {
+ aiAnimMesh.mNormals[vertexId] += normalDiff[vertexId];
+ }
+ delete[] normalDiff;
+ }
+ }
+ if (needTangents) {
+ if (target.tangent[0]->count != aim->mNumVertices) {
+ ASSIMP_LOG_WARN("Tangents of target ", i, " in mesh \"", mesh.name, "\" does not match the vertex count");
+ } else {
+ Tangent *tangent = nullptr;
+ attr.tangent[0]->ExtractData(tangent);
+
+ aiVector3D *tangentDiff = nullptr;
+ target.tangent[0]->ExtractData(tangentDiff);
+
+ for (unsigned int vertexId = 0; vertexId < aim->mNumVertices; ++vertexId) {
+ tangent[vertexId].xyz += tangentDiff[vertexId];
+ aiAnimMesh.mTangents[vertexId] = tangent[vertexId].xyz;
+ aiAnimMesh.mBitangents[vertexId] = (aiAnimMesh.mNormals[vertexId] ^ tangent[vertexId].xyz) * tangent[vertexId].w;
+ }
+ delete[] tangent;
+ delete[] tangentDiff;
+ }
+ }
+ if (mesh.weights.size() > i) {
+ aiAnimMesh.mWeight = mesh.weights[i];
+ }
+ if (mesh.targetNames.size() > i) {
+ aiAnimMesh.mName = mesh.targetNames[i];
+ }
+ }
+ }
+
+ aiFace *faces = nullptr;
+ aiFace *facePtr = nullptr;
+ size_t nFaces = 0;
+
+ if (prim.indices) {
+ size_t count = prim.indices->count;
+
+ Accessor::Indexer data = prim.indices->GetIndexer();
+ if (!data.IsValid()) {
+ throw DeadlyImportError("GLTF: Invalid accessor without data in mesh ", getContextForErrorMessages(mesh.id, mesh.name));
+ }
+
+ switch (prim.mode) {
+ case PrimitiveMode_POINTS: {
+ nFaces = count;
+ facePtr = faces = new aiFace[nFaces];
+ for (unsigned int i = 0; i < count; ++i) {
+ SetFaceAndAdvance1(facePtr, aim->mNumVertices, data.GetUInt(i));
+ }
+ break;
+ }
+
+ case PrimitiveMode_LINES: {
+ nFaces = count / 2;
+ if (nFaces * 2 != count) {
+ ASSIMP_LOG_WARN("The number of vertices was not compatible with the LINES mode. Some vertices were dropped.");
+ count = nFaces * 2;
+ }
+ facePtr = faces = new aiFace[nFaces];
+ for (unsigned int i = 0; i < count; i += 2) {
+ SetFaceAndAdvance2(facePtr, aim->mNumVertices, data.GetUInt(i), data.GetUInt(i + 1));
+ }
+ break;
+ }
+
+ case PrimitiveMode_LINE_LOOP:
+ case PrimitiveMode_LINE_STRIP: {
+ nFaces = count - ((prim.mode == PrimitiveMode_LINE_STRIP) ? 1 : 0);
+ facePtr = faces = new aiFace[nFaces];
+ SetFaceAndAdvance2(facePtr, aim->mNumVertices, data.GetUInt(0), data.GetUInt(1));
+ for (unsigned int i = 2; i < count; ++i) {
+ SetFaceAndAdvance2(facePtr, aim->mNumVertices, data.GetUInt(i - 1), data.GetUInt(i));
+ }
+ if (prim.mode == PrimitiveMode_LINE_LOOP) { // close the loop
+ SetFaceAndAdvance2(facePtr, aim->mNumVertices, data.GetUInt(static_cast<int>(count) - 1), faces[0].mIndices[0]);
+ }
+ break;
+ }
+
+ case PrimitiveMode_TRIANGLES: {
+ nFaces = count / 3;
+ if (nFaces * 3 != count) {
+ ASSIMP_LOG_WARN("The number of vertices was not compatible with the TRIANGLES mode. Some vertices were dropped.");
+ count = nFaces * 3;
+ }
+ facePtr = faces = new aiFace[nFaces];
+ for (unsigned int i = 0; i < count; i += 3) {
+ SetFaceAndAdvance3(facePtr, aim->mNumVertices, data.GetUInt(i), data.GetUInt(i + 1), data.GetUInt(i + 2));
+ }
+ break;
+ }
+ case PrimitiveMode_TRIANGLE_STRIP: {
+ nFaces = count - 2;
+ facePtr = faces = new aiFace[nFaces];
+ for (unsigned int i = 0; i < nFaces; ++i) {
+ //The ordering is to ensure that the triangles are all drawn with the same orientation
+ if ((i + 1) % 2 == 0) {
+ //For even n, vertices n + 1, n, and n + 2 define triangle n
+ SetFaceAndAdvance3(facePtr, aim->mNumVertices, data.GetUInt(i + 1), data.GetUInt(i), data.GetUInt(i + 2));
+ } else {
+ //For odd n, vertices n, n+1, and n+2 define triangle n
+ SetFaceAndAdvance3(facePtr, aim->mNumVertices, data.GetUInt(i), data.GetUInt(i + 1), data.GetUInt(i + 2));
+ }
+ }
+ break;
+ }
+ case PrimitiveMode_TRIANGLE_FAN:
+ nFaces = count - 2;
+ facePtr = faces = new aiFace[nFaces];
+ SetFaceAndAdvance3(facePtr, aim->mNumVertices, data.GetUInt(0), data.GetUInt(1), data.GetUInt(2));
+ for (unsigned int i = 1; i < nFaces; ++i) {
+ SetFaceAndAdvance3(facePtr, aim->mNumVertices, data.GetUInt(0), data.GetUInt(i + 1), data.GetUInt(i + 2));
+ }
+ break;
+ }
+ } else { // no indices provided so directly generate from counts
+
+ // use the already determined count as it includes checks
+ unsigned int count = aim->mNumVertices;
+
+ switch (prim.mode) {
+ case PrimitiveMode_POINTS: {
+ nFaces = count;
+ facePtr = faces = new aiFace[nFaces];
+ for (unsigned int i = 0; i < count; ++i) {
+ SetFaceAndAdvance1(facePtr, aim->mNumVertices, i);
+ }
+ break;
+ }
+
+ case PrimitiveMode_LINES: {
+ nFaces = count / 2;
+ if (nFaces * 2 != count) {
+ ASSIMP_LOG_WARN("The number of vertices was not compatible with the LINES mode. Some vertices were dropped.");
+ count = (unsigned int)nFaces * 2;
+ }
+ facePtr = faces = new aiFace[nFaces];
+ for (unsigned int i = 0; i < count; i += 2) {
+ SetFaceAndAdvance2(facePtr, aim->mNumVertices, i, i + 1);
+ }
+ break;
+ }
+
+ case PrimitiveMode_LINE_LOOP:
+ case PrimitiveMode_LINE_STRIP: {
+ nFaces = count - ((prim.mode == PrimitiveMode_LINE_STRIP) ? 1 : 0);
+ facePtr = faces = new aiFace[nFaces];
+ SetFaceAndAdvance2(facePtr, aim->mNumVertices, 0, 1);
+ for (unsigned int i = 2; i < count; ++i) {
+ SetFaceAndAdvance2(facePtr, aim->mNumVertices, i - 1, i);
+ }
+ if (prim.mode == PrimitiveMode_LINE_LOOP) { // close the loop
+ SetFaceAndAdvance2(facePtr, aim->mNumVertices, count - 1, 0);
+ }
+ break;
+ }
+
+ case PrimitiveMode_TRIANGLES: {
+ nFaces = count / 3;
+ if (nFaces * 3 != count) {
+ ASSIMP_LOG_WARN("The number of vertices was not compatible with the TRIANGLES mode. Some vertices were dropped.");
+ count = (unsigned int)nFaces * 3;
+ }
+ facePtr = faces = new aiFace[nFaces];
+ for (unsigned int i = 0; i < count; i += 3) {
+ SetFaceAndAdvance3(facePtr, aim->mNumVertices, i, i + 1, i + 2);
+ }
+ break;
+ }
+ case PrimitiveMode_TRIANGLE_STRIP: {
+ nFaces = count - 2;
+ facePtr = faces = new aiFace[nFaces];
+ for (unsigned int i = 0; i < nFaces; ++i) {
+ //The ordering is to ensure that the triangles are all drawn with the same orientation
+ if ((i + 1) % 2 == 0) {
+ //For even n, vertices n + 1, n, and n + 2 define triangle n
+ SetFaceAndAdvance3(facePtr, aim->mNumVertices, i + 1, i, i + 2);
+ } else {
+ //For odd n, vertices n, n+1, and n+2 define triangle n
+ SetFaceAndAdvance3(facePtr, aim->mNumVertices, i, i + 1, i + 2);
+ }
+ }
+ break;
+ }
+ case PrimitiveMode_TRIANGLE_FAN:
+ nFaces = count - 2;
+ facePtr = faces = new aiFace[nFaces];
+ SetFaceAndAdvance3(facePtr, aim->mNumVertices, 0, 1, 2);
+ for (unsigned int i = 1; i < nFaces; ++i) {
+ SetFaceAndAdvance3(facePtr, aim->mNumVertices, 0, i + 1, i + 2);
+ }
+ break;
+ }
+ }
+
+ if (faces) {
+ aim->mFaces = faces;
+ const unsigned int actualNumFaces = static_cast<unsigned int>(facePtr - faces);
+ if (actualNumFaces < nFaces) {
+ ASSIMP_LOG_WARN("Some faces had out-of-range indices. Those faces were dropped.");
+ }
+ if (actualNumFaces == 0) {
+ throw DeadlyImportError("Mesh \"", aim->mName.C_Str(), "\" has no faces");
+ }
+ aim->mNumFaces = actualNumFaces;
+ ai_assert(CheckValidFacesIndices(faces, actualNumFaces, aim->mNumVertices));
+ }
+
+ if (prim.material) {
+ aim->mMaterialIndex = prim.material.GetIndex();
+ } else {
+ aim->mMaterialIndex = mScene->mNumMaterials - 1;
+ }
+ }
+ }
+
+ meshOffsets.push_back(k);
+
+ CopyVector(meshes, mScene->mMeshes, mScene->mNumMeshes);
+}
+
+void glTF2Importer::ImportCameras(glTF2::Asset &r) {
+ if (!r.cameras.Size()) {
+ return;
+ }
+
+ const unsigned int numCameras = r.cameras.Size();
+ ASSIMP_LOG_DEBUG("Importing ", numCameras, " cameras");
+ mScene->mNumCameras = numCameras;
+ mScene->mCameras = new aiCamera *[numCameras];
+ std::fill(mScene->mCameras, mScene->mCameras + numCameras, nullptr);
+
+ for (size_t i = 0; i < numCameras; ++i) {
+ Camera &cam = r.cameras[i];
+
+ aiCamera *aicam = mScene->mCameras[i] = new aiCamera();
+
+ // cameras point in -Z by default, rest is specified in node transform
+ aicam->mLookAt = aiVector3D(0.f, 0.f, -1.f);
+
+ if (cam.type == Camera::Perspective) {
+ aicam->mAspect = cam.cameraProperties.perspective.aspectRatio;
+ aicam->mHorizontalFOV = cam.cameraProperties.perspective.yfov * ((aicam->mAspect == 0.f) ? 1.f : aicam->mAspect);
+ aicam->mClipPlaneFar = cam.cameraProperties.perspective.zfar;
+ aicam->mClipPlaneNear = cam.cameraProperties.perspective.znear;
+ } else {
+ aicam->mClipPlaneFar = cam.cameraProperties.ortographic.zfar;
+ aicam->mClipPlaneNear = cam.cameraProperties.ortographic.znear;
+ aicam->mHorizontalFOV = 0.0;
+ aicam->mOrthographicWidth = cam.cameraProperties.ortographic.xmag;
+ aicam->mAspect = 1.0f;
+ if (0.f != cam.cameraProperties.ortographic.ymag) {
+ aicam->mAspect = cam.cameraProperties.ortographic.xmag / cam.cameraProperties.ortographic.ymag;
+ }
+ }
+ }
+}
+
+void glTF2Importer::ImportLights(glTF2::Asset &r) {
+ if (!r.lights.Size()) {
+ return;
+ }
+
+ const unsigned int numLights = r.lights.Size();
+ ASSIMP_LOG_DEBUG("Importing ", numLights, " lights");
+ mScene->mNumLights = numLights;
+ mScene->mLights = new aiLight *[numLights];
+ std::fill(mScene->mLights, mScene->mLights + numLights, nullptr);
+
+ for (size_t i = 0; i < numLights; ++i) {
+ Light &light = r.lights[i];
+
+ aiLight *ail = mScene->mLights[i] = new aiLight();
+
+ switch (light.type) {
+ case Light::Directional:
+ ail->mType = aiLightSource_DIRECTIONAL;
+ break;
+ case Light::Point:
+ ail->mType = aiLightSource_POINT;
+ break;
+ case Light::Spot:
+ ail->mType = aiLightSource_SPOT;
+ break;
+ }
+
+ if (ail->mType != aiLightSource_POINT) {
+ ail->mDirection = aiVector3D(0.0f, 0.0f, -1.0f);
+ ail->mUp = aiVector3D(0.0f, 1.0f, 0.0f);
+ }
+
+ vec3 colorWithIntensity = { light.color[0] * light.intensity, light.color[1] * light.intensity, light.color[2] * light.intensity };
+ CopyValue(colorWithIntensity, ail->mColorAmbient);
+ CopyValue(colorWithIntensity, ail->mColorDiffuse);
+ CopyValue(colorWithIntensity, ail->mColorSpecular);
+
+ if (ail->mType == aiLightSource_DIRECTIONAL) {
+ ail->mAttenuationConstant = 1.0;
+ ail->mAttenuationLinear = 0.0;
+ ail->mAttenuationQuadratic = 0.0;
+ } else {
+ //in PBR attenuation is calculated using inverse square law which can be expressed
+ //using assimps equation: 1/(att0 + att1 * d + att2 * d*d) with the following parameters
+ //this is correct equation for the case when range (see
+ //https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_lights_punctual)
+ //is not present. When range is not present it is assumed that it is infinite and so numerator is 1.
+ //When range is present then numerator might be any value in range [0,1] and then assimps equation
+ //will not suffice. In this case range is added into metadata in ImportNode function
+ //and its up to implementation to read it when it wants to
+ ail->mAttenuationConstant = 0.0;
+ ail->mAttenuationLinear = 0.0;
+ ail->mAttenuationQuadratic = 1.0;
+ }
+
+ if (ail->mType == aiLightSource_SPOT) {
+ ail->mAngleInnerCone = light.innerConeAngle;
+ ail->mAngleOuterCone = light.outerConeAngle;
+ }
+ }
+}
+
+static void GetNodeTransform(aiMatrix4x4 &matrix, const glTF2::Node &node) {
+ if (node.matrix.isPresent) {
+ CopyValue(node.matrix.value, matrix);
+ return;
+ }
+
+ if (node.translation.isPresent) {
+ aiVector3D trans;
+ CopyValue(node.translation.value, trans);
+ aiMatrix4x4 t;
+ aiMatrix4x4::Translation(trans, t);
+ matrix = matrix * t;
+ }
+
+ if (node.rotation.isPresent) {
+ aiQuaternion rot;
+ CopyValue(node.rotation.value, rot);
+ matrix = matrix * aiMatrix4x4(rot.GetMatrix());
+ }
+
+ if (node.scale.isPresent) {
+ aiVector3D scal(1.f);
+ CopyValue(node.scale.value, scal);
+ aiMatrix4x4 s;
+ aiMatrix4x4::Scaling(scal, s);
+ matrix = matrix * s;
+ }
+}
+
+static void BuildVertexWeightMapping(Mesh::Primitive &primitive, std::vector<std::vector<aiVertexWeight>> &map) {
+ Mesh::Primitive::Attributes &attr = primitive.attributes;
+ if (attr.weight.empty() || attr.joint.empty()) {
+ return;
+ }
+ if (attr.weight[0]->count != attr.joint[0]->count) {
+ return;
+ }
+
+ size_t num_vertices = attr.weight[0]->count;
+
+ struct Weights {
+ float values[4];
+ };
+ Weights *weights = nullptr;
+ attr.weight[0]->ExtractData(weights);
+
+ struct Indices8 {
+ uint8_t values[4];
+ };
+ struct Indices16 {
+ uint16_t values[4];
+ };
+ Indices8 *indices8 = nullptr;
+ Indices16 *indices16 = nullptr;
+ if (attr.joint[0]->GetElementSize() == 4) {
+ attr.joint[0]->ExtractData(indices8);
+ } else {
+ attr.joint[0]->ExtractData(indices16);
+ }
+ //
+ if (nullptr == indices8 && nullptr == indices16) {
+ // Something went completely wrong!
+ ai_assert(false);
+ return;
+ }
+
+ for (size_t i = 0; i < num_vertices; ++i) {
+ for (int j = 0; j < 4; ++j) {
+ const unsigned int bone = (indices8 != nullptr) ? indices8[i].values[j] : indices16[i].values[j];
+ const float weight = weights[i].values[j];
+ if (weight > 0 && bone < map.size()) {
+ map[bone].reserve(8);
+ map[bone].emplace_back(static_cast<unsigned int>(i), weight);
+ }
+ }
+ }
+
+ delete[] weights;
+ delete[] indices8;
+ delete[] indices16;
+}
+
+static std::string GetNodeName(const Node &node) {
+ return node.name.empty() ? node.id : node.name;
+}
+
+void ParseExtensions(aiMetadata *metadata, const CustomExtension &extension) {
+ if (extension.mStringValue.isPresent) {
+ metadata->Add(extension.name, aiString(extension.mStringValue.value));
+ } else if (extension.mDoubleValue.isPresent) {
+ metadata->Add(extension.name, extension.mDoubleValue.value);
+ } else if (extension.mUint64Value.isPresent) {
+ metadata->Add(extension.name, extension.mUint64Value.value);
+ } else if (extension.mInt64Value.isPresent) {
+ metadata->Add(extension.name, static_cast<int32_t>(extension.mInt64Value.value));
+ } else if (extension.mBoolValue.isPresent) {
+ metadata->Add(extension.name, extension.mBoolValue.value);
+ } else if (extension.mValues.isPresent) {
+ aiMetadata val;
+ for (auto const & subExtension : extension.mValues.value) {
+ ParseExtensions(&val, subExtension);
+ }
+ metadata->Add(extension.name, val);
+ }
+}
+
+void ParseExtras(aiMetadata *metadata, const CustomExtension &extension) {
+ if (extension.mValues.isPresent) {
+ for (auto const & subExtension : extension.mValues.value) {
+ ParseExtensions(metadata, subExtension);
+ }
+ }
+}
+
+aiNode *ImportNode(aiScene *pScene, glTF2::Asset &r, std::vector<unsigned int> &meshOffsets, glTF2::Ref<glTF2::Node> &ptr) {
+ Node &node = *ptr;
+
+ aiNode *ainode = new aiNode(GetNodeName(node));
+
+ try {
+ if (!node.children.empty()) {
+ ainode->mNumChildren = unsigned(node.children.size());
+ ainode->mChildren = new aiNode *[ainode->mNumChildren];
+ std::fill(ainode->mChildren, ainode->mChildren + ainode->mNumChildren, nullptr);
+
+ for (unsigned int i = 0; i < ainode->mNumChildren; ++i) {
+ aiNode *child = ImportNode(pScene, r, meshOffsets, node.children[i]);
+ child->mParent = ainode;
+ ainode->mChildren[i] = child;
+ }
+ }
+
+ if (node.customExtensions || node.extras) {
+ ainode->mMetaData = new aiMetadata;
+ if (node.customExtensions) {
+ ParseExtensions(ainode->mMetaData, node.customExtensions);
+ }
+ if (node.extras) {
+ ParseExtras(ainode->mMetaData, node.extras);
+ }
+ }
+
+ GetNodeTransform(ainode->mTransformation, node);
+
+ if (!node.meshes.empty()) {
+ // GLTF files contain at most 1 mesh per node.
+ if (node.meshes.size() > 1)
+ {
+ throw DeadlyImportError("GLTF: Invalid input, found ", node.meshes.size(),
+ " meshes in ", getContextForErrorMessages(node.id, node.name),
+ ", but only 1 mesh per node allowed.");
+ }
+ int mesh_idx = node.meshes[0].GetIndex();
+ int count = meshOffsets[mesh_idx + 1] - meshOffsets[mesh_idx];
+
+ ainode->mNumMeshes = count;
+ ainode->mMeshes = new unsigned int[count];
+
+ if (node.skin) {
+ for (int primitiveNo = 0; primitiveNo < count; ++primitiveNo) {
+ aiMesh *mesh = pScene->mMeshes[meshOffsets[mesh_idx] + primitiveNo];
+ unsigned int numBones =static_cast<unsigned int>(node.skin->jointNames.size());
+
+ std::vector<std::vector<aiVertexWeight>> weighting(numBones);
+ BuildVertexWeightMapping(node.meshes[0]->primitives[primitiveNo], weighting);
+
+ mesh->mNumBones = static_cast<unsigned int>(numBones);
+ mesh->mBones = new aiBone *[mesh->mNumBones];
+ std::fill(mesh->mBones, mesh->mBones + mesh->mNumBones, nullptr);
+
+ // GLTF and Assimp choose to store bone weights differently.
+ // GLTF has each vertex specify which bones influence the vertex.
+ // Assimp has each bone specify which vertices it has influence over.
+ // To convert this data, we first read over the vertex data and pull
+ // out the bone-to-vertex mapping. Then, when creating the aiBones,
+ // we copy the bone-to-vertex mapping into the bone. This is unfortunate
+ // both because it's somewhat slow and because, for many applications,
+ // we then need to reconvert the data back into the vertex-to-bone
+ // mapping which makes things doubly-slow.
+
+ mat4 *pbindMatrices = nullptr;
+ node.skin->inverseBindMatrices->ExtractData(pbindMatrices);
+
+ for (uint32_t i = 0; i < numBones; ++i) {
+ const std::vector<aiVertexWeight> &weights = weighting[i];
+ aiBone *bone = new aiBone();
+
+ Ref<Node> joint = node.skin->jointNames[i];
+ if (!joint->name.empty()) {
+ bone->mName = joint->name;
+ } else {
+ // Assimp expects each bone to have a unique name.
+ static const std::string kDefaultName = "bone_";
+ char postfix[10] = { 0 };
+ ASSIMP_itoa10(postfix, i);
+ bone->mName = (kDefaultName + postfix);
+ }
+ GetNodeTransform(bone->mOffsetMatrix, *joint);
+ CopyValue(pbindMatrices[i], bone->mOffsetMatrix);
+ bone->mNumWeights = static_cast<uint32_t>(weights.size());
+
+ if (bone->mNumWeights > 0) {
+ bone->mWeights = new aiVertexWeight[bone->mNumWeights];
+ memcpy(bone->mWeights, weights.data(), bone->mNumWeights * sizeof(aiVertexWeight));
+ } else {
+ // Assimp expects all bones to have at least 1 weight.
+ bone->mWeights = new aiVertexWeight[1];
+ bone->mNumWeights = 1;
+ bone->mWeights->mVertexId = 0;
+ bone->mWeights->mWeight = 0.f;
+ }
+ mesh->mBones[i] = bone;
+ }
+
+ if (pbindMatrices) {
+ delete[] pbindMatrices;
+ }
+ }
+ }
+
+ int k = 0;
+ for (unsigned int j = meshOffsets[mesh_idx]; j < meshOffsets[mesh_idx + 1]; ++j, ++k) {
+ ainode->mMeshes[k] = j;
+ }
+ }
+
+ if (node.camera) {
+ pScene->mCameras[node.camera.GetIndex()]->mName = ainode->mName;
+ if (node.translation.isPresent) {
+ aiVector3D trans;
+ CopyValue(node.translation.value, trans);
+ pScene->mCameras[node.camera.GetIndex()]->mPosition = trans;
+ }
+ }
+
+ if (node.light) {
+ pScene->mLights[node.light.GetIndex()]->mName = ainode->mName;
+
+ //range is optional - see https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_lights_punctual
+ //it is added to meta data of parent node, because there is no other place to put it
+ if (node.light->range.isPresent) {
+ if (!ainode->mMetaData) {
+ ainode->mMetaData = aiMetadata::Alloc(1);
+ ainode->mMetaData->Set(0, "PBR_LightRange", node.light->range.value);
+ } else {
+ ainode->mMetaData->Add("PBR_LightRange", node.light->range.value);
+ }
+ }
+ }
+
+ return ainode;
+ } catch (...) {
+ delete ainode;
+ throw;
+ }
+}
+
+void glTF2Importer::ImportNodes(glTF2::Asset &r) {
+ if (!r.scene) {
+ throw DeadlyImportError("GLTF: No scene");
+ }
+ ASSIMP_LOG_DEBUG("Importing nodes");
+
+ std::vector<Ref<Node>> rootNodes = r.scene->nodes;
+
+ // The root nodes
+ unsigned int numRootNodes = unsigned(rootNodes.size());
+ if (numRootNodes == 1) { // a single root node: use it
+ mScene->mRootNode = ImportNode(mScene, r, meshOffsets, rootNodes[0]);
+ } else if (numRootNodes > 1) { // more than one root node: create a fake root
+ aiNode *root = mScene->mRootNode = new aiNode("ROOT");
+
+ root->mChildren = new aiNode *[numRootNodes];
+ std::fill(root->mChildren, root->mChildren + numRootNodes, nullptr);
+
+ for (unsigned int i = 0; i < numRootNodes; ++i) {
+ aiNode *node = ImportNode(mScene, r, meshOffsets, rootNodes[i]);
+ node->mParent = root;
+ root->mChildren[root->mNumChildren++] = node;
+ }
+ } else {
+ mScene->mRootNode = new aiNode("ROOT");
+ }
+}
+
+struct AnimationSamplers {
+ AnimationSamplers() :
+ translation(nullptr),
+ rotation(nullptr),
+ scale(nullptr),
+ weight(nullptr) {
+ // empty
+ }
+
+ Animation::Sampler *translation;
+ Animation::Sampler *rotation;
+ Animation::Sampler *scale;
+ Animation::Sampler *weight;
+};
+
+aiNodeAnim *CreateNodeAnim(glTF2::Asset&, Node &node, AnimationSamplers &samplers) {
+ aiNodeAnim *anim = new aiNodeAnim();
+
+ try {
+ anim->mNodeName = GetNodeName(node);
+
+ static const float kMillisecondsFromSeconds = 1000.f;
+
+ if (samplers.translation && samplers.translation->input && samplers.translation->output) {
+ float *times = nullptr;
+ samplers.translation->input->ExtractData(times);
+ aiVector3D *values = nullptr;
+ samplers.translation->output->ExtractData(values);
+ anim->mNumPositionKeys = static_cast<uint32_t>(samplers.translation->input->count);
+ anim->mPositionKeys = new aiVectorKey[anim->mNumPositionKeys];
+ unsigned int ii = (samplers.translation->interpolation == Interpolation_CUBICSPLINE) ? 1 : 0;
+ for (unsigned int i = 0; i < anim->mNumPositionKeys; ++i) {
+ anim->mPositionKeys[i].mTime = times[i] * kMillisecondsFromSeconds;
+ anim->mPositionKeys[i].mValue = values[ii];
+ ii += (samplers.translation->interpolation == Interpolation_CUBICSPLINE) ? 3 : 1;
+ }
+ delete[] times;
+ delete[] values;
+ } else if (node.translation.isPresent) {
+ anim->mNumPositionKeys = 1;
+ anim->mPositionKeys = new aiVectorKey[anim->mNumPositionKeys];
+ anim->mPositionKeys->mTime = 0.f;
+ anim->mPositionKeys->mValue.x = node.translation.value[0];
+ anim->mPositionKeys->mValue.y = node.translation.value[1];
+ anim->mPositionKeys->mValue.z = node.translation.value[2];
+ }
+
+ if (samplers.rotation && samplers.rotation->input && samplers.rotation->output) {
+ float *times = nullptr;
+ samplers.rotation->input->ExtractData(times);
+ aiQuaternion *values = nullptr;
+ samplers.rotation->output->ExtractData(values);
+ anim->mNumRotationKeys = static_cast<uint32_t>(samplers.rotation->input->count);
+ anim->mRotationKeys = new aiQuatKey[anim->mNumRotationKeys];
+ unsigned int ii = (samplers.rotation->interpolation == Interpolation_CUBICSPLINE) ? 1 : 0;
+ for (unsigned int i = 0; i < anim->mNumRotationKeys; ++i) {
+ anim->mRotationKeys[i].mTime = times[i] * kMillisecondsFromSeconds;
+ anim->mRotationKeys[i].mValue.x = values[ii].w;
+ anim->mRotationKeys[i].mValue.y = values[ii].x;
+ anim->mRotationKeys[i].mValue.z = values[ii].y;
+ anim->mRotationKeys[i].mValue.w = values[ii].z;
+ ii += (samplers.rotation->interpolation == Interpolation_CUBICSPLINE) ? 3 : 1;
+ }
+ delete[] times;
+ delete[] values;
+ } else if (node.rotation.isPresent) {
+ anim->mNumRotationKeys = 1;
+ anim->mRotationKeys = new aiQuatKey[anim->mNumRotationKeys];
+ anim->mRotationKeys->mTime = 0.f;
+ anim->mRotationKeys->mValue.x = node.rotation.value[0];
+ anim->mRotationKeys->mValue.y = node.rotation.value[1];
+ anim->mRotationKeys->mValue.z = node.rotation.value[2];
+ anim->mRotationKeys->mValue.w = node.rotation.value[3];
+ }
+
+ if (samplers.scale && samplers.scale->input && samplers.scale->output) {
+ float *times = nullptr;
+ samplers.scale->input->ExtractData(times);
+ aiVector3D *values = nullptr;
+ samplers.scale->output->ExtractData(values);
+ anim->mNumScalingKeys = static_cast<uint32_t>(samplers.scale->input->count);
+ anim->mScalingKeys = new aiVectorKey[anim->mNumScalingKeys];
+ unsigned int ii = (samplers.scale->interpolation == Interpolation_CUBICSPLINE) ? 1 : 0;
+ for (unsigned int i = 0; i < anim->mNumScalingKeys; ++i) {
+ anim->mScalingKeys[i].mTime = times[i] * kMillisecondsFromSeconds;
+ anim->mScalingKeys[i].mValue = values[ii];
+ ii += (samplers.scale->interpolation == Interpolation_CUBICSPLINE) ? 3 : 1;
+ }
+ delete[] times;
+ delete[] values;
+ } else if (node.scale.isPresent) {
+ anim->mNumScalingKeys = 1;
+ anim->mScalingKeys = new aiVectorKey[anim->mNumScalingKeys];
+ anim->mScalingKeys->mTime = 0.f;
+ anim->mScalingKeys->mValue.x = node.scale.value[0];
+ anim->mScalingKeys->mValue.y = node.scale.value[1];
+ anim->mScalingKeys->mValue.z = node.scale.value[2];
+ }
+
+ return anim;
+ } catch (...) {
+ delete anim;
+ throw;
+ }
+}
+
+aiMeshMorphAnim *CreateMeshMorphAnim(glTF2::Asset&, Node &node, AnimationSamplers &samplers) {
+ auto *anim = new aiMeshMorphAnim();
+
+ try {
+ anim->mName = GetNodeName(node);
+
+ static const float kMillisecondsFromSeconds = 1000.f;
+
+ if (samplers.weight && samplers.weight->input && samplers.weight->output) {
+ float *times = nullptr;
+ samplers.weight->input->ExtractData(times);
+ float *values = nullptr;
+ samplers.weight->output->ExtractData(values);
+ anim->mNumKeys = static_cast<uint32_t>(samplers.weight->input->count);
+
+ // for Interpolation_CUBICSPLINE can have more outputs
+ const unsigned int weightStride = (unsigned int)samplers.weight->output->count / anim->mNumKeys;
+ const unsigned int numMorphs = (samplers.weight->interpolation == Interpolation_CUBICSPLINE) ? weightStride - 2 : weightStride;
+
+ anim->mKeys = new aiMeshMorphKey[anim->mNumKeys];
+ unsigned int ii = (samplers.weight->interpolation == Interpolation_CUBICSPLINE) ? 1 : 0;
+ for (unsigned int i = 0u; i < anim->mNumKeys; ++i) {
+ unsigned int k = weightStride * i + ii;
+ anim->mKeys[i].mTime = times[i] * kMillisecondsFromSeconds;
+ anim->mKeys[i].mNumValuesAndWeights = numMorphs;
+ anim->mKeys[i].mValues = new unsigned int[numMorphs];
+ anim->mKeys[i].mWeights = new double[numMorphs];
+
+ for (unsigned int j = 0u; j < numMorphs; ++j, ++k) {
+ anim->mKeys[i].mValues[j] = j;
+ anim->mKeys[i].mWeights[j] = (0.f > values[k]) ? 0.f : values[k];
+ }
+ }
+
+ delete[] times;
+ delete[] values;
+ }
+
+ return anim;
+ } catch (...) {
+ delete anim;
+ throw;
+ }
+}
+
+std::unordered_map<unsigned int, AnimationSamplers> GatherSamplers(Animation &anim) {
+ std::unordered_map<unsigned int, AnimationSamplers> samplers;
+ for (unsigned int c = 0; c < anim.channels.size(); ++c) {
+ Animation::Channel &channel = anim.channels[c];
+ if (channel.sampler < 0 || channel.sampler >= static_cast<int>(anim.samplers.size())) {
+ continue;
+ }
+
+ auto& animsampler = anim.samplers[channel.sampler];
+
+ if (!animsampler.input) {
+ ASSIMP_LOG_WARN("Animation ", anim.name, ": Missing sampler input. Skipping.");
+ continue;
+ }
+
+ if (!animsampler.output) {
+ ASSIMP_LOG_WARN("Animation ", anim.name, ": Missing sampler output. Skipping.");
+ continue;
+ }
+
+ if (animsampler.input->count > animsampler.output->count) {
+ ASSIMP_LOG_WARN("Animation ", anim.name, ": Number of keyframes in sampler input ", animsampler.input->count, " exceeds number of keyframes in sampler output ", animsampler.output->count);
+ continue;
+ }
+
+ const unsigned int node_index = channel.target.node.GetIndex();
+
+ AnimationSamplers &sampler = samplers[node_index];
+ if (channel.target.path == AnimationPath_TRANSLATION) {
+ sampler.translation = &anim.samplers[channel.sampler];
+ } else if (channel.target.path == AnimationPath_ROTATION) {
+ sampler.rotation = &anim.samplers[channel.sampler];
+ } else if (channel.target.path == AnimationPath_SCALE) {
+ sampler.scale = &anim.samplers[channel.sampler];
+ } else if (channel.target.path == AnimationPath_WEIGHTS) {
+ sampler.weight = &anim.samplers[channel.sampler];
+ }
+ }
+
+ return samplers;
+}
+
+void glTF2Importer::ImportAnimations(glTF2::Asset &r) {
+ if (!r.scene) return;
+
+ const unsigned numAnimations = r.animations.Size();
+ ASSIMP_LOG_DEBUG("Importing ", numAnimations, " animations");
+ mScene->mNumAnimations = numAnimations;
+ if (mScene->mNumAnimations == 0) {
+ return;
+ }
+
+ mScene->mAnimations = new aiAnimation *[numAnimations];
+ std::fill(mScene->mAnimations, mScene->mAnimations + numAnimations, nullptr);
+
+ for (unsigned int i = 0; i < numAnimations; ++i) {
+ aiAnimation *ai_anim = mScene->mAnimations[i] = new aiAnimation();
+
+ Animation &anim = r.animations[i];
+
+ ai_anim->mName = anim.name;
+ ai_anim->mDuration = 0;
+ ai_anim->mTicksPerSecond = 0;
+
+ std::unordered_map<unsigned int, AnimationSamplers> samplers = GatherSamplers(anim);
+
+ uint32_t numChannels = 0u;
+ uint32_t numMorphMeshChannels = 0u;
+
+ for (auto &iter : samplers) {
+ if ((nullptr != iter.second.rotation) || (nullptr != iter.second.scale) || (nullptr != iter.second.translation)) {
+ ++numChannels;
+ }
+ if (nullptr != iter.second.weight) {
+ ++numMorphMeshChannels;
+ }
+ }
+
+ ai_anim->mNumChannels = numChannels;
+ if (ai_anim->mNumChannels > 0) {
+ ai_anim->mChannels = new aiNodeAnim *[ai_anim->mNumChannels];
+ std::fill(ai_anim->mChannels, ai_anim->mChannels + ai_anim->mNumChannels, nullptr);
+ int j = 0;
+ for (auto &iter : samplers) {
+ if ((nullptr != iter.second.rotation) || (nullptr != iter.second.scale) || (nullptr != iter.second.translation)) {
+ ai_anim->mChannels[j] = CreateNodeAnim(r, r.nodes[iter.first], iter.second);
+ ++j;
+ }
+ }
+ }
+
+ ai_anim->mNumMorphMeshChannels = numMorphMeshChannels;
+ if (ai_anim->mNumMorphMeshChannels > 0) {
+ ai_anim->mMorphMeshChannels = new aiMeshMorphAnim *[ai_anim->mNumMorphMeshChannels];
+ std::fill(ai_anim->mMorphMeshChannels, ai_anim->mMorphMeshChannels + ai_anim->mNumMorphMeshChannels, nullptr);
+ int j = 0;
+ for (auto &iter : samplers) {
+ if (nullptr != iter.second.weight) {
+ ai_anim->mMorphMeshChannels[j] = CreateMeshMorphAnim(r, r.nodes[iter.first], iter.second);
+ ++j;
+ }
+ }
+ }
+
+ // Use the latest key-frame for the duration of the animation
+ double maxDuration = 0;
+ unsigned int maxNumberOfKeys = 0;
+ for (unsigned int j = 0; j < ai_anim->mNumChannels; ++j) {
+ auto chan = ai_anim->mChannels[j];
+ if (chan->mNumPositionKeys) {
+ auto lastPosKey = chan->mPositionKeys[chan->mNumPositionKeys - 1];
+ if (lastPosKey.mTime > maxDuration) {
+ maxDuration = lastPosKey.mTime;
+ }
+ maxNumberOfKeys = std::max(maxNumberOfKeys, chan->mNumPositionKeys);
+ }
+ if (chan->mNumRotationKeys) {
+ auto lastRotKey = chan->mRotationKeys[chan->mNumRotationKeys - 1];
+ if (lastRotKey.mTime > maxDuration) {
+ maxDuration = lastRotKey.mTime;
+ }
+ maxNumberOfKeys = std::max(maxNumberOfKeys, chan->mNumRotationKeys);
+ }
+ if (chan->mNumScalingKeys) {
+ auto lastScaleKey = chan->mScalingKeys[chan->mNumScalingKeys - 1];
+ if (lastScaleKey.mTime > maxDuration) {
+ maxDuration = lastScaleKey.mTime;
+ }
+ maxNumberOfKeys = std::max(maxNumberOfKeys, chan->mNumScalingKeys);
+ }
+ }
+
+ for (unsigned int j = 0; j < ai_anim->mNumMorphMeshChannels; ++j) {
+ const auto *const chan = ai_anim->mMorphMeshChannels[j];
+
+ if (0u != chan->mNumKeys) {
+ const auto &lastKey = chan->mKeys[chan->mNumKeys - 1u];
+ if (lastKey.mTime > maxDuration) {
+ maxDuration = lastKey.mTime;
+ }
+ maxNumberOfKeys = std::max(maxNumberOfKeys, chan->mNumKeys);
+ }
+ }
+
+ ai_anim->mDuration = maxDuration;
+ ai_anim->mTicksPerSecond = 1000.0;
+ }
+}
+
+static unsigned int countEmbeddedTextures(glTF2::Asset &r) {
+ unsigned int numEmbeddedTexs = 0;
+ for (size_t i = 0; i < r.images.Size(); ++i) {
+ if (r.images[i].HasData()) {
+ numEmbeddedTexs += 1;
+ }
+ }
+
+ return numEmbeddedTexs;
+}
+
+void glTF2Importer::ImportEmbeddedTextures(glTF2::Asset &r) {
+ mEmbeddedTexIdxs.resize(r.images.Size(), -1);
+ const unsigned int numEmbeddedTexs = countEmbeddedTextures(r);
+ if (numEmbeddedTexs == 0) {
+ return;
+ }
+
+ ASSIMP_LOG_DEBUG("Importing ", numEmbeddedTexs, " embedded textures");
+
+ mScene->mTextures = new aiTexture *[numEmbeddedTexs];
+ std::fill(mScene->mTextures, mScene->mTextures + numEmbeddedTexs, nullptr);
+
+ // Add the embedded textures
+ for (size_t i = 0; i < r.images.Size(); ++i) {
+ Image &img = r.images[i];
+ if (!img.HasData()) {
+ continue;
+ }
+
+ int idx = mScene->mNumTextures++;
+ mEmbeddedTexIdxs[i] = idx;
+
+ aiTexture *tex = mScene->mTextures[idx] = new aiTexture();
+
+ size_t length = img.GetDataLength();
+ void *data = img.StealData();
+
+ tex->mFilename = img.name;
+ tex->mWidth = static_cast<unsigned int>(length);
+ tex->mHeight = 0;
+ tex->pcData = reinterpret_cast<aiTexel *>(data);
+
+ if (!img.mimeType.empty()) {
+ const char *ext = strchr(img.mimeType.c_str(), '/') + 1;
+ if (ext) {
+ if (strcmp(ext, "jpeg") == 0) {
+ ext = "jpg";
+ } else if(strcmp(ext, "ktx2") == 0) { //basisu: ktx remains
+ ext = "kx2";
+ } else if(strcmp(ext, "basis") == 0) { //basisu
+ ext = "bu";
+ }
+
+ size_t len = strlen(ext);
+ if (len <= 3) {
+ strcpy(tex->achFormatHint, ext);
+ }
+ }
+ }
+ }
+}
+
+void glTF2Importer::ImportCommonMetadata(glTF2::Asset& a) {
+ ASSIMP_LOG_DEBUG("Importing metadata");
+ ai_assert(mScene->mMetaData == nullptr);
+ const bool hasVersion = !a.asset.version.empty();
+ const bool hasGenerator = !a.asset.generator.empty();
+ const bool hasCopyright = !a.asset.copyright.empty();
+ const bool hasSceneMetadata = a.scene->customExtensions;
+ if (hasVersion || hasGenerator || hasCopyright || hasSceneMetadata) {
+ mScene->mMetaData = new aiMetadata;
+ if (hasVersion) {
+ mScene->mMetaData->Add(AI_METADATA_SOURCE_FORMAT_VERSION, aiString(a.asset.version));
+ }
+ if (hasGenerator) {
+ mScene->mMetaData->Add(AI_METADATA_SOURCE_GENERATOR, aiString(a.asset.generator));
+ }
+ if (hasCopyright) {
+ mScene->mMetaData->Add(AI_METADATA_SOURCE_COPYRIGHT, aiString(a.asset.copyright));
+ }
+ if (hasSceneMetadata) {
+ ParseExtensions(mScene->mMetaData, a.scene->customExtensions);
+ }
+ }
+}
+
+void glTF2Importer::InternReadFile(const std::string &pFile, aiScene *pScene, IOSystem *pIOHandler) {
+ ASSIMP_LOG_DEBUG("Reading GLTF2 file");
+
+ // clean all member arrays
+ meshOffsets.clear();
+ mEmbeddedTexIdxs.clear();
+
+ this->mScene = pScene;
+
+ // read the asset file
+ glTF2::Asset asset(pIOHandler, static_cast<rapidjson::IRemoteSchemaDocumentProvider*>(mSchemaDocumentProvider));
+ asset.Load(pFile, GetExtension(pFile) == "glb");
+ if (asset.scene) {
+ pScene->mName = asset.scene->name;
+ }
+
+ // Copy the data out
+ ImportEmbeddedTextures(asset);
+ ImportMaterials(asset);
+
+ ImportMeshes(asset);
+
+ ImportCameras(asset);
+ ImportLights(asset);
+
+ ImportNodes(asset);
+
+ ImportAnimations(asset);
+
+ ImportCommonMetadata(asset);
+
+ if (pScene->mNumMeshes == 0) {
+ pScene->mFlags |= AI_SCENE_FLAGS_INCOMPLETE;
+ }
+}
+
+void glTF2Importer::SetupProperties(const Importer *pImp) {
+ mSchemaDocumentProvider = static_cast<rapidjson::IRemoteSchemaDocumentProvider*>(pImp->GetPropertyPointer(AI_CONFIG_IMPORT_SCHEMA_DOCUMENT_PROVIDER));
+}
+
+#endif // ASSIMP_BUILD_NO_GLTF_IMPORTER