diff options
author | sanine <sanine.not@pm.me> | 2022-03-04 10:47:15 -0600 |
---|---|---|
committer | sanine <sanine.not@pm.me> | 2022-03-04 10:47:15 -0600 |
commit | 058f98a63658dc1a2579826ba167fd61bed1e21f (patch) | |
tree | bcba07a1615a14d943f3af3f815a42f3be86b2f3 /src/mesh/assimp-master/contrib/Open3DGC/o3dgcArithmeticCodec.cpp | |
parent | 2f8028ac9e0812cb6f3cbb08f0f419e4e717bd22 (diff) |
add assimp submodule
Diffstat (limited to 'src/mesh/assimp-master/contrib/Open3DGC/o3dgcArithmeticCodec.cpp')
-rw-r--r-- | src/mesh/assimp-master/contrib/Open3DGC/o3dgcArithmeticCodec.cpp | 862 |
1 files changed, 862 insertions, 0 deletions
diff --git a/src/mesh/assimp-master/contrib/Open3DGC/o3dgcArithmeticCodec.cpp b/src/mesh/assimp-master/contrib/Open3DGC/o3dgcArithmeticCodec.cpp new file mode 100644 index 0000000..2ae70fa --- /dev/null +++ b/src/mesh/assimp-master/contrib/Open3DGC/o3dgcArithmeticCodec.cpp @@ -0,0 +1,862 @@ +/* +Copyright (c) 2004 Amir Said (said@ieee.org) & William A. Pearlman (pearlw@ecse.rpi.edu) +All rights reserved. + +Redistribution and use in source and binary forms, with or without modification, +are permitted provided that the following conditions are met: + +- Redistributions of source code must retain the above copyright notice, this list + of conditions and the following disclaimer. + +- Redistributions in binary form must reproduce the above copyright notice, this list of + conditions and the following disclaimer in the documentation and/or other materials + provided with the distribution. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY +EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF +MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL +THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; +OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER +IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING +IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY +OF SUCH DAMAGE. + +*/ +// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - +// - +// **************************** - +// ARITHMETIC CODING EXAMPLES - +// **************************** - +// - +// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - +// - +// Fast arithmetic coding implementation - +// -> 32-bit variables, 32-bit product, periodic updates, table decoding - +// - +// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - +// - +// Version 1.00 - April 25, 2004 - +// - +// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - +// - +// WARNING - +// ========= - +// - +// The only purpose of this program is to demonstrate the basic principles - +// of arithmetic coding. It is provided as is, without any express or - +// implied warranty, without even the warranty of fitness for any particular - +// purpose, or that the implementations are correct. - +// - +// Permission to copy and redistribute this code is hereby granted, provided - +// that this warning and copyright notices are not removed or altered. - +// - +// Copyright (c) 2004 by Amir Said (said@ieee.org) & - +// William A. Pearlman (pearlw@ecse.rpi.edu) - +// - +// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - +// - +// A description of the arithmetic coding method used here is available in - +// - +// Lossless Compression Handbook, ed. K. Sayood - +// Chapter 5: Arithmetic Coding (A. Said), pp. 101-152, Academic Press, 2003 - +// - +// A. Said, Introduction to Arithetic Coding Theory and Practice - +// HP Labs report HPL-2004-76 - http://www.hpl.hp.com/techreports/ - +// - +// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + +// - - Inclusion - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + +#include <stdlib.h> +#include "o3dgcArithmeticCodec.h" + +namespace o3dgc +{ + // - - Constants - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + const unsigned AC__MinLength = 0x01000000U; // threshold for renormalization + const unsigned AC__MaxLength = 0xFFFFFFFFU; // maximum AC interval length + + // Maximum values for binary models + const unsigned BM__LengthShift = 13; // length bits discarded before mult. + const unsigned BM__MaxCount = 1 << BM__LengthShift; // for adaptive models + + // Maximum values for general models + const unsigned DM__LengthShift = 15; // length bits discarded before mult. + const unsigned DM__MaxCount = 1 << DM__LengthShift; // for adaptive models + + + // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + // - - Static functions - - - - - - - - - - - - - - - - - - - - - - - - - - - + + static void AC_Error(const char * msg) + { + fprintf(stderr, "\n\n -> Arithmetic coding error: "); + fputs(msg, stderr); + fputs("\n Execution terminated!\n", stderr); + getchar(); + exit(1); + } + + + // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + // - - Coding implementations - - - - - - - - - - - - - - - - - - - - - - - - + + inline void Arithmetic_Codec::propagate_carry(void) + { + unsigned char * p; // carry propagation on compressed data buffer + for (p = ac_pointer - 1; *p == 0xFFU; p--) *p = 0; + ++*p; + } + + // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + inline void Arithmetic_Codec::renorm_enc_interval(void) + { + do { // output and discard top byte + *ac_pointer++ = (unsigned char)(base >> 24); + base <<= 8; + } while ((length <<= 8) < AC__MinLength); // length multiplied by 256 + } + + // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + inline void Arithmetic_Codec::renorm_dec_interval(void) + { + do { // read least-significant byte + value = (value << 8) | unsigned(*++ac_pointer); + } while ((length <<= 8) < AC__MinLength); // length multiplied by 256 + } + + // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + void Arithmetic_Codec::put_bit(unsigned bit) + { + #ifdef _DEBUG + if (mode != 1) AC_Error("encoder not initialized"); + #endif + + length >>= 1; // halve interval + if (bit) { + unsigned init_base = base; + base += length; // move base + if (init_base > base) propagate_carry(); // overflow = carry + } + + if (length < AC__MinLength) renorm_enc_interval(); // renormalization + } + + // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + unsigned Arithmetic_Codec::get_bit(void) + { + #ifdef _DEBUG + if (mode != 2) AC_Error("decoder not initialized"); + #endif + + length >>= 1; // halve interval + unsigned bit = (value >= length); // decode bit + if (bit) value -= length; // move base + + if (length < AC__MinLength) renorm_dec_interval(); // renormalization + + return bit; // return data bit value + } + + // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + void Arithmetic_Codec::put_bits(unsigned data, unsigned bits) + { + #ifdef _DEBUG + if (mode != 1) AC_Error("encoder not initialized"); + if ((bits < 1) || (bits > 20)) AC_Error("invalid number of bits"); + if (data >= (1U << bits)) AC_Error("invalid data"); + #endif + + unsigned init_base = base; + base += data * (length >>= bits); // new interval base and length + + if (init_base > base) propagate_carry(); // overflow = carry + if (length < AC__MinLength) renorm_enc_interval(); // renormalization + } + + // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + unsigned Arithmetic_Codec::get_bits(unsigned bits) + { + #ifdef _DEBUG + if (mode != 2) AC_Error("decoder not initialized"); + if ((bits < 1) || (bits > 20)) AC_Error("invalid number of bits"); + #endif + + unsigned s = value / (length >>= bits); // decode symbol, change length + + value -= length * s; // update interval + if (length < AC__MinLength) renorm_dec_interval(); // renormalization + + return s; + } + + // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + void Arithmetic_Codec::encode(unsigned bit, + Static_Bit_Model & M) + { + #ifdef _DEBUG + if (mode != 1) AC_Error("encoder not initialized"); + #endif + + unsigned x = M.bit_0_prob * (length >> BM__LengthShift); // product l x p0 + // update interval + if (bit == 0) + length = x; + else { + unsigned init_base = base; + base += x; + length -= x; + if (init_base > base) propagate_carry(); // overflow = carry + } + + if (length < AC__MinLength) renorm_enc_interval(); // renormalization + } + + // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + unsigned Arithmetic_Codec::decode(Static_Bit_Model & M) + { + #ifdef _DEBUG + if (mode != 2) AC_Error("decoder not initialized"); + #endif + + unsigned x = M.bit_0_prob * (length >> BM__LengthShift); // product l x p0 + unsigned bit = (value >= x); // decision + // update & shift interval + if (bit == 0) + length = x; + else { + value -= x; // shifted interval base = 0 + length -= x; + } + + if (length < AC__MinLength) renorm_dec_interval(); // renormalization + + return bit; // return data bit value + } + + // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + void Arithmetic_Codec::encode(unsigned bit, + Adaptive_Bit_Model & M) + { + #ifdef _DEBUG + if (mode != 1) AC_Error("encoder not initialized"); + #endif + + unsigned x = M.bit_0_prob * (length >> BM__LengthShift); // product l x p0 + // update interval + if (bit == 0) { + length = x; + ++M.bit_0_count; + } + else { + unsigned init_base = base; + base += x; + length -= x; + if (init_base > base) propagate_carry(); // overflow = carry + } + + if (length < AC__MinLength) renorm_enc_interval(); // renormalization + + if (--M.bits_until_update == 0) M.update(); // periodic model update + } + + // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + unsigned Arithmetic_Codec::decode(Adaptive_Bit_Model & M) + { + #ifdef _DEBUG + if (mode != 2) AC_Error("decoder not initialized"); + #endif + + unsigned x = M.bit_0_prob * (length >> BM__LengthShift); // product l x p0 + unsigned bit = (value >= x); // decision + // update interval + if (bit == 0) { + length = x; + ++M.bit_0_count; + } + else { + value -= x; + length -= x; + } + + if (length < AC__MinLength) renorm_dec_interval(); // renormalization + + if (--M.bits_until_update == 0) M.update(); // periodic model update + + return bit; // return data bit value + } + + // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + void Arithmetic_Codec::encode(unsigned data, + Static_Data_Model & M) + { + #ifdef _DEBUG + if (mode != 1) AC_Error("encoder not initialized"); + if (data >= M.data_symbols) AC_Error("invalid data symbol"); + #endif + + unsigned x, init_base = base; + // compute products + if (data == M.last_symbol) { + x = M.distribution[data] * (length >> DM__LengthShift); + base += x; // update interval + length -= x; // no product needed + } + else { + x = M.distribution[data] * (length >>= DM__LengthShift); + base += x; // update interval + length = M.distribution[data+1] * length - x; + } + + if (init_base > base) propagate_carry(); // overflow = carry + + if (length < AC__MinLength) renorm_enc_interval(); // renormalization + } + + // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + unsigned Arithmetic_Codec::decode(Static_Data_Model & M) + { + #ifdef _DEBUG + if (mode != 2) AC_Error("decoder not initialized"); + #endif + + unsigned n, s, x, y = length; + + if (M.decoder_table) { // use table look-up for faster decoding + + unsigned dv = value / (length >>= DM__LengthShift); + unsigned t = dv >> M.table_shift; + + s = M.decoder_table[t]; // initial decision based on table look-up + n = M.decoder_table[t+1] + 1; + + while (n > s + 1) { // finish with bisection search + unsigned m = (s + n) >> 1; + if (M.distribution[m] > dv) n = m; else s = m; + } + // compute products + x = M.distribution[s] * length; + if (s != M.last_symbol) y = M.distribution[s+1] * length; + } + + else { // decode using only multiplications + + x = s = 0; + length >>= DM__LengthShift; + unsigned m = (n = M.data_symbols) >> 1; + // decode via bisection search + do { + unsigned z = length * M.distribution[m]; + if (z > value) { + n = m; + y = z; // value is smaller + } + else { + s = m; + x = z; // value is larger or equal + } + } while ((m = (s + n) >> 1) != s); + } + + value -= x; // update interval + length = y - x; + + if (length < AC__MinLength) renorm_dec_interval(); // renormalization + + return s; + } + + // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + void Arithmetic_Codec::encode(unsigned data, + Adaptive_Data_Model & M) + { + #ifdef _DEBUG + if (mode != 1) AC_Error("encoder not initialized"); + if (data >= M.data_symbols) + { + AC_Error("invalid data symbol"); + } + #endif + + unsigned x, init_base = base; + // compute products + if (data == M.last_symbol) { + x = M.distribution[data] * (length >> DM__LengthShift); + base += x; // update interval + length -= x; // no product needed + } + else { + x = M.distribution[data] * (length >>= DM__LengthShift); + base += x; // update interval + length = M.distribution[data+1] * length - x; + } + + if (init_base > base) propagate_carry(); // overflow = carry + + if (length < AC__MinLength) renorm_enc_interval(); // renormalization + + ++M.symbol_count[data]; + if (--M.symbols_until_update == 0) M.update(true); // periodic model update + } + + // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + unsigned Arithmetic_Codec::decode(Adaptive_Data_Model & M) + { + #ifdef _DEBUG + if (mode != 2) AC_Error("decoder not initialized"); + #endif + + unsigned n, s, x, y = length; + + if (M.decoder_table) { // use table look-up for faster decoding + + unsigned dv = value / (length >>= DM__LengthShift); + unsigned t = dv >> M.table_shift; + + s = M.decoder_table[t]; // initial decision based on table look-up + n = M.decoder_table[t+1] + 1; + + while (n > s + 1) { // finish with bisection search + unsigned m = (s + n) >> 1; + if (M.distribution[m] > dv) n = m; else s = m; + } + // compute products + x = M.distribution[s] * length; + if (s != M.last_symbol) { + y = M.distribution[s+1] * length; + } + } + + else { // decode using only multiplications + + x = s = 0; + length >>= DM__LengthShift; + unsigned m = (n = M.data_symbols) >> 1; + // decode via bisection search + do { + unsigned z = length * M.distribution[m]; + if (z > value) { + n = m; + y = z; // value is smaller + } + else { + s = m; + x = z; // value is larger or equal + } + } while ((m = (s + n) >> 1) != s); + } + + value -= x; // update interval + length = y - x; + + if (length < AC__MinLength) renorm_dec_interval(); // renormalization + + ++M.symbol_count[s]; + if (--M.symbols_until_update == 0) M.update(false); // periodic model update + + return s; + } + + + // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + // - - Other Arithmetic_Codec implementations - - - - - - - - - - - - - - - - + + Arithmetic_Codec::Arithmetic_Codec(void) + { + mode = buffer_size = 0; + new_buffer = code_buffer = 0; + } + + Arithmetic_Codec::Arithmetic_Codec(unsigned max_code_bytes, + unsigned char * user_buffer) + { + mode = buffer_size = 0; + new_buffer = code_buffer = 0; + set_buffer(max_code_bytes, user_buffer); + } + + Arithmetic_Codec::~Arithmetic_Codec(void) + { + delete [] new_buffer; + } + + // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + void Arithmetic_Codec::set_buffer(unsigned max_code_bytes, + unsigned char * user_buffer) + { + // test for reasonable sizes + if (!max_code_bytes)// || (max_code_bytes > 0x10000000U)) // updated by K. Mammou + { + AC_Error("invalid codec buffer size"); + } + if (mode != 0) AC_Error("cannot set buffer while encoding or decoding"); + + if (user_buffer != 0) { // user provides memory buffer + buffer_size = max_code_bytes; + code_buffer = user_buffer; // set buffer for compressed data + delete [] new_buffer; // free anything previously assigned + new_buffer = 0; + return; + } + + if (max_code_bytes <= buffer_size) return; // enough available + + buffer_size = max_code_bytes; // assign new memory + delete [] new_buffer; // free anything previously assigned + new_buffer = new unsigned char[buffer_size+16]; // 16 extra bytes + code_buffer = new_buffer; // set buffer for compressed data + } + + // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + void Arithmetic_Codec::start_encoder(void) + { + if (mode != 0) AC_Error("cannot start encoder"); + if (buffer_size == 0) AC_Error("no code buffer set"); + + mode = 1; + base = 0; // initialize encoder variables: interval and pointer + length = AC__MaxLength; + ac_pointer = code_buffer; // pointer to next data byte + } + + // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + void Arithmetic_Codec::start_decoder(void) + { + if (mode != 0) AC_Error("cannot start decoder"); + if (buffer_size == 0) AC_Error("no code buffer set"); + + // initialize decoder: interval, pointer, initial code value + mode = 2; + length = AC__MaxLength; + ac_pointer = code_buffer + 3; + value = (unsigned(code_buffer[0]) << 24)|(unsigned(code_buffer[1]) << 16) | + (unsigned(code_buffer[2]) << 8)| unsigned(code_buffer[3]); + } + + // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + void Arithmetic_Codec::read_from_file(FILE * code_file) + { + unsigned shift = 0, code_bytes = 0; + int file_byte; + // read variable-length header with number of code bytes + do { + if ((file_byte = getc(code_file)) == EOF) + AC_Error("cannot read code from file"); + code_bytes |= unsigned(file_byte & 0x7F) << shift; + shift += 7; + } while (file_byte & 0x80); + // read compressed data + if (code_bytes > buffer_size) AC_Error("code buffer overflow"); + if (fread(code_buffer, 1, code_bytes, code_file) != code_bytes) + AC_Error("cannot read code from file"); + + start_decoder(); // initialize decoder + } + + // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + unsigned Arithmetic_Codec::stop_encoder(void) + { + if (mode != 1) AC_Error("invalid to stop encoder"); + mode = 0; + + unsigned init_base = base; // done encoding: set final data bytes + + if (length > 2 * AC__MinLength) { + base += AC__MinLength; // base offset + length = AC__MinLength >> 1; // set new length for 1 more byte + } + else { + base += AC__MinLength >> 1; // base offset + length = AC__MinLength >> 9; // set new length for 2 more bytes + } + + if (init_base > base) propagate_carry(); // overflow = carry + + renorm_enc_interval(); // renormalization = output last bytes + + unsigned code_bytes = unsigned(ac_pointer - code_buffer); + if (code_bytes > buffer_size) AC_Error("code buffer overflow"); + + return code_bytes; // number of bytes used + } + + // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + unsigned Arithmetic_Codec::write_to_file(FILE * code_file) + { + unsigned header_bytes = 0, code_bytes = stop_encoder(), nb = code_bytes; + + // write variable-length header with number of code bytes + do { + int file_byte = int(nb & 0x7FU); + if ((nb >>= 7) > 0) file_byte |= 0x80; + if (putc(file_byte, code_file) == EOF) + AC_Error("cannot write compressed data to file"); + header_bytes++; + } while (nb); + // write compressed data + if (fwrite(code_buffer, 1, code_bytes, code_file) != code_bytes) + AC_Error("cannot write compressed data to file"); + + return code_bytes + header_bytes; // bytes used + } + + // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + void Arithmetic_Codec::stop_decoder(void) + { + if (mode != 2) AC_Error("invalid to stop decoder"); + mode = 0; + } + + + // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + // - Static bit model implementation - - - - - - - - - - - - - - - - - - - - - + + Static_Bit_Model::Static_Bit_Model(void) + { + bit_0_prob = 1U << (BM__LengthShift - 1); // p0 = 0.5 + } + + // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + void Static_Bit_Model::set_probability_0(double p0) + { + if ((p0 < 0.0001)||(p0 > 0.9999)) AC_Error("invalid bit probability"); + bit_0_prob = unsigned(p0 * (1 << BM__LengthShift)); + } + + + // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + // - Adaptive bit model implementation - - - - - - - - - - - - - - - - - - - - + + Adaptive_Bit_Model::Adaptive_Bit_Model(void) + { + reset(); + } + + // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + void Adaptive_Bit_Model::reset(void) + { + // initialization to equiprobable model + bit_0_count = 1; + bit_count = 2; + bit_0_prob = 1U << (BM__LengthShift - 1); + update_cycle = bits_until_update = 4; // start with frequent updates + } + + // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + void Adaptive_Bit_Model::update(void) + { + // halve counts when a threshold is reached + + if ((bit_count += update_cycle) > BM__MaxCount) { + bit_count = (bit_count + 1) >> 1; + bit_0_count = (bit_0_count + 1) >> 1; + if (bit_0_count == bit_count) ++bit_count; + } + // compute scaled bit 0 probability + unsigned scale = 0x80000000U / bit_count; + bit_0_prob = (bit_0_count * scale) >> (31 - BM__LengthShift); + + // set frequency of model updates + update_cycle = (5 * update_cycle) >> 2; + if (update_cycle > 64) update_cycle = 64; + bits_until_update = update_cycle; + } + + + // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + // - - Static data model implementation - - - - - - - - - - - - - - - - - - - + + Static_Data_Model::Static_Data_Model(void) + { + data_symbols = 0; + distribution = 0; + } + + Static_Data_Model::~Static_Data_Model(void) + { + delete [] distribution; + } + + // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + void Static_Data_Model::set_distribution(unsigned number_of_symbols, + const double probability[]) + { + if ((number_of_symbols < 2) || (number_of_symbols > (1 << 11))) + AC_Error("invalid number of data symbols"); + + if (data_symbols != number_of_symbols) { // assign memory for data model + data_symbols = number_of_symbols; + last_symbol = data_symbols - 1; + delete [] distribution; + // define size of table for fast decoding + if (data_symbols > 16) { + unsigned table_bits = 3; + while (data_symbols > (1U << (table_bits + 2))) ++table_bits; + table_size = 1 << table_bits; + table_shift = DM__LengthShift - table_bits; + distribution = new unsigned[data_symbols+table_size+2]; + decoder_table = distribution + data_symbols; + } + else { // small alphabet: no table needed + decoder_table = 0; + table_size = table_shift = 0; + distribution = new unsigned[data_symbols]; + } + } + // compute cumulative distribution, decoder table + unsigned s = 0; + double sum = 0.0, p = 1.0 / double(data_symbols); + + for (unsigned k = 0; k < data_symbols; k++) { + if (probability) p = probability[k]; + if ((p < 0.0001) || (p > 0.9999)) AC_Error("invalid symbol probability"); + distribution[k] = unsigned(sum * (1 << DM__LengthShift)); + sum += p; + if (table_size == 0) continue; + unsigned w = distribution[k] >> table_shift; + while (s < w) decoder_table[++s] = k - 1; + } + + if (table_size != 0) { + decoder_table[0] = 0; + while (s <= table_size) decoder_table[++s] = data_symbols - 1; + } + + if ((sum < 0.9999) || (sum > 1.0001)) AC_Error("invalid probabilities"); + } + + // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + // - - Adaptive data model implementation - - - - - - - - - - - - - - - - - - + + Adaptive_Data_Model::Adaptive_Data_Model(void) + { + data_symbols = 0; + distribution = 0; + } + + Adaptive_Data_Model::Adaptive_Data_Model(unsigned number_of_symbols) + { + data_symbols = 0; + distribution = 0; + set_alphabet(number_of_symbols); + } + + Adaptive_Data_Model::~Adaptive_Data_Model(void) + { + delete [] distribution; + } + + // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + void Adaptive_Data_Model::set_alphabet(unsigned number_of_symbols) + { + if ((number_of_symbols < 2) || (number_of_symbols > (1 << 11))) + AC_Error("invalid number of data symbols"); + + if (data_symbols != number_of_symbols) { // assign memory for data model + data_symbols = number_of_symbols; + last_symbol = data_symbols - 1; + delete [] distribution; + // define size of table for fast decoding + if (data_symbols > 16) { + unsigned table_bits = 3; + while (data_symbols > (1U << (table_bits + 2))) ++table_bits; + table_size = 1 << table_bits; + table_shift = DM__LengthShift - table_bits; + distribution = new unsigned[2*data_symbols+table_size+2]; + decoder_table = distribution + 2 * data_symbols; + } + else { // small alphabet: no table needed + decoder_table = 0; + table_size = table_shift = 0; + distribution = new unsigned[2*data_symbols]; + } + symbol_count = distribution + data_symbols; + } + + reset(); // initialize model + } + + // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + void Adaptive_Data_Model::update(bool from_encoder) + { + // halve counts when a threshold is reached + + if ((total_count += update_cycle) > DM__MaxCount) { + total_count = 0; + for (unsigned n = 0; n < data_symbols; n++) + total_count += (symbol_count[n] = (symbol_count[n] + 1) >> 1); + } + assert(total_count > 0); + // compute cumulative distribution, decoder table + unsigned k, sum = 0, s = 0; + unsigned scale = 0x80000000U / total_count; + + if (from_encoder || (table_size == 0)) + for (k = 0; k < data_symbols; k++) { + distribution[k] = (scale * sum) >> (31 - DM__LengthShift); + sum += symbol_count[k]; + } + else { + assert(decoder_table); + for (k = 0; k < data_symbols; k++) { + distribution[k] = (scale * sum) >> (31 - DM__LengthShift); + sum += symbol_count[k]; + unsigned w = distribution[k] >> table_shift; + while (s < w) decoder_table[++s] = k - 1; + } + decoder_table[0] = 0; + while (s <= table_size) decoder_table[++s] = data_symbols - 1; + } + // set frequency of model updates + update_cycle = (5 * update_cycle) >> 2; + unsigned max_cycle = (data_symbols + 6) << 3; + if (update_cycle > max_cycle) update_cycle = max_cycle; + symbols_until_update = update_cycle; + } + + // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + void Adaptive_Data_Model::reset(void) + { + if (data_symbols == 0) return; + + // restore probability estimates to uniform distribution + total_count = 0; + update_cycle = data_symbols; + for (unsigned k = 0; k < data_symbols; k++) symbol_count[k] = 1; + update(false); + symbols_until_update = update_cycle = (data_symbols + 6) >> 1; + } +} +/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ |